Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Some Phyto- or Human Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico and Chemical Characterization of GMFX-o-phdn and Its Complexes
2.2. IR Spectra and Mode of Bonding
2.3. UV–Vis Absorption Spectra
2.4. 1H NMR Spectra
2.5. Thermal Studies (TG and DTG)
2.6. Differential Thermal Analysis (DTA)
2.7. Calculation of Activation Thermodynamic Parameters
2.8. Antimicrobial Activity
2.8.1. Antifungal Effect
2.8.2. Antibacterial Effect
2.8.3. Mechanism of Antimicrobial Action
2.9. Antioxidant Activity
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of GMFX-o-phdn Schiff Base
3.3. Preparation of Metal Complexes
3.4. Instruments
3.5. Antifungal Activity Assay
3.6. Antibacterial Activity Assay
3.7. Antioxidant Activity
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallis, S.; Gahan, L.; Charles, B.; Hambley, T. 13C N.M.R. and Single-Crystal X-ray Structural Investigation of the Fluoroquinolone Antimicrobial Drug Norfloxacin 2DCl.D2O. Aust. J. Chem. 1994, 47, 799–806. [Google Scholar] [CrossRef]
- Turel, I.; Bukovec, P. Comparison of the thermal stability of ciprofloxacin and its compounds. Thermochim. Acta 1996, 287, 311–318. [Google Scholar] [CrossRef]
- Cygler, M.; Huber, C.P. Structure of oxolinic acid, a potent antibacterial agent.1-Ethyl-1,4-di-hydro-6,7-methylene-dioxy-4-oxo-3-quinoline-carboxylic acid, C13H11NO5. Acta Crystallogr. 1985, 41, 1052–1055. [Google Scholar]
- Zordok, W.A. Interaction of vanadium (IV) solvates (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: Spectroscopic, structure, thermal analyses, kinetics and biological evaluation (L=An, DMF, Py and Et3N). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Florence, A.J.; Kennedy, A.R.; Shankland, N.; Wright, E.; Al Rubayi, A. Norfloxacin dehydrate. Acta Crystallogr. 2000, 56, 1372–1373. [Google Scholar]
- Turel, I.; Bukovec, P.; Quiros, M. Gel Growth, XRD, SEM and Spectral Studies of Ciprofloxacin Hexa-hydrate. Int. J. Pharm. 1997, 152, 59. [Google Scholar] [CrossRef]
- Sivalakshmidevi, A.; Vyas, K.; Om Reddy, G. Sparfloxacin, an antibacterial drug. Acta Crystallogr. 2000, 56, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Perellò, L.; Ortiz, R.; Castiñeiras, A.; Maichle-Mösser, C.; Cantòn, E. Synthesis, characterization, and crystal structure of [Cu(cinoxacinate)2]. 2H2O complex: A squareplanar CuO4 chromophore. Antibacterial studies. J. Inorg. Biochem. 1995, 59, 801–810. [Google Scholar] [CrossRef]
- Ruiz, M.; Ortiz, R.; Perelló, L.; Latorre, J.; Server-Carrió, J. Potentiometric and spectroscopic studies of transition-metal ions complexes with a quinolone derivative (cinoxacin). Crystal structures of new Cu(II) and Ni(II) cinoxacin complexes. J. Inorg. Biochem. 1997, 65, 87–96. [Google Scholar] [CrossRef]
- Turel, I.; Leban, I.; Bukovec, N. Crystal structure and characterization of the bismuth(III) compound with quinolone family member (ciprofloxacin). Antibacterial study. J. Inorg. Biochem. 1997, 66, 241–245. [Google Scholar] [CrossRef]
- Firuzabadi, F.D.; Asadi, Z. Experimental and computational studies of the interaction of gemifloxacin and manganese (II) gemifloxacin complex with DNA. J. Mol. Struct. 2020, 1224, 129248. [Google Scholar] [CrossRef]
