The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Clinical Workflow
4.2. Chest CT Protocol and Quantitative Assessment of Lung Involvement
4.3. DNA Extraction and Genotyping
4.4. uPAR ELISA
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—18 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---18-march-2020 (accessed on 24 April 2022).
- da Rosa Mesquita, R.; Francelino Silva Junior, L.C.; Santos Santana, F.M.; Farias de Oliveira, T.; Campos Alcântara, R.; Monteiro Arnozo, G.; Rodrigues da Silva Filho, E.; Galdino dos Santos, A.G.; Oliveira da Cunha, E.J.; Salgueiro de Aquino, S.H.; et al. Clinical Manifestations of COVID-19 in the General Population: Systematic Review. Wien. Klin. Wochenschr. 2021, 133, 377–382. [Google Scholar] [CrossRef]
- Cron, R.Q. No Perfect Therapy for the Imperfect COVID-19 Cytokine Storm. Lancet Rheumatol. 2022, 4, e308–e310. [Google Scholar] [CrossRef]
- Chen, L.Y.C.; Quach, T.T.T. COVID-19 Cytokine Storm Syndrome: A Threshold Concept. Lancet Microbe 2021, 2, e49–e50. [Google Scholar] [CrossRef] [PubMed]
- Yadaw, A.S.; Li, Y.; Bose, S.; Iyengar, R.; Bunyavanich, S.; Pandey, G. Clinical Features of COVID-19 Mortality: Development and Validation of a Clinical Prediction Model. Lancet Digit. Health 2020, 2, e516–e525. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, L.; Ye, J.; Gu, Z.; Wang, S.; Xia, J.; Xie, Y.; Li, Q.; Xu, R.; Lin, N. Predictors of Mortality in Patients with Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2021, 21, 663. [Google Scholar] [CrossRef] [PubMed]
- Rubina, K.; Shmakova, A.; Shabanov, A.; Andreev, Y.; Borovkova, N.; Kulabukhov, V.; Evseev, A.; Popugaev, K.; Petrikov, S.; Semina, E. Novel Prognostic Determinants of COVID-19-Related Mortality: A Pilot Study on Severely-Ill Patients in Russia. PLoS ONE 2022, 17, e0264072. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, N.; Cao, Z.; Gundrum, J.; Sianis, J.; Safo, S. Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19. JAMA Netw. Open 2020, 3, e2029058. [Google Scholar] [CrossRef]
- Estiri, H.; Strasser, Z.H.; Klann, J.G.; Naseri, P.; Wagholikar, K.B.; Murphy, S.N. Predicting COVID-19 Mortality with Electronic Medical Records. NPJ Digit. Med. 2021, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global Impact of the First Year of COVID-19 Vaccination: A Mathematical Modelling Study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Ji, H.L.; Zhao, R.; Matalon, S.; Matthay, M.A. Elevated Plasmin(Ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol. Rev. 2020, 100, 1065–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokeen, K.; Pandey, S.; Shah, M.; Kumar, S. Insight towards the Effect of the Multi Basic Cleavage Site of SARS-CoV-2 Spike Protein on Cellular Proteases. Virus Res. 2022, 318, 198845. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; Comegna, M.; Paparo, L.; Cernera, G.; Bruno, C.; Strisciuglio, C.; Zollo, I.; Gravina, A.G.; Miele, E.; Cantone, E.; et al. Age-Related Differences in the Expression of Most Relevant Mediators of SARS-CoV-2 Infection in Human Respiratory and Gastrointestinal Tract. Front. Pediatr. 2021, 9, 697390. [Google Scholar] [CrossRef]
