In Vitro Selection of Lactobacillus and Bifidobacterium Probiotic Strains for the Management of Oral Pathobiont Infections Associated to Systemic Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Agar Spot Test
2.2. Viability Assay
2.3. Biofilm Formation Assay
2.4. Probiotic Effect on a Complex Bacterial Environment
2.5. Co-Aggregation Assay
3. Materials and Methods
3.1. Bacterial Cultures
3.2. Agar Spot Test
3.3. Probiotic Cell-Free Supernatant Production
3.4. Viability Assay
3.5. Biofilm Formation Assay
3.6. Co-Aggregation Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belstrøm, D. The salivary microbiota in health and disease. J. Oral Microbiol. 2020, 12, 1723975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018, 9, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Zanetta, P.; Squarzanti, D.F.; Sorrentino, R.; Rolla, R.; Aluffi Valletti, P.; Garzaro, M.; Dell’Era, V.; Amoruso, A.; Azzimonti, B. Oral microbiota and vitamin D impact on oropharyngeal squamous cell carcinogenesis: A narrative literature review. Crit. Rev. Microbiol. 2021, 47, 224–239. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-R.; Chen, B.-Y.; Lin, W.-Z.; Li, Y.-L.; Wang, Y.-L.; Liu, Y.; Huang, J.-J.; Zhang, W.-W.; Ma, X.-X.; Shao, S.; et al. Microbiota in Gut, Oral Cavity, and Mitral Valves Are Associated With Rheumatic Heart Disease. Front. Cell. Infect. Microbiol. 2021, 11, 643092. [Google Scholar] [CrossRef]
- Arimatsu, K.; Yamada, H.; Miyazawa, H.; Minagawa, T.; Nakajima, M.; Ryder, M.I.; Gotoh, K.; Motooka, D.; Nakamura, S.; Iida, T.; et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci. Rep. 2014, 4, 4828. [Google Scholar] [CrossRef] [Green Version]
- Fine, D.H.; Patil, A.G.; Velusamy, S.K. Aggregatibacter actinomycetemcomitans (Aa) Under the Radar: Myths and Misunderstandings of Aa and Its Role in Aggressive Periodontitis. Front. Immunol. 2019, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Sharara, S.L.; Tayyar, R.; Kanafani, Z.A.; Kanj, S.S. HACEK endocarditis: A review. Expert Rev. Anti. Infect. Ther. 2016, 14, 539–545. [Google Scholar] [CrossRef]
- Chen, X.; Gong, Y.Y.; Zhang, L. A case report of streptococcal toxic shock syndrome caused by Streptococcus mitis in a healthy adult. BMC Infect. Dis. 2021, 21, 154. [Google Scholar] [CrossRef]
- Shelburne, S.A.; Sahasrabhojane, P.; Saldana, M.; Yao, H.; Su, X.; Horstmann, N.; Thompson, E.; Flores, A.R. Streptococcus mitis strains causing severe clinical disease in cancer patients. Emerg. Infect. Dis. 2014, 20, 762–771. [Google Scholar] [CrossRef]
- Mitchell, J. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral Microbiol. 2011, 26, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Browngardt, C.M.; Jiang, M.; Ahn, S.-J.; Burne, R.A.; Nascimento, M.M. Diversity in Antagonistic Interactions between Commensal Oral Streptococci and Streptococcus mutans. Caries Res. 2018, 52, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, GPP3-0051-2018. [Google Scholar] [CrossRef] [PubMed]
- Cosyns, B.; Roosens, B.; Lancellotti, P.; Laroche, C.; Dulgheru, R.; Scheggi, V.; Vilacosta, I.; Pasquet, A.; Piper, C.; Reyes, G.; et al. Cancer and Infective Endocarditis: Characteristics and Prognostic Impact. Front. Cardiovasc. Med. 2021, 8, 766996. [Google Scholar] [CrossRef] [PubMed]
- Chamat-Hedemand, S.; Dahl, A.; Østergaard, L.; Arpi, M.; Fosbøl, E.; Boel, J.; Oestergaard, L.B.; Lauridsen, T.K.; Gislason, G.; Torp-Pedersen, C.; et al. Prevalence of Infective Endocarditis in Streptococcal Bloodstream Infections Is Dependent on Streptococcal Species. Circulation 2020, 142, 720–730. [Google Scholar] [CrossRef]
- Lemos, I.d.S.; de Albuquerque Jassé, F.F.; Suzuki, S.S.; de Melo Alencar, C.; Fujii, D.N.; Zaniboni, J.F.; Suzuki, H.; Garcez Segundo, A.S. Antimicrobial activity of probiotics against oral pathogens around orthodontic mini-implants: An in vitro study. Dental Press J. Orthod. 2021, 26, e2119350. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hsieh, P.-S.; Ho, H.-H.; Hsieh, S.-H.; Kuo, Y.-W.; Yang, S.-F.; Lin, C.-W. Antibacterial activity of viable and heat-killed probiotic strains against oral pathogens. Lett. Appl. Microbiol. 2020, 70, 310–317. [Google Scholar] [CrossRef]
