PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. PD-1 and PD-L1 Expression on PBMCs from Pulmonary TB Patients
2.3. Differences of PD-1 and PD-L1 Expression in Pulmonary TB Patients with Various Clinical Presentations and Treatment Outcomes
2.4. Change of PD-1 and PD-L1 Expression after Anti-TB Treatment
2.5. PD-1 and PD-L1 Expression on Human and Mice Macrophages
2.6. Detection of PD-L1-Expressed Macrophages in Lung Tissues Exposed to MTB
3. Discussion
4. Materials and Methods
4.1. Patients and Settings
4.2. Expression of PD-1 and PD-L1 on Peripheral Blood Mononuclear Cells (PBMCs)
4.3. Clinical Features and Treatment Outcomes of Active TB Patients
4.4. Preparation of Human and Mouse Macrophages
4.5. MTB-Related Materials and In Vitro Stimulation
4.6. Lung Tissues from Active TB Patients and Mice
4.7. IHC and IF Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berrington, W.R.; Hawn, T.R. Mycobacterium tuberculosis, macrophages, and the innate immune response: Does common variation matter? Immunol. Rev. 2007, 219, 167–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, H.; Meinken, C.; Schauenberg, P.; Härter, G.; Kern, P.; Modlin, R.; Antoni, C.; Stenger, S. Anti-TNF immunotherapy reduces CD8+ T cell–mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J. Clin. Investig. 2009, 119, 1167–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegelmann, F.; Bastian, M.; Swoboda, K.; Bhat, R.; Kiessler, V.; Krensky, A.M.; Roellinghoff, M.; Modlin, R.L.; Stenger, S. Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. J. Immunol. 2005, 175, 7474–7483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.Y.; Huang, D.; Wang, R.C.; Shen, L.; Zeng, G.; Yao, S.; Shen, Y.; Halliday, L.; Fortman, J.; McAllister, M.; et al. A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis. PLoS Pathog. 2009, 5, e1000392. [Google Scholar] [CrossRef]
- Day, C.L.; Abrahams, D.A.; Lerumo, L.; Van Rensburg, E.J.; Stone, L.; O’Rie, T.; Pienaar, B.; De Kock, M.; Kaplan, G.; Mahomed, H.; et al. Functional Capacity of Mycobacterium tuberculosis-Specific T Cell Responses in Humans Is Associated with Mycobacterial Load. J. Immunol. 2011, 187, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Harari, A.; Rozot, V.; Enders, F.B.; Perreau, M.; Stalder, J.M.; Nicod, L.P.; Cavassini, M.; Calandra, T.; Blanchet, C.L.; Jaton, K.; et al. Dominant TNF-α+ Mycobacterium tuberculosis–specific CD4+ T cell responses discriminate between latent infection and active disease. Nat. Med. 2011, 17, 372–376. [Google Scholar] [CrossRef]
- Feng, J.-Y.; Pan, S.-W.; Huang, S.-F.; Chen, Y.-Y.; Lin, Y.-Y.; Su, W.-J. Depressed Gamma Interferon Responses and Treatment Outcomes in Tuberculosis Patients: A Prospective Cohort Study. J. Clin. Microbiol. 2018, 56, e00664-18. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 2017, 18, 153–167. [Google Scholar] [CrossRef]
- Barber, D.L.; Wherry, E.J.; Masopust, D.; Zhu, B.; Allison, J.P.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006, 439, 682–687. [Google Scholar] [CrossRef]
- Han, S.; Asoyan, A.; Rabenstein, H.; Nakano, N.; Obst, R. Role of antigen persistence and dose for CD4+ T-cell exhaustion and recovery. Proc. Natl. Acad. Sci. USA 2010, 107, 20453–20458. [Google Scholar] [CrossRef] [Green Version]
- Chinai, J.M.; Janakiram, M.; Chen, F.; Chen, W.; Kaplan, M.; Zang, X. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol. Sci. 2015, 36, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; DePierres, C.; et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006, 443, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Larrubia, J.R.; Benito-Martinez, S.; Miquel, J.; Calvino, M.; Sanz-de-Villalobos, E.; Parra-Cid, T. Costimulatory molecule programmed death-1 in the cytotoxic response during chronic hepatitis C. World, J. Gastroenterol. 2009, 15, 5129–5140. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.; Huang, D.; Chen, C.Y.; Wang, R.; Shen, L.; Shen, Y.; Hunt, R.; Estep, J.; Haynes, B.F.; Jacobs, W.R., Jr.; et al. Severe tuberculosis induces unbalanced up-regulation of gene networks and overexpression of IL-22, MIP-1alpha, CCL27, IP-10, CCR4, CCR5, CXCR3, PD1, PDL2, IL-3, IFN-beta, TIM1, and TLR2 but low antigen-specific cellular responses. J. Infect. Dis. 2008, 198, 1514–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Zhong, A.; Xing, Y.; Shi, M.; Qian, B.; Zhou, T.; Chen, Y.; Zhang, X. Increased soluble and membrane-bound PD-L1 contributes to immune regulation and disease progression in patients with tuberculous pleural effusion. Exp. Ther. Med. 2016, 12, 2161–2168. [Google Scholar] [CrossRef]