- Baker, S.K.; Strickland, S. A Critical Role for Plasminogen in Inflammation. J. Exp. Med. 2020, 217, e20191865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teimury, A.; Khameneh, M.T.; Khaledi, E.M. Major Coagulation Disorders and Parameters in COVID-19 Patients. Eur. J. Med. Res. 2022, 27, 25. [Google Scholar] [CrossRef]
- Shetty, S.; Padijnayayveetil, J.; Tucker, T.; Stankowska, D.; Idell, S. The Fibrinolytic System and the Regulation of Lung Epithelial Cell Proteolysis, Signaling, and Cellular Viability. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L967–L975. [Google Scholar] [CrossRef] [PubMed]
- Schuliga, M.; Jaffar, J.; Harris, T.; Knight, D.A.; Westall, G.; Stewart, A.G. The Fibrogenic Actions of Lung Fibroblast-Derived Urokinase: A Potential Drug Target in IPF. Sci. Rep. 2017, 7, 41770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, R.C.; Scotton, C.J. Coagulation Cascade Proteinases in Lung Injury and Fibrosis. Proc. Am. Thorac. Soc. 2012, 9, 96–101. [Google Scholar] [CrossRef]
- De Lorenzi, V.; Sarra Ferraris, G.M.; Madsen, J.B.; Lupia, M.; Andreasen, P.A.; Sidenius, N. Urokinase Links Plasminogen Activation and Cell Adhesion by Cleavage of the RGD Motif in Vitronectin. EMBO Rep. 2016, 17, 982–998. [Google Scholar] [CrossRef]
- Smith, H.W.; Marshall, C.J. Regulation of Cell Signalling by UPAR. Nat. Rev. Mol. Cell Biol. 2010, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Blasi, F.; Carmeliet, P. UPAR: A Versatile Signalling Orchestrator. Nat. Rev. Mol. Cell Biol. 2002, 3, 932–943. [Google Scholar] [CrossRef]
- Zhou, H.-M.; Nichols, A.; Meda, P.; Vassalli, J.-D. Urokinase-Type Plasminogen Activator and Its Receptor Synergize to Promote Pathogenic Proteolysis. EMBO J. 2000, 19, 4817–4826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eugen-Olsen, J.; Andersen, O.; Linneberg, A.; Ladelund, S.; Hansen, T.W.; Langkilde, A.; Petersen, J.; Pielak, T.; Møller, L.N.; Jeppesen, J.; et al. Circulating Soluble Urokinase Plasminogen Activator Receptor Predicts Cancer, Cardiovascular Disease, Diabetes and Mortality in the General Population. J. Intern. Med. 2010, 268, 296–308. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Fan, C.; Yu, M.; Wallar, G.; Zhang, Z.-F.; Wang, L.; Zhang, X.; Hu, R. Associations of ACE Gene Insertion/Deletion Polymorphism, ACE Activity, and ACE MRNA Expression with Hypertension in a Chinese Population. PLoS ONE 2013, 8, e75870. [Google Scholar] [CrossRef]
- Vladeanu, M.-C.; Bojan, I.B.; Bojan, A.; Iliescu, D.; Badescu, M.C.; Badulescu, O.V.; Badescu, M.; Georgescu, C.A.; Ciocoiu, M. Angiotensin-Converting Enzyme Gene D-Allele and the Severity of Coronary Artery Disease. Exp. Ther. Med. 2020, 20, 3407–3411. [Google Scholar] [CrossRef]