- Khaledi, M.; Sameni, F.; Afkhami, H.; Hemmati, J.; Asareh Zadegan Dezfuli, A.; Sanae, M.-J.; Validi, M. Infective endocarditis by HACEK: A review. J. Cardiothorac. Surg. 2022, 17, 185. [Google Scholar] [CrossRef]
- Gönczi, N.N.; Strang, O.; Bagi, Z.; Rákhely, G.; Kovács, K.L. Interactions between probiotic and oral pathogenic strains. Biol. Futur. 2021, 72, 461–471. [Google Scholar] [CrossRef]
- Coman, M.M.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Boyko, N.; Cresci, A. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501(®), Lactobacillus paracasei IMC 502(®) and SYNBIO(®) against pathogens. J. Appl. Microbiol. 2014, 117, 518–527. [Google Scholar] [CrossRef]
- de Souza Rodrigues, J.Z.; Passos, M.R.; Silva de Macêdo Neres, N.; Almeida, R.S.; Pita, L.S.; Santos, I.A.; Santana Silveira, P.H.; Reis, M.M.; Santos, I.P.; de Oliveira Negrão Ricardo, L.; et al. Antimicrobial activity of Lactobacillus fermentum TcUESC01 against Streptococcus mutans UA159. Microb. Pathog. 2020, 142, 104063. [Google Scholar] [CrossRef] [PubMed]
- Teanpaisan, R.; Piwat, S.; Dahlén, G. Inhibitory effect of oral Lactobacillus against oral pathogens. Lett. Appl. Microbiol. 2011, 53, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Kim, J.H.; Lee, N.-K.; Paik, H.-D. Inhibitory effects of Lactobacillus brevis KU15153 against Streptococcus mutans KCTC 5316 causing dental caries. Microb. Pathog. 2021, 157, 104938. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; Sgorbati, B.; Biavati, B.; Belibasakis, G.N. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression. Ann. Microbiol. 2014, 64, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, K.H.; Bueno, M.R.; Kawamoto, D.; Simionato, M.R.L.; Mayer, M.P.A. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol. Oral Microbiol. 2021, 36, 92–102. [Google Scholar] [CrossRef]
- Jansen, P.M.; Abdelbary, M.M.H.; Conrads, G. A concerted probiotic activity to inhibit periodontitis-associated bacteria. PLoS ONE 2021, 16, e0248308. [Google Scholar] [CrossRef]
- Lee, D.K.; Park, S.Y.; An, H.M.; Kim, J.R.; Kim, M.J.; Lee, S.W.; Cha, M.K.; Kim, S.A.; Chung, M.J.; Lee, K.O.; et al. Antimicrobial activity of Bifidobacterium spp. isolated from healthy adult Koreans against cariogenic microflora. Arch. Oral Biol. 2011, 56, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.; Abd El-Rahman, O.A.; Zafer, M.M.; Ashour, H.M. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J. Cell. Mol. Med. 2018, 22, 1972–1983. [Google Scholar] [CrossRef] [Green Version]
- Jaffar, N.; Ishikawa, Y.; Mizuno, K.; Okinaga, T.; Maeda, T. Mature Biofilm Degradation by Potential Probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp. PLoS ONE 2016, 11, e0159466. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Stapleton, F.; Willcox, M.D.P. Bacterial Coaggregation Among the Most Commonly Isolated Bacteria From Contact Lens Cases. Invest. Ophthalmol. Vis. Sci. 2017, 58, 50–58. [Google Scholar] [CrossRef]
- Scillato, M.; Spitale, A.; Mongelli, G.; Privitera, G.F.; Mangano, K.; Cianci, A.; Stefani, S.; Santagati, M. Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. Microbiologyopen 2021, 10, e1173. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhou, X.; Zhou, X.; Wu, P.; Li, M.; Feng, M.; Peng, X.; Ren, B.; Cheng, L. Effects of different substrates/growth media on microbial community of saliva-derived biofilm. FEMS Microbiol. Lett. 2017, 364, fnx123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe 2012, 18, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Martí, M.; Frígols, B.; Serrano-Aroca, A. Antimicrobial Characterization of Advanced Materials for Bioengineering Applications. J. Vis. Exp. 2018, 138, e57710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squarzanti, D.F.; Zanetta, P.; Ormelli, M.; Manfredi, M.; Barberis, E.; Vanella, V.V.; Amoruso, A.; Pane, M.; Azzimonti, B. An animal derivative-free medium enhances Lactobacillus johnsonii LJO02 supernatant selective efficacy against the methicillin (oxacillin)-resistant Staphylococcus aureus virulence through key-metabolites. Sci. Rep. 2022, 12, 8666. [Google Scholar] [CrossRef]