- Grossman, R.F.; Rotschafer, J.C.; Tan, J.S. Antimicrobial treatment of lower respiratory tract infections in the hospital setting. Am. J. Med. 2005, 118, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.-Y.; Hsu, Y.-L.; Chen, Y.-H.; Chen, T.-C.; Wang, J.-Y.; Kuo, P.-L. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells. BioMed Res. Int. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tuma, J.; Connors, W.H.; Stitelman, D.H.; Richert, C. On the Effect of Covalently Appended Quinolones on Termini of DNA Duplexes. J. Am. Chem. Soc. 2002, 124, 4236–4246. [Google Scholar] [CrossRef] [PubMed]
- Aslan, N.; Büyükgüzel, E.; Büyükgüzel, K. Oxidative effects of gemifloxacin on some biological traits of Drosophila Melanogaster (Diptera: Drosophilidae). Environ. Entomol. 2019, 48, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.K.; Mishra, A.P. Synthesis structural characterization and biological significance of some novel Schiff base complexes with Co (II), Ni (II) and Cu (II). Int. J. Pharm. Res. Dev. 2011, 3, 24–31. [Google Scholar]
- Mohamed, A.A.; Elshafie, H.S.; Sadeek, S.A.; Camele, I. Biochemical Characterization, Phytotoxic Effect and Antimicrobial Activity against Some Phytopathogens of New Gemifloxacin Schiff Base Metal Complexes. Chem. Biodivers. 2021. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.G. Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 64, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Liquid chromatographic determination of chelates of cobalt (II), copper (II) and iron (II) with 2-thiophonaldehyde-4-phenyl-3-thiosemicarbazone. Chromatographia 2000, 51, 231–234. [Google Scholar] [CrossRef]
- Tsukube, H.; Shinoda, S. Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates. Chem. Rev. 2002, 102, 2389–2404. [Google Scholar] [CrossRef]
- Chohana, Z.H.; Perveza, H.; Raufb, A.; Khanc, K.M.; Supurand, C.T. Isatin-derived Antibacterial and Antifungal Com-pounds and their Transition Metal Complexes. J. Enzym. Inhib. Med. Chem. 2004, 19, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, T.; Govindarajan, S. Antimicrobial study on trivalent lighter rare-earth complexes of 2-pyrazinecarboxylate with hydrazinium cation. World J. Microbiol. Biotechnol. 2006, 22, 1105–1108. [Google Scholar] [CrossRef]
- Dhar, D.N.; Saxena, P.N.; Kumar, S. Applications of metal complexes of Schiff bases—A review. J. Sci. Ind. Res. 2009, 68, 181–187. [Google Scholar]
- Rajesh, P.; Gunasekaran, S.; Manikandan, A. Structural, spectral analysis of ambroxol using DFT methods. J. Mol. Struct. 2017, 1144, 379–388. [Google Scholar] [CrossRef]
- Abd El-Hamid, S.M.; Sadeek, S.A.; El-Farargy, A.F.; Abd El-Lattif, N.S. Synthesis, structural characterization and ne-maticidal studies of some new N2O2 Schiff base metal complexes. Bull. Chem. Soc. Ethiop. 2021, 35, 315–335. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Mohamed, G.G.; Elsawy, H.A.; Radwan, M.A. Metal complexes of novel Schiff base derived from the condensation of 2-quinoline carboxaldehyde and ambroxol drug with some transition metal ions. Appl. Organomet. Chem. 2018, 32, e4392. [Google Scholar] [CrossRef]
- Tarushi, A.; Psomas, G.; Raptopoulou, C.P.; Psycharis, V.; Kessissoglou, D.P. Structure and DNA-binding properties of bis(quinolonato)bis(pyridine)zinc(II) complexes. Polyhedron 2009, 28, 3272–3278. [Google Scholar] [CrossRef]