- Berge, K.E.; Berg, K. Cardiovascular Risk Factors in People with Different Genotypes in the Insertion/Deletion (I/D) Polymorphism at the Locus for Angiotensin I-Converting Enzyme (ACE). Clin. Genet. 1997, 52, 422–426. [Google Scholar] [CrossRef]
- Tejpal, S.; Sanghera, N.; Manoharan, V.; Planas-Iglesias, J.; Bastie, C.C.; Klein-Seetharaman, J. Angiotensin Converting Enzyme (ACE): A Marker for Personalized Feedback on Dieting. Nutrients 2020, 12, 660. [Google Scholar] [CrossRef] [Green Version]
- Alsafar, H.; Hassoun, A.; Almazrouei, S.; Kamal, W.; Almaini, M.; Odama, U.; Rais, N. Association of Angiotensin Converting Enzyme Insertion-Deletion Polymorphism with Hypertension in Emiratis with Type 2 Diabetes Mellitus and Its Interaction with Obesity Status. Dis. Markers 2015, 2015, 536041. [Google Scholar] [CrossRef] [Green Version]
- Huertas, A.; Montani, D.; Savale, L.; Pichon, J.; Tu, L.; Parent, F.; Guignabert, C.; Humbert, M. Endothelial Cell Dysfunction: A Major Player in SARS-CoV-2 Infection (COVID-19)? Eur. Respir. J. 2020, 56, 2001634. [Google Scholar] [CrossRef]
- Förstermann, U.; Münzel, T. Endothelial Nitric Oxide Synthase in Vascular Disease. Circulation 2006, 113, 1708–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiss, C.; Rodriguez-Mateos, A.; Kelm, M. Central Role of ENOS in the Maintenance of Endothelial Homeostasis. Antioxid. Redox Signal. 2015, 22, 1230–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, D.R.; Ashkar, A.A.; Mossman, K.L. The Nitric Oxide Pathway Provides Innate Antiviral Protection in Conjunction with the Type I Interferon Pathway in Fibroblasts. PLoS ONE 2012, 7, e31688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sodano, F.; Gazzano, E.; Fruttero, R.; Lazzarato, L. NO in Viral Infections: Role and Development of Antiviral Therapies. Molecules 2022, 27, 2337. [Google Scholar] [CrossRef]
- Guimarães, L.M.F.; Rossini, C.V.T.; Lameu, C. Implications of SARS-Cov-2 Infection on ENOS and INOS Activity: Consequences for the Respiratory and Vascular Systems. Nitric Oxide 2021, 111, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Jarahzadeh, M.H.; Jafari, M.; Seifi-Shalamzari, N.; Ferdosian, F.; Bahrami, R.; Raee-Ezzabadi, A.; Nafei, Z.; Shajari, A.; Mirjalili, S.R.; Neamatzadeh, H. Association of PAI-1 4G/5G and ACE I/D Polymorphisms with Susceptibility to Pediatric Sepsis: Evidence from a Meta-Analysis. Fetal Pediatr. Pathol. 2022, 41, 242–258. [Google Scholar] [CrossRef]
- Velissaris, D.; Dimopoulos, G.; Parissis, J.; Alexiou, Z.; Antonakos, N.; Babalis, D.; Gerakari, S.; Kaldis, V.; Koutoukas, P.; Lada, M.; et al. Prognostic Role of Soluble Urokinase Plasminogen Activator Receptor at the Emergency Department: A Position Paper by the Hellenic Sepsis Study Group. Infect. Dis. Ther. 2020, 9, 407–416. [Google Scholar] [CrossRef]
- Santeri, S.; Peter, A.A.; Kristiina, N.; Jesper, E.-O.; Harri, H. SuPAR Cut-Offs for Stratification of Low, Medium, and High-Risk Acute Medical Patients in the Emergency Department. BMC Emerg. Med. 2021, 21, 149. [Google Scholar] [CrossRef]