- Singh, A.; Mohan, A.; Dey, A.B.; Mitra, D.K. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon gamma-producing T cells from apoptosis in patients with pulmonary tuberculosis. J. Infect. Dis. 2013, 208, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Barber, D.L.; Sakai, S.; Kudchadkar, R.R.; Fling, S.P.; Day, T.A.; Vergara, J.A.; Ashkin, D.; Cheng, J.H.; Lundgren, L.M.; Raabe, V.N.; et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef]
- Barber, D.L.; Mayer-Barber, K.D.; Feng, C.; Sharpe, A.H.; Sher, A. CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1–Mediated Inhibition. J. Immunol. 2010, 186, 1598–1607. [Google Scholar] [CrossRef] [Green Version]
- Lazar-Molnar, E.; Chen, B.; Sweeney, K.A.; Wang, E.J.; Liu, W.; Lin, J.; Porcelli, S.A.; Almo, S.C.; Nathenson, S.G.; Jacobs, W.R. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 13402–13407. [Google Scholar] [CrossRef] [Green Version]
- Tousif, S.; Singh, Y.; Prasad, D.V.; Sharma, P.; Van Kaer, L.; Das, G. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS ONE 2011, 6, e19864. [Google Scholar] [CrossRef] [PubMed]
- Stroh, G.R.; Peikert, T.; Escalante, P. Active and latent tuberculosis infections in patients treated with immune checkpoint inhibitors in a non-endemic tuberculosis area. Cancer Immunol. Immunother. 2021, 70, 3105–3111. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Su, R.; Peng, Y.; Guo, Y.; Huang, Z.; Ye, Y.; Gao, Y.; Liu, J.; Zhang, L.; Luo, Q.; et al. Low-Density Granulocytes Affect T-SPOT.TB Assay by Inhibiting the Production of Interferon-gamma in T Cells via PD-L1/PD-1 Pathway. Front. Microbiol. 2020, 11, 622389. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Hirohashi, Y.; Tsukahara, T.; Kanaseki, T.; Murata, K.; Hasegawa, T.; Torigoe, T. Epithelioid granulomatous lesions express abundant programmed death ligand-1 (PD-L1): A discussion of adverse events in anti-PD-1 antibody-based cancer immunotherapy. Hum. Vaccines Immunother. 2021, 17, 1940–1942. [Google Scholar] [CrossRef]
- Adankwah, E.; Harelimana, J.D.D.; Minadzi, D.; Aniagyei, W.; Abass, M.K.; Debrah, L.B.; Owusu, D.O.; Mayatepek, E.; Phillips, R.O.; Jacobsen, M. Lower IL-7 Receptor Expression of Monocytes Impairs Antimycobacterial Effector Functions in Patients with Tuberculosis. J. Immunol. 2021, 206, 2430–2440. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jin, C.; Wu, C.; Huang, J. PD-1 modulatingMycobacterium tuberculosis-specific polarized effector memory T cells response in tuberculosis pleurisy. J. Leukoc. Biol. 2019, 106, 733–747. [Google Scholar] [CrossRef]
- Day, C.L.; Abrahams, D.A.; Bunjun, R.; Stone, L.; De Kock, M.; Walzl, G.; Wilkinson, R.; Burgers, W.; Hanekom, W.A. PD-1 Expression on Mycobacterium tuberculosis-Specific CD4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Front. Immunol. 2018, 9, 1995. [Google Scholar] [CrossRef] [PubMed]
- Saharia, K.K.; Petrovas, C.; Ferrando-Martinez, S.; Leal, M.; Luque, R.; Ive, P.; Luetkemeyer, A.; Havlir, D.; Koup, R.A. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells. PLoS ONE 2016, 11, e0158262. [Google Scholar] [CrossRef]
- Suarez, G.V.; Ganzarain, C.d.M.; Vecchione, M.B.; Trifone, C.A.; Franco, J.L.M.; Genoula, M.; Moraña, E.J.; Balboa, L.; Quiroga, M.F. PD-1/PD-L1 Pathway Modulates Macrophage Susceptibility to Mycobacterium tuberculosis Specific CD8(+) T cell Induced Death. Sci. Rep. 2019, 9, 187. [Google Scholar] [CrossRef]
- Shen, L.; Gao, Y.; Liu, Y.; Zhang, B.; Liu, Q.; Wu, J.; Fan, L.; Ou, Q.; Zhang, W.; Shao, L. PD-1/PD-L pathway inhibits M.tb-specific CD4(+) T-cell functions and phagocytosis of macrophages in active tuberculosis. Sci. Rep. 2016, 6, 38362. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, H.; Chen, B.; Liu, X.; Zhang, S.; Zong, Z.; Gao, M. PD-L1-Mediated Immunosuppression in Glioblastoma Is Associated with the Infiltration and M2-Polarization of Tumor-Associated Macrophages. Front. Immunol. 2020, 11, 2977. [Google Scholar] [CrossRef] [PubMed]