- Norouzian, H.; Shahrokhi, N.; Sabeti, S.; Bouzari, S.; Pooya, M. Evaluation of Quinolone Resistance in Escherichia coli Isolates Recovered from Urine and Feces of Patients with Acute or Recurrent Urinary Tract Infection. J. Med. Microbiol. Infect. Dis. 2019, 7, 120–126. [Google Scholar] [CrossRef] [Green Version]
- El-Attar, M.S.; Sadeek, S.A.; El-Farargy, A.F.; El-Lattif, N.S.A.; El-Hamid, S.M.A. Spectroscopic, thermal analyses, XRD spectra and nematicidal activity study of some new N2O2 tetradentate Schiff base metal ions complexes. Bull. Chem. Soc. Ethiop. 2021, 35, 381–397. [Google Scholar] [CrossRef]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Ahmed, F.M.; Sadeek, S.A.; El-Shwiniy, W. Synthesis, Spectroscopic Studies, and Biological Activity of Some New N2O2 Tetradentate Schiff Base Metal Complexes. Russ. J. Gen. Chem. 2019, 89, 1874–1883. [Google Scholar] [CrossRef]
- Elshafie, H.; Sadeek, S.; Zordok, W.; Mohamed, A. Meloxicam and Study of Their Antimicrobial Effects against Phyto- and Human Pathogens. Molecules 2021, 26, 1480. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Kumar, U. Studies on the synthesis, stereochemistry and antifungal properties of coumarin thiosemicarbazone and its Ni (II) and Cu (II) complexes. J. Saudi. Chem. Soc. 2004, 8, 77–84. [Google Scholar]
- Sadeek, S.A.; El-Attar, M.S.; El-Hamid, S.M.A. Synthesis and characterization and antibacterial activity of some new transition metal complexes with ciprofloxacin-imine. Bull. Chem. Soc. Ethiop. 2015, 29, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Gaber, M.; El-Sayed, Y.S.; El-Baradie, K.; Fahmy, R.M. Cu(II) complexes of monobasic bi- or tridentate (NO, NNO) azo dye ligands: Synthesis, characterization, and interaction with Cu-nanoparticles. J. Mol. Struct. 2013, 1032, 185–194. [Google Scholar] [CrossRef]
- El-Shwiniy, W.H.; Gamil, M.A.; Sadeek, S.A.; Zordok, W.A. Study molecular modeling and the effect of some biological metals on the efficiency of norfloxacin in presence of 3-(bromoacetyl)coumarin. Appl. Organomet. Chem. 2021, 35, e6178. [Google Scholar] [CrossRef]
- Sadeek, S.A.; EL-Shwiniy, W.H.; Zordok, W.A.; EL-Didamony, A.M. Spectroscopic, structure and antimicrobial activity of new Y (III) and Zr (IV) ciprofloxacin. Spectrochim. Acta Part A 2011, 78, 854–867. [Google Scholar] [CrossRef]
- Sadeek, S.; El-Attar, M.; El-Hamid, S.A. Preparation and characterization of new tetradentate Schiff base metal complexes and biological activity evaluation. J. Mol. Struct. 2013, 1051, 30–40. [Google Scholar] [CrossRef]
- Elshwiniy, W.H.; Ibrahim, A.G.; Sadeek, S.A.; Zordok, W.A. Ligational, density functional theory, and biological studies on some new Schiff base 2-(2-hydroxyphenylimine) benzoic acid (L) metal complexes. Appl. Organomet. Chem. 2020, 34, e5819. [Google Scholar] [CrossRef]
- Psomas, G.; Tarushi, A.; Efthimiadou, E.K. Synthesis, characterization and DNA-binding of the mononuclear dioxoura-nium(VI) complex with ciprofloxacin. Polyhedron 2008, 27, 133–138. [Google Scholar] [CrossRef]