- Chocron, R.; Duceau, B.; Gendron, N.; Ezzouhairi, N.; Khider, L.; Trimaille, A.; Goudot, G.; Weizman, O.; Alsac, J.M.; Pommier, T.; et al. D-Dimer at Hospital Admission for COVID-19 Are Associated with in-Hospital Mortality, Independent of Venous Thromboembolism: Insights from a French Multicenter Cohort Study. Arch. Cardiovasc. Dis. 2021, 114, 381–393. [Google Scholar] [CrossRef]
- Mehrdad, R.; Zahra, K.; Mansouritorghabeh, H. Hemostatic System (Fibrinogen Level, D-Dimer, and FDP) in Severe and Non-Severe Patients with COVID-19: A Systematic Review and Meta-Analysis. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211010972. [Google Scholar] [CrossRef]
- Zhu, J.; Pang, J.; Ji, P.; Zhong, Z.; Li, H.; Li, B.; Zhang, J.; Lu, J. Coagulation Dysfunction Is Associated with Severity of COVID-19: A Meta-analysis. J. Med. Virol. 2021, 93, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Di Minno, M.N.D.; Calcaterra, I.; Lupoli, R.; Storino, A.; Spedicato, G.A.; Maniscalco, M.; Di Minno, A.; Ambrosino, P. Hemostatic Changes in Patients with COVID-19: A Meta-Analysis with Meta-Regressions. J. Clin. Med. 2020, 9, 2244. [Google Scholar] [CrossRef] [PubMed]
- Len, P.; Iskakova, G.; Sautbayeva, Z.; Kussanova, A.; Tauekelova, A.T.; Sugralimova, M.M.; Dautbaeva, A.S.; Abdieva, M.M.; Ponomarev, E.D.; Tikhonov, A.; et al. Meta-Analysis and Systematic Review of Coagulation Disbalances in COVID-19: 41 Studies and 17,601 Patients. Front. Cardiovasc. Med. 2022, 9, 794092. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Yan, H.; Chen, H.; He, C.; Lin, C.; He, H.; Zhang, S.; Shi, S.; Lin, K. COVID-19 and Coagulation Dysfunction in Adults: A Systematic Review and Meta-analysis. J. Med. Virol. 2021, 93, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.Y.; Komarasamy, T.V.; RMT Balasubramaniam, V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front. Immunol. 2021, 12, 742941. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, E.; Soldoozi Nejat, R.; Ashkan, F.; Sheibani, H. The Laboratory Findings and Different COVID-19 Severities: A Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 17. [Google Scholar] [CrossRef]
- Bhowmik, K.K.; Barek, M.A.; Aziz, M.A.; Islam, M.S. A Systematic Review and Meta-Analysis of Abnormalities in Hematological and Biochemical Markers among Bangladeshi COVID-19 Cases. Health Sci. Rep. 2022, 5, e728. [Google Scholar] [CrossRef]
- Severe Covid-19 GWAS Group; Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.; Gao, R.; Zhou, Y.; Lai, C.; Li, Z.; Xian, W.; Qian, X.; Li, Z.; Huang, Y.; et al. Initial Whole-Genome Sequencing and Analysis of the Host Genetic Contribution to COVID-19 Severity and Susceptibility. Cell Discov. 2020, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Pallerla, S.R.; Rüter, J.; Augustin, Y.; Kremsner, P.G.; Krishna, S.; Meyer, C.G. Host Genetic Factors Determining COVID-19 Susceptibility and Severity. EBioMedicine 2021, 72, 103629. [Google Scholar] [CrossRef] [PubMed]