- Shima, T.; Shimoda, M.; Shigenobu, T.; Ohtsuka, T.; Nishimura, T.; Emoto, K.; Hayashi, Y.; Iwasaki, T.; Abe, T.; Asamura, H.; et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci. 2019, 111, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Guinn, K.M.; Hickey, M.J.; Mathur, S.K.; Zakel, K.L.; Grotzke, J.E.; Lewinsohn, D.M.; Smith, S.; Sherman, D.R. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 2004, 51, 359–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, S.K.; Basu, S.; Basu, K.K.; Banerjee, A.; Pathak, S.; Bhattacharyya, A.; Kaisho, T.; Kundu, M.; Basu, J. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat. Immunol. 2007, 8, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Hu, L.; Zhang, X.; Jiang, S.; Li, J.; Zhang, Z.; Wang, X. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front. Immunol. 2019, 10, 2298. [Google Scholar] [CrossRef] [PubMed]
- Anastasopoulou, A.; Ziogas, D.C.; Samarkos, M.; Kirkwood, J.M.; Gogas, H. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: Current evidence and clinical practice recommendations. J. Immunother. Cancer 2019, 7, 239. [Google Scholar] [CrossRef] [Green Version]
- Zaemes, J.; Kim, C. Immune checkpoint inhibitor use and tuberculosis: A systematic review of the literature. Eur. J. Cancer 2020, 132, 168–175. [Google Scholar] [CrossRef]
- Starcher, B.; Williams, I. A method for intratracheal instillation of endotoxin into the lungs of mice. Lab. Anim. 1989, 23, 234–240. [Google Scholar] [CrossRef]
- Feng, J.Y.; Huang, S.F.; Lee, M.C.; Ting, W.Y.; Chen, Y.C.; Lin, Y.Y.; Lee, Y.C.; Su, W.J. Characteristics of IFN-gamma responses in IGRA among pulmonary TB suspects in a TB-endemic area. Diagn. Microbiol. Infect. Dis. 2013, 77, 46–52. [Google Scholar] [CrossRef]
PTB, n = 76 | LTBI, n = 40 | Non-TB, Non-LTBI, n = 28 | |
---|---|---|---|
Mean age (SD) | 65.0 (18.7) | 47.3 (17.8) *** | 42.1 (25.1) ** |
Male sex | 50 (65.8%) | 25 (62.5%) | 15 (53.6%) |
BMI (SD) | 21.7 (4.0) | 22.6 (3.4) | 20.6 (3.7) |
Smoking history | 29 (38.2%) | 18 (45%) | 5 (17.9%) * |
BCG vaccination | 53 (69.7%) | 29 (72.5%) | 22 (78.6%) |
Prior TB treatment history | 6 (7.9%) | 2 (5.0%) | 2 (7.1%) |
Diabetes | 13 (17.1%) | 4 (10%) | 4 (14.3%) * |
Renal insufficiency | 2 (2.6%) | 4 (10%) | 0 |
COPD | 1 (1.3%) | 4 (10%) | 0 |
Malignancy | 6 (7.9%) | 5 (12.5%) | 0 |
Post gastrectomy | 1 (1.3%) | 0 | 0 |
Cell count (Median, IQR) | |||
Neutrophils (×109 per L) | 3878 (2617–4750) | 4097 (2496–5219) | 4197 (2967–5112) |
Lymphocyte (×109 per L) | 1432 (823–1765) | 1666 (1141–2140) | 1895 (1401–2326) ** |
Monocytes (×109 per L) | 466 (297–593) | 454 (325–548) | 492 (292–518) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.-W.; Shu, C.-C.; Huang, J.-R.; Lee, C.-C.; Tseng, Y.-H.; Hung, J.-J.; Hsu, P.-K.; Chen, N.-J.; Su, W.-J.; Feng, J.-Y.; et al. PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis. Int. J. Mol. Sci. 2022, 23, 1619. https://doi.org/10.3390/ijms23031619
Pan S-W, Shu C-C, Huang J-R, Lee C-C, Tseng Y-H, Hung J-J, Hsu P-K, Chen N-J, Su W-J, Feng J-Y, et al. PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis. International Journal of Molecular Sciences. 2022; 23(3):1619. https://doi.org/10.3390/ijms23031619
Chicago/Turabian StylePan, Sheng-Wei, Chin-Chung Shu, Jhong-Ru Huang, Chang-Ching Lee, Yen-Han Tseng, Jung-Jyh Hung, Po-Kuei Hsu, Nien-Jung Chen, Wei-Juin Su, Jia-Yih Feng, and et al. 2022. "PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis" International Journal of Molecular Sciences 23, no. 3: 1619. https://doi.org/10.3390/ijms23031619
APA StylePan, S. -W., Shu, C. -C., Huang, J. -R., Lee, C. -C., Tseng, Y. -H., Hung, J. -J., Hsu, P. -K., Chen, N. -J., Su, W. -J., Feng, J. -Y., & Chen, Y. -M. (2022). PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis. International Journal of Molecular Sciences, 23(3), 1619. https://doi.org/10.3390/ijms23031619