- Saif, M.; Mashaly, M.M.; Eid, M.F.; Fouad, R. Synthesis, characterization and thermal studies of binary and/or mixed ligand complexes of Cd(II), Cu(II), Ni(II) and Co(III) based on 2-(Hydroxybenzylidene) thiosemicarbazone: DNA binding affinity of binary Cu(II) complex. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 92, 347–356. [Google Scholar] [CrossRef]
- Mondal, N.; Dey, D.K.; Mitra, S.; Malik, K. Synthesis and structural characterization of mixed ligand η1-2-hydroxyacetophenone complexes of cobalt(III). Polyhedron 2000, 19, 2707–2711. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Abd El-Hamid, S.M.; Zordok, W.A. Spectroscopic, DFT and antimicrobial activity of Zn (II), Zr (IV), Ce (IV) and U (VI) complexes of N, N-chelated 4, 6-bis (4-chlorophenyl)-2-amino-1, 2-dihydropyridine-3. Appl. Organomet. Chem. 2018, 32, e4457. [Google Scholar] [CrossRef]
- Abd El-Hamid, S.M.; Sadeek, S.A.; Zordok, W.A.; Rashid, N.G. Spectroscopic properties, molecular structure, anticancer and antimicrobial evaluation of some new moxifloxacin metal complexes in the presence of 1,10-phenanthroline. Bull. Chem. Soc. Ethiop. 2020, 34, 295–312. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Zayed, E.M.; Hindy, A.M. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 145, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Sadeek, S.; El-Hamid, S.A. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand. J. Mol. Struct. 2016, 1122, 175–185. [Google Scholar] [CrossRef]
- Skauge, T.; Turel, I.; Sletten, E. Interaction between ciprofloxacin and DNA mediated by Mg2+-ions. Inorganica Chim. Acta 2002, 339, 239–247. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1964, 20, 68–69. [Google Scholar] [CrossRef]
- Horowitz, H.H.; Metzger, G. A New Analysis of Thermogravimetric Traces. Anal. Chem. 1963, 35, 1464–1468. [Google Scholar] [CrossRef]
- El-Gammal, O. Mononuclear and binuclear complexes derived from hydrazone Schiff base NON donor ligand: Synthesis, structure, theoretical and biological studies. Inorganica Chim. Acta 2015, 435, 73–81. [Google Scholar] [CrossRef]
- Sakr, S.H.; Elshafie, H.S.; Camele, I.; Sadeek, S.A. Synthesis, Spectroscopic, and Biological Studies of Mixed Ligand Com-plexes of Gemifloxacin and Glycine with Zn(II), Sn(II), and Ce(III). Molecules 2018, 23, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshafie, H.S.; Sakr, S.H.; Sadeek, S.A.; Camele, I. Biological investigations and spectroscopic studies of new Moxifloxa-cin/Glycine-Metal complexes. Chem. Biodivers. 2018, 16, e1800633. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.; Sadeek, S.; Camele, I.; Awad, H.; Mohamed, A. Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules 2020, 25, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, V.J.; Ambler, J.E.; Fisher, L.M. Potent Antipneumococcal Activity of Gemifloxacin Is Associated with Dual Targeting of Gyrase and Topoisomerase IV, an In Vivo Target Preference for Gyrase, and Enhanced Stabilization of Cleavable Complexes In Vitro. Antimicrob. Agents Chemother. 2000, 44, 3112–3117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adesiyun, A.; Offiah, N.; Seepersadsingh, N.; Rodrigo, S.; Lashley, V.; Musai, L. Antimicrobial resistance of Salmonella spp. and Escherichia coli isolated from table eggs. Food Control 2007, 18, 306–311. [Google Scholar] [CrossRef]