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic Mechanisms of Critical Illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef]
- Barinka, C.; Parry, G.; Callahan, J.; Shaw, D.E.; Kuo, A.; Bdeir, K.; Cines, D.B.; Mazar, A.; Lubkowski, J. Structural Basis of Interaction between Urokinase-Type Plasminogen Activator and Its Receptor. J. Mol. Biol. 2006, 363, 482–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, R.K.; Varshney, A.K.; Yadava, P.K. Diversity and Functional Evolution of the Plasminogen Activator System. Biomed. Pharmacother. 2018, 98, 886–898. [Google Scholar] [CrossRef]
- Marudamuthu, A.S.; Bhandary, Y.P.; Shetty, S.K.; Fu, J.; Sathish, V.; Prakash, Y.; Shetty, S. Role of the Urokinase-Fibrinolytic System in Epithelial–Mesenchymal Transition during Lung Injury. Am. J. Pathol. 2015, 185, 55–68. [Google Scholar] [CrossRef] [Green Version]
- D’Alonzo, D.; De Fenza, M.; Pavone, V. COVID-19 and Pneumonia: A Role for the UPA/UPAR System. Drug. Discov. Today 2020, 25, 1528–1534. [Google Scholar] [CrossRef]
- Xiao, W.; Hsu, Y.-P.; Ishizaka, A.; Kirikae, T.; Moss, R.B. Sputum Cathelicidin, Urokinase Plasminogen Activation System Components, and Cytokines Discriminate Cystic Fibrosis, COPD, and Asthma Inflammation. Chest 2005, 128, 2316–2326. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, R.; Xie, M.; Luan, C.; Li, X. Transcriptome Sequencing Identifies PLAUR as an Important Player in Patients With Dermatomyositis-Associated Interstitial Lung Disease. Front. Genet. 2021, 12, 784215. [Google Scholar] [CrossRef]
- Tucker, T.A.; Idell, S. The Contribution of the Urokinase Plasminogen Activator and the Urokinase Receptor to Pleural and Parenchymal Lung Injury and Repair: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 1437. [Google Scholar] [CrossRef]
- Barton, S.J.; Koppelman, G.H.; Vonk, J.M.; Browning, C.A.; Nolte, I.M.; Stewart, C.E.; Bainbridge, S.; Mutch, S.; Rose-Zerilli, M.J.; Postma, D.S.; et al. PLAUR Polymorphisms Are Associated with Asthma, PLAUR Levels, and Lung Function Decline. J. Allergy Clin. Immunol. 2009, 123, 1391–1400. [Google Scholar] [CrossRef]
- Ierodiakonou, D.; Portelli, M.A.; Postma, D.S.; Koppelman, G.H.; Gerritsen, J.; ten Hacken, N.H.T.; Timens, W.; Boezen, H.M.; Vonk, J.M.; Sayers, I. Urokinase Plasminogen Activator Receptor Polymorphisms and Airway Remodelling in Asthma. Eur. Respir. J. 2016, 47, 1568–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, C.E.; Hall, I.P.; Parker, S.G.; Moffat, M.F.; Wardlaw, A.J.; Connolly, M.J.; Ruse, C.; Sayers, I. PLAUR polymorphisms and Lung Function in UK Smokers. BMC Med. Genet. 2009, 10, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (UPA) and Its Receptor (UPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, L.J.H.; Petersen, J.E.V.; Eugen-Olsen, J. Soluble Urokinase Plasminogen Activator Receptor (SuPAR) as a Biomarker of Systemic Chronic Inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef]