- Karched, M.; Bhardwaj, R.G.; Asikainen, S.E. Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol. 2015, 15, 114. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, H.; Tan, L.; Zhang, S.; Lin, L.; Tang, X.; Pan, Y. Oral Pathogen Fusobacterium nucleatum Coaggregates With Pseudomonas aeruginosa to Modulate the Inflammatory Cytotoxicity of Pulmonary Epithelial Cells. Front. Cell. Infect. Microbiol. 2021, 11, 643913. [Google Scholar] [CrossRef]
Probiotic Spot Incubation Time (h) | ||||
---|---|---|---|---|
Pathogen | Probiotic Strain | 0 | 24 | 48 |
A. actinomycetemcomitans | LBR01 | - | 1.19 ± 0.17 | 2.17 ± 0.4 |
LS03 | - | - | - | |
LRE11 | 0.23 ± 0.04 | 0.23 ± 0.04 | 0.96 ± 0.16 | |
LR04 | 0.58 ± 0.07 | 1.38 ± 0.13 | >3.88 # | |
LC04 | 0.46 ± 0.10 | 1.17 ± 0.31 | 2.46 ± 0.14 | |
LF26 | 0.48 ± 0.07 | 1.19 ± 0.22 | 1.98 ± 0.34 | |
Bl-04 | - | 1.65 ± 0.13 | >3.88 # | |
B632 | - | 1.13 ± 0.11 | 2.27 ± 0.32 | |
S. mitis | LBR01 | - | 0.31 ± 0.00 | 0.83 ± 0.26 |
LS03 | - | - | - | |
LRE11 | 0.27 ± 0.04 | 0.21 ± 0.04 | 0.44 ± 0.06 | |
LR04 | 0.50 ± 0.06 | 0.90 ± 0.18 | 1.38 ± 0.13 | |
LC04 | 0.33 ± 0.04 | 0.77 ± 0.04 | 1.17 ± 0.07 | |
LF26 | 0.27 ± 0.04 | 0.58 ± 0.16 | 0.92 ± 0.19 | |
Bl-04 | - | 0.88 ± 0.11 | 1.60 ± 0.18 | |
B632 | - | 0.46 ± 0.10 | 1.17 ± 0.10 | |
S. mutans | LBR01 | - | 0.83 ± 0.07 | >3.88 # |
LS03 | - | - | - | |
LRE11 | 0.35 ± 0.07 | 0.48 ± 0.04 | 0.98 ± 0.16 | |
LR04 | 0.71 ± 0.07 | 1.52 ± 0.25 | >3.88 # | |
LC04 | 0.77 ± 0.16 | 1.92 ± 0.34 | >3.88 # | |
LF26 | 0.52 ± 0.04 | 0.88 ± 0.11 | >3.88 # | |
Bl-04 | - | 1.67 ± 0.29 | >3.88 # |
Probiotic Spot Incubation Time (h) | |||
---|---|---|---|
Probiotic Strain | 0 | 24 | 48 |
LBR01 | - | - | 0.23 ± 0.18 |
LS03 | - | - | - |
LRE11 | 0.29 ± 0.04 | 0.29 ± 0.04 | 1.06 ± 0.27 |
LR04 | 0.35 ± 0.04 | 0.77 ± 0.04 | >3.88 # |
LC04 | 0.27 ± 0.04 | 0.65 ± 0.04 | >3.88 # |
LF26 | 0.29 ± 0.07 | 0.54 ± 0.07 | 1.54 ± 0.19 |
Bl-04 | - | 0.15 ± 0.04 | 1.42 ± 0.18 |
B632 | - | - | 0.75 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanetta, P.; Squarzanti, D.F.; di Coste, A.; Rolla, R.; Valletti, P.A.; Garzaro, M.; Dell’Era, V.; Amoruso, A.; Pane, M.; Azzimonti, B. In Vitro Selection of Lactobacillus and Bifidobacterium Probiotic Strains for the Management of Oral Pathobiont Infections Associated to Systemic Diseases. Int. J. Mol. Sci. 2022, 23, 16163. https://doi.org/10.3390/ijms232416163
Zanetta P, Squarzanti DF, di Coste A, Rolla R, Valletti PA, Garzaro M, Dell’Era V, Amoruso A, Pane M, Azzimonti B. In Vitro Selection of Lactobacillus and Bifidobacterium Probiotic Strains for the Management of Oral Pathobiont Infections Associated to Systemic Diseases. International Journal of Molecular Sciences. 2022; 23(24):16163. https://doi.org/10.3390/ijms232416163
Chicago/Turabian StyleZanetta, Paola, Diletta Francesca Squarzanti, Alessia di Coste, Roberta Rolla, Paolo Aluffi Valletti, Massimiliano Garzaro, Valeria Dell’Era, Angela Amoruso, Marco Pane, and Barbara Azzimonti. 2022. "In Vitro Selection of Lactobacillus and Bifidobacterium Probiotic Strains for the Management of Oral Pathobiont Infections Associated to Systemic Diseases" International Journal of Molecular Sciences 23, no. 24: 16163. https://doi.org/10.3390/ijms232416163
APA StyleZanetta, P., Squarzanti, D. F., di Coste, A., Rolla, R., Valletti, P. A., Garzaro, M., Dell’Era, V., Amoruso, A., Pane, M., & Azzimonti, B. (2022). In Vitro Selection of Lactobacillus and Bifidobacterium Probiotic Strains for the Management of Oral Pathobiont Infections Associated to Systemic Diseases. International Journal of Molecular Sciences, 23(24), 16163. https://doi.org/10.3390/ijms232416163