- Rodrigo, S.; Adesiyun, A.; Asgarali, Z.; Swanston, W. Antimicrobial resistance of Campylobacter spp. isolated from broilers in small poultry processing operations in Trinidad. Food Control 2007, 18, 321–325. [Google Scholar] [CrossRef]
- Tanaka, M.; Tunoe, H.; Mochida, O.; Kanayama, A.; Saika, T.; Kobayashi, I.; Naito, S. Antimicrobial activity of gemifloxacin (SB-265805), a newer fluoroquinolone, against clinical isolates of Neisseria gonorrhoeae, including fluoroquinolone-resistant isolates. Diagn. Microbiol. Infect. Dis. 2000, 38, 109–113. [Google Scholar] [CrossRef]
- Grasela, D.M. Clinical Pharmacology of Gatifloxacin, a New Fluoroquinolone. Clin. Infect. Dis. 2000, 31, S51–S58. [Google Scholar] [CrossRef]
- Hoban, D.; Bouchillon, S.; Johnson, J.; Zhanel, G.; Butler, D.; Miller, L.; Poupard, J. Comparative in vitro activity of gemifloxacin, ciprofloxacin, levofloxacin and ofloxacin in a North American surveillance study. Diagn. Microbiol. Infect. Dis. 2001, 40, 51–57. [Google Scholar] [CrossRef]
- Fernandez-Roblas, R.; Cabria, F.; Esteban, J.; López, J.C.; Gadea, I.; Soriano, F. In vitro activity of gemifloxacin (SB-265805) compared with 14 other antimicrobials against intestinal pathogens. J. Antimicrob. Chemother. 2000, 46, 1023–1027. [Google Scholar] [CrossRef]
- Saravolatz, L.; Manzor, O.; Check, C.; Pawlak, J.; Belian, B. Antimicrobial activity of moxifloxacin, gatifloxacin and six fluoroquinolones against Streptococcus pneumoniae. J. Antimicrob. Chemother. 2001, 47, 875–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottagnoud, P.; Acosta, F.; Cottagnoud, M.; Taäuber, M.G. Gemifloxacin Is Efficacious against Penicillin-Resistant and Quinolone-Resistant Pneumococci in Experimental Meningitis. Antimicrob. Agents Chemother. 2002, 46, 1607–1609. [Google Scholar] [CrossRef] [Green Version]
- Morissey, I.; Smith, J.T. Activity of 4-quinolones against Pseudomonas aeruginosa. Arzneimittel-Forschung 1994, 44, 1157–1161. [Google Scholar] [PubMed]
- Scheld, W.M. Maintaining Fluoroquinolone Class Efficacy: Review of Influencing Factors. Emerg. Infect. Dis. 2003, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshafie, H.; Mancini, E.; Camele, I.; De Martino, L.; De Feo, V. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Ind. Crop. Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Zygadlo, J.A.; Guzman, C.A.; Grosso, N.R. Antifungal properties of the leaf oils of Tagetes minuta L. and Tagetes filifolia Lag. J. Essent. Oil Res. 1994, 6, 617–621. [Google Scholar] [CrossRef]
- Corona-Bustamante, A.; Viveros-Paredes, J.M.; Flores-Parra, A.; Peraza-Campos, A.L.; Martínez-Martínez, F.J.; Suma-ya-Martínez, M.T.; Ramos-Organillo, Á. Antioxidant Activity of Butyl- and Phenylstannoxanes Derived from 2-, 3- and 4-Pyridinecarboxylic Acids. Molecules 2010, 15, 5445–5459. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Wenta, W. A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol. Technol. Aliment. 2012, 11. [Google Scholar]
- Cosentino, C.; Labella, C.; Elshafie, H.; Camele, I.; Musto, M.; Paolino, R.; D’Adamo, C.; Freschi, P. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk. J. Dairy Sci. 2016, 99, 5173–5179. [Google Scholar] [CrossRef] [Green Version]
Compounds M.Wt. (M.F.) | Yield % | Mp/°C | Color | Found (Calcd.) (%) | μeff(B.M) | Λ Ω−1 mol−1 cm2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | M | Cl | ||||||