- Rovina, N.; Akinosoglou, K.; Eugen-Olsen, J.; Hayek, S.; Reiser, J.; Giamarellos-Bourboulis, E.J. Soluble Urokinase Plasminogen Activator Receptor (SuPAR) as an Early Predictor of Severe Respiratory Failure in Patients with COVID-19 Pneumonia. Crit. Care 2020, 24, 187. [Google Scholar] [CrossRef]
- Napolitano, F.; Di Spigna, G.; Vargas, M.; Iacovazzo, C.; Pinchera, B.; Spalletti Cernia, D.; Ricciardone, M.; Covelli, B.; Servillo, G.; Gentile, I.; et al. Soluble Urokinase Receptor as a Promising Marker for Early Prediction of Outcome in COVID-19 Hospitalized Patients. J. Clin. Med. 2021, 10, 4914. [Google Scholar] [CrossRef]
- Huang, M.; Li, L.; Shen, J.; Wang, Y.; Wang, R.; Yuan, C.; Huang, M.; Jiang, L. Plasma Levels of the Active Form of SuPAR Are Associated with COVID-19 Severity. Crit. Care 2020, 24, 704. [Google Scholar] [CrossRef]
- Oulhaj, A.; Alsuwaidi, A.R.; Suliman, A.; Gasmelseed, H.; Khan, S.; Alawi, S.; Hukan, Y.; George, J.; Alshamsi, F.; Sheikh, F.; et al. Admission Levels of Soluble Urokinase Plasminogen Activator Receptor (SuPAR) Are Associated with the Development of Severe Complications in Hospitalised COVID-19 Patients: A Prospective Cohort Study. Int. J. Infect. Dis. 2021, 107, 188–194. [Google Scholar] [CrossRef]
- Arnold, D.T.; Attwood, M.; Barratt, S.; Morley, A.; Elvers, K.T.; McKernon, J.; Donald, C.; Oates, A.; Noel, A.; MacGowan, A.; et al. Predicting Outcomes of COVID-19 from Admission Biomarkers: A Prospective UK Cohort Study. Emerg. Med. J. 2021, 38, 543–548. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Poulakou, G.; Milionis, H.; Metallidis, S.; Adamis, G.; Tsiakos, K.; Fragkou, A.; Rapti, A.; Damoulari, C.; Fantoni, M.; et al. Early Treatment of COVID-19 with Anakinra Guided by Soluble Urokinase Plasminogen Receptor Plasma Levels: A Double-Blind, Randomized Controlled Phase 3 Trial. Nat. Med. 2021, 27, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Emilsson, V.; Ilkov, M.; Lamb, J.R.; Finkel, N.; Gudmundsson, E.F.; Pitts, R.; Hoover, H.; Gudmundsdottir, V.; Horman, S.R.; Aspelund, T.; et al. Co-Regulatory Networks of Human Serum Proteins Link Genetics to Disease. Science 2018, 361, 769–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, N.C.; Raffield, L.M.; Moxley, A.H.; Miller-Fleming, T.W.; Auer, P.L.; Franceschini, N.; Ngo, D.; Thornton, T.A.; Lange, E.M.; Li, Y.; et al. Soluble Urokinase Plasminogen Activator Receptor: Genetic Variation and Cardiovascular Disease Risk in Black Adults. Circ. Genom. Precis. Med. 2021, 14, e003421. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of the Russian Federation Interim Guidelines of the Ministry of Health of the Russian Federation. Prevention, Diagnosis and Treatment of a New Coronavirus Infection (COVID-19). Version 7 (03.06.2020). Available online: http://edu.rosminzdrav.ru/fileadmin/user_upload/specialists/COVID-19/MR_COVID-19_v7.pdf (accessed on 17 December 2022).