(GMFX-o-phdn)1.5H2O 877.762 (C42H47F2N12O7.5) | 80.00 | 190 | Dark red | 57.29 (57.41) | 5.26 (5.35) | 19.02 (19.13) | 17.60 | |||
(A) 1138.957 (FeC42H58F2N12O13Cl3) | 82.00 | 290 | Brown | 44.11 (44.25) | 5.00 (5.09) | 14.70 (14.75) | 4.78 (4.90) | 9.23 (9.33) | 5.81 | 272.40 |
(B) 1106.592 (CoC42H58F2N12O13Cl2) | 84.25 | 285 | Dark green | 45.40 (45.54) | 5.18 (5.24) | 15.10 (15.18) | 5.12 (5.32) | 6.29 (6.40) | 5.10 | 173.10 |
(C) 1131.042 (ZnC42H60F2N12O14Cl2) | 86.10 | 270 | Dark brown | 44.41 (44.56) | 5.11 (5.30) | 14.76 (14.85) | 5.70 (5.78) | 6.13 (6.26) | 176.20 | |
(D) 1136.886 (ZrC42H56F2N12O13Cl2) | 87.15 | 300 | Black | 44.26 (44.33) | 4.81 (4.92) | 14.60 (14.77) | 7.96 (8.02) | 6.14 (6.23) | 175.30 |
Compounds | ν(O-H); H2O; COOH | ν(C=O); COOH | νas(COO-) | ν(C=N) | νs(COO-) | ν(Zr=O) | ν(M-O), ν(M-N) |
---|---|---|---|---|---|---|---|
GMFX-o-phdn | 3427mbr | 1715s | ----- | 1633 s | - | 635 w and 548 m | |
(A) | 3436sbr | - | 1635vs | 1573 m | ----- | ---- | 639 w and 492 w |
(B) | 3434mbr | - | 1635vs | 1570 m | 1391 w | ----- | 638 m and 500 w |
(C) | 3432sbr | - | 1634vs | 1578 s | 1387 w | - | 637 m and 536 m |
(D) | 3432sbr | - | 1638vs | 1528 m | 1360 m | 813 m | 640 m and 497 w |
Compounds | Intra Ligand and Charge Transfer | (M−1 cm−1) | d-d Bands | (M−1 cm−1) |
---|---|---|---|---|
GMFX-o-phdn | 33,898, 31,746 | 452, 155 | ||
(A) | 34,129, 30,769, 22,222 | 453, 158, 100 | 17,241 | 70 |
(B) | 34,246, 31,250, 20,408 | 453, 155, 80 | 18,181, 16,949 | 60, 50 |
(C) | 34,246, 30,769, 21,276 | 452, 160, 67 | ||
(D) | 34,129, 30,769, 20,408 | 452, 172, 69 |
GMFX-o-phdn | (C) | (D) | Assignments |
---|---|---|---|
1.10–1.34 | 1.23–1.30 | 1.28–1.36 | δH, -CH2 cyclopropane |
1.82 | 1.61 | 1.90 | δH, -CH cyclopropane |
2.32 | 2.14 | 2.15 | δH, -NH2; piperazine |
2.50–2.52 | 2.31–2.90 | 2.32–2.88 | δH, -CH2, amine methylene |
3.14–3.20 | 3.21 | 3.19 | δH, -CH2, methylene |
3.82 | 3.45 | 3.50 | δH, H2O |
4.37–4.57 | 4.10 | 4.12–4.22 | δH, -CH3 methyl |
6.90–8.59 | 7.07–8.50 | 6.89–8.52 | δH, -CH aromatic |
11 | -- | δH, -COOH |
Compounds | Decomposition | Temperature Range (°C) | Tmax(°C) | Weight Loss (%) | Lost Species | |
---|---|---|---|---|---|---|
Calc. | Found | |||||
(GMFX-o-phdn)1.5H2O | First step | 32–114 | 82 | 3.08 | 3.10 | 1.5H2O |
Second step | 114–1000 | 188,293,386 | 95.56 | 95.30 | 18C2H2 + 2HF + 2NH3 + 2C2N2 + CO2 + 2NO2 + 2N2 | |
Total loss | 98.65 | 98.40 | ||||
Residue | 1.36 | 1.60 | C | |||
(A) | First step | 33–133 | 90,118 | 7.91 | 7.87 | 5H2O (lattice) |
Second step | 133–241 | 203 | 37.40 | 37.20 | 15C2H2 + 2H2O (coordinated) | |
Third step | 241–950 | 317,435 | 42.42 | 42.80 | 3C2H2 + 3HCl + 2HF + CO + 2NH3 + 1.5H2O + 2NO + N2 | |
Total loss | 87.73 | 87.87 | ||||
Residue | 12.27 | 12.13 | 0.5Fe2O3 + 5C | |||
(B) | First step | 32–131 | 67,113 | 8.13 | 8.10 | 5H2O (lattice) 15C2H2 + 2H2O (coordinated) 3C2H2 + 2HCl + 2HF + CO + 2NO2 + 2H2 + 5N2 CoO + 5C |
Second step | 131–256 | 212 | 38.49 | 38.20 | ||
Third step | 256–850 | 436 | 41.19 | 41.17 | ||
Total loss | 87.81 | 87.47 | ||||
Residue | 12.19 | 12.53 | ||||
(C) | First step | 32–134 | 62 | 9.55 | 9.50 | 6H2O (lattice) 12C2H2 + 2H2O (coordinated) 6C2H2 + C2N2 + 2HF + 2HCl + 2H2 + 5N2 ZnO + 4C |