Variable | Total (n = 151) | “Mild” COVID-19 (n = 84) | “Severe” COVID-19 (n = 67) | p-Value |
---|---|---|---|---|
Age | 57 [46.5–69] | 56 [43.8–69.2] | 58 [51–67.5] | 0.053 |
<40 | 22 (15%) | 17 | 5 | |
40–49 | 25 (17%) | 15 | 10 | |
50–59 | 40 (26%) | 17 | 23 | |
60–69 | 29 (19%) | 14 | 15 | |
70–79 | 21 (14%) | 15 | 6 | |
80+ | 14 (9%) | 6 | 8 | |
Female | 73 (48%) | 44 (52%) | 29 (43%) | 0.3258 |
Male | 78 (52%) | 40 (48%) | 38 (57%) | |
% of lung involvement | 29.9 ± 1.829 | 13.3 ± 0.681 | 50.8 ± 2.130 | 7.61 × 10−28 **** |
APTT, s | 41.8 ± 1.212 | 37.9 ± 0.744 | 46.8 ± 2.502 | 0.00105 ** |
CRP, mg/L | 86.3 ± 6.95 | 46.6 ± 5.56 | 136.1 ± 11.45 | 2.91 × 10−10 **** |
D-dimer, mg/L | 1.88 ± 0.255 | 1.10 ± 0.240 | 2.85 ± 0.465 | 0.00114 ** |
Fibrinogen, g/L | 6.06 ± 0.142 | 5.36 ± 0.149 | 6.94 ± 0.217 | 2.20 × 10−8 **** |
INR | 1.23 ± 0.049 | 1.15 ± 0.026 | 1.33 ± 0.104 | 0.102 |
Prothrombin time, s | 17.2 ± 0.754 | 16.0 ± 0.392 | 18.6 ± 1.597 | 0.115 |
Quick prothrombin time, % | 89.6 ± 1.35 | 87.9 ± 1.79 | 91.6 ± 2.04 | 0.179 |
Thrombin time, s | 23.3 ± 2.28 | 17.5 ± 1.08 | 30.9 ± 4.95 | 0.00993 ** |
uPAR serum level, ng/mL | 7.61 ± 0.328 | 6.20 ± 0.277 | 9.40 ± 0.580 | 3.43 × 10−6 **** |
Gene (RefSeq Accession Number) | rs | Variant | Type | Chromosome | Minor Allele Frequency | p-Values for HWE |
---|---|---|---|---|---|---|
ACE (NG_011648.1) | rs4646994 | 287bp Ins>Del | Intron variant | 17 | 0.435 † | 0.516 |
NOS3 (NG_011992.1) | rs2070744 | c.-786T>C | Promoter variant | 7 | 0.2998 | 0.611 |
NOS3 (NG_011992.1) | rs1799983 | c.894G>T; p.Glu298Asp | Missense variant | 7 | 0.2446 | 0.705 |
SERPINE1 (NG_013213.1) | rs1799768 ‡ | c.-675 4G>5G; c.-1969_-1968insG | Promoter variant | 7 | 0.370 † | 1 |
PLAU (NG_011904.1) | rs2227564 | c.422C>T; p.Pro141Leu | Missense variant | 10 | 0.1952 | 0.470 |
PLAUR (NG_032898.1) | rs344781 | c.-516T>C | Promoter variant | 19 | 0.2028 | 0.417 |
PLAUR (NG_032898.1) | rs2302524 | g.43652320T>C; c.659A>G; p.Lys220Arg | Missense variant | 19 | 0.1683 | 0.538 |
SNP | Genotype | Genotype Frequencies, n (%) | Fisher’s Exact Test p-Value | OR [95% CI] | Fisher’s Exact Test p-Value | |
---|---|---|---|---|---|---|
“Mild” COVID-19 | “Severe” COVID-19 | |||||
ACE, rs4646994 | insins | 19 (23%) | 20 (30%) | 0.3358 | 1 | |
insdel | 49 (58%) | 31 (46%) | 0.604 [0.276–1.315] | 0.2377 | ||
deldel | 16 (19%) | 16 (24%) | 0.951 [0.368–2.454] | 1.0000 | ||
NOS3, rs2070744 | TT | 30 (36%) | 26 (39%) | 0.6566 | 1 | |
CT | 41 (49%) | 28 (42%) | 0.790 [0.385–1.617] | 0.5871 | ||
CC | 13 (15%) | 13 (19%) | 1.152 [0.447–2.972] | 0.8151 | ||
NOS3, rs1799983 | GG | 43 (51%) | 28 (42%) | 0.3233 | 1 | |
GT | 36 (43%) | 31 (46%) | 1.319 [0.669–2.614] | 0.4918 | ||
TT | 5 (6%) | 8 (12%) | 2.406 [0.713–8.930] | 0.2220 | ||
SERPINE1, rs1799768 | 4G4G | 19 (23%) | 19 (28%) | 0.6349 | 1 | |
4G5G | 45 (54%) | 31 (46%) | 0.692 [0.312–1.524] | 0.4243 | ||
5G5G | 20 (24%) | 17 (25%) | 0.852 [0.339–2.131] | 0.8185 | ||
PLAU, rs2227564 | CC | 49 (58%) | 42 (63%) | 0.1957 | 1 | |
CT | 34 (40%) | 21 (31%) | 0.723 [0.361–1.430] | 0.3909 | ||
TT | 1 (1%) | 4 (6%) | 4.190 [0.554–117.6] | 0.1906 | ||
PLAUR, rs344781 | TT | 45 (54%) | 37 (55%) | 0.6836 | 1 | |
TC | 33 (39%) | 23 (34%) | 0.850 [0.423–1.692] | 0.7272 | ||
CC | 6 (7%) | 7 (10%) | 1.409 [0.422–4.846] | 0.5676 | ||
PLAUR, rs2302524 | TT | 53 (63%) | 55 (82%) | 0.0199 * | 1 | |
TC | 28 (33%) | 10 (15%) | 0.349 [0.147–0.773] | 0.0130 * | ||
CC | 3 (4%) | 2 (3%) | 0.660 [0.074–4.495] | 0.6790 |
SNP | Allele | Allele Frequencies, n (%) | OR [95% CI] | Fisher’s Exact Test p-Value | |
---|---|---|---|---|---|
“Mild” COVID-19 | “Severe” COVID-19 | ||||
ACE, rs4646994 | ins | 87 (52%) | 71 (53%) | 1 | |
del | 81 (48%) | 63 (47%) | 0.953 [0.604–1.504] | 0.908 | |
NOS3, rs2070744 | T | 101 (60%) | 80 (60%) | 1 | |
C | 67 (40%) | 54 (40%) | 1.018 [0.639–1.619] | 1 | |
NOS3, rs1799983 | G | 122 (73%) | 87 (65%) | 1 | |
T | 46 (27%) | 47 (35%) | 1.431 [0.875–2.345] | 0.168 | |
SERPINE1, rs1799768 | 5G | 85 (51%) | 65 (49%) | 1 | |
4G | 83 (49%) | 69 (51%) | 1.087 [0.689–1.715] | 0.730 | |
PLAU, rs2227564 | C | 132 (79%) | 105 (78%) | 1 | |
T | 36 (21%) | 29 (22%) | 1.013 [0.579–1.762] | 1 | |
PLAUR, rs344781 | T | 123 (73%) | 97 (72%) | 1 | |
C | 45 (27%) | 37 (28%) | 1.043 [0.623–1.738] | 0.8969 | |
PLAUR, rs2302524 | T | 134 (80%) | 120 (90%) | 1 | |
C | 34 (20%) | 14 (10%) | 0.464 [0.230–0.892] | 0.0261 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekrasova, L.A.; Shmakova, A.A.; Samokhodskaya, L.M.; Kirillova, K.I.; Stoyanova, S.S.; Mershina, E.A.; Nazarova, G.B.; Rubina, K.A.; Semina, E.V.; Kamalov, A.A. The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity. Int. J. Mol. Sci. 2022, 23, 16210. https://doi.org/10.3390/ijms232416210
Nekrasova LA, Shmakova AA, Samokhodskaya LM, Kirillova KI, Stoyanova SS, Mershina EA, Nazarova GB, Rubina KA, Semina EV, Kamalov AA. The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity. International Journal of Molecular Sciences. 2022; 23(24):16210. https://doi.org/10.3390/ijms232416210
Chicago/Turabian StyleNekrasova, Ludmila A., Anna A. Shmakova, Larisa M. Samokhodskaya, Karina I. Kirillova, Simona S. Stoyanova, Elena A. Mershina, Galina B. Nazarova, Kseniya A. Rubina, Ekaterina V. Semina, and Armais A. Kamalov. 2022. "The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity" International Journal of Molecular Sciences 23, no. 24: 16210. https://doi.org/10.3390/ijms232416210
APA StyleNekrasova, L. A., Shmakova, A. A., Samokhodskaya, L. M., Kirillova, K. I., Stoyanova, S. S., Mershina, E. A., Nazarova, G. B., Rubina, K. A., Semina, E. V., & Kamalov, A. A. (2022). The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity. International Journal of Molecular Sciences, 23(24), 16210. https://doi.org/10.3390/ijms232416210