Second step | 134–331 | 326 | 30.77 | 30.70 | ||
Third step | 331–870 | 394 | 48.24 | 47.80 | ||
Total loss | 88.56 | 88.00 | ||||
Residue | 11.44 | 12.00 | ||||
(D) | First step | 32–131 | 74 | 7.92 | 7.90 | 5H2O (lattice) 9C2H2 + 2H2O (coordinated) 10C2H2 + 2HCl + 2HF + 2NO2 + 5N2 ZrO2 + 4C |
Second step | 131–273 | 172 | 23.75 | 23.70 | ||
Third step | 273–970 | 366,448 | 53.27 | 53.40 | ||
Total loss | 84.94 | 85.00 | ||||
Residue | 15.06 | 15.00 |
Compounds | Decomposition Range (K) | Ts (K) | Method | Parameters | R a | SD b | ||||
---|---|---|---|---|---|---|---|---|---|---|
Ea (KJ/mol) | A (s−1) | ΔS* (KJ/mol.K) | ΔH* (KJ/mol) | ΔG* (KJ/mol) | ||||||
GMFX-o-phdn | 305–387 | 355 | CR | 74.28 | 2.88 × 108 | −0.0101 | 71.33 | 74.94 | 0.978 | 0.155 |
HM | 84.18 | 3.25 × 1010 | −0.0450 | 81.23 | 97.24 | 0.974 | 0.168 | |||
387–506 | 387 | CR | 98.54 | 1.54 × 1010 | −0.0520 | 98.98 | 119.10 | 0.978 | 0.157 | |
HM | 99.61 | 3.70 × 1011 | −0.0256 | 96.39 | 106.30 | 0.974 | 0.168 | |||
496–635 | 566 | CR | 125.77 | 5.88 × 109 | −0.0632 | 121.06 | 121.07 | 0.960 | 0.201 | |
HM | 154.00 | 1.56 × 1012 | −0.0167 | 149.29 | 158.79 | 0.962 | 0.215 | |||
635–1273 | 659 | CR | 107.79 | 4.00 × 105 | −0.0173 | 102.31 | 113.75 | 0.963 | 0.262 | |
HM | 101.99 | 5.70 × 105 | −0.1413 | 96.52 | 189.64 | 0.953 | 0.297 | |||
(A) | 306–406 | 363 | CR | 26.71 | 8.321 | −0.2289 | 23.69 | 106.78 | 0.998 | 0.0137 |
HM | 30.80 | 0.0046 | −0.2911 | 27.78 | 133.48 | 0.997 | 0.0181 | |||
406–514 | 391 | CR | 21.92 | 0.7427 | −0.2496 | 18.67 | 116.27 | 0.999 | 0.0038 | |
HM | 22.85 | 0.0029 | −0.2955 | 19.60 | 135.14 | 0.999 | 0.0064 | |||
514–637 | 476 | CR | 29.57 | 1.1254 | −0.2478 | 25.61 | 143.57 | 0.999 | 0.0016 | |
HM | 25.97 | 1.6232 | −0.2447 | 22.01 | 138.52 | 0.999 | 0.0031 | |||
514–637 | 590 | CR | 32.43 | 0.8072 | −0.2523 | 27.53 | 176.42 | 0.999 | 0.0010 | |
HM | 32.18 | 1.3047 | −0.2483 | 27.27 | 173.81 | 0.999 | 0.0041 | |||
(B) | 305–404 | 340 | CR | 72.07 | 2.03 × 108 | −0.0869 | 69.24 | 98.80 | 0.978 | 0.1553 |
HM | 77.22 | 9.76 × 109 | −0.0547 | 74.39 | 93.01 | 0.974 | 0.1682 | |||
(C) | 305–407 | 335 | CR | 72.07 | 2.10 × 108 | −0.0865 | 69.29 | 98.28 | 0.978 | 0.1553 |
HM | 74.96 | 6.53 × 109 | −0.0579 | 72.18 | 91.60 | 0.974 | 0.1682 | |||
439–604 | 599 | CR | 82.88 | 1.08 × 107 | −0.1159 | 77.90 | 147.37 | 0.969 | 0.1984 | |
HM | 159.41 | 1.17 × 1011 | −0.0387 | 154.43 | 177.66 | 0.965 | 0.2023 | |||
604–738 | 667 | CR | 197.33 | 7.78 × 1013 | 0.01433 | 191.78 | 182.22 | 0.969 | 0.1918 | |
HM | 236.79 | 3.72 × 1016 | 0.06563 | 231.25 | 187.47 | 0.966 | 0.2020 | |||
(D) | 305–404 | 374 | CR | 72.07 | 1.95 × 108 | −0.0874 | 69.19 | 99.53 | 0.978 | 0.1553 |
HM | 80.43 | 1.71 × 1010 | −0.0525 | 77.55 | 94.99 | 0.974 | 0.1682 | |||
694–1272 | 721 | CR | 112.49 | 8.51 × 104 | −0.1578 | 106.50 | 220.32 | 0.965 | 0.2720 | |
HM | 98.62 | 5.29 × 104 | −0.16181 | 92.63 | 209.30 | 0.953 | 0.3123 |
Treatment (µg/mL) | Mycelium Growth Inhibition (%) | ||||
---|---|---|---|---|---|
M. fructicola | A. flavus | P. italicum | B. cinerea | ||
GMFX-o-phdn | 1000 | 0.0 ± 0.0c | 16.1 ± 1.9b | 38.9 ± 3.8c | 20.0 ± 2.6b |
800 | 0.0 ± 0.0c | 0.0 ± 0.0d | 0.0 ± 0.0d | 11.1 ± 2.6c | |
400 | 0.0 ± 0.0c | 0.0 ± 0.0d | 0.0 ± 0.0d | 0.0 ± 0.0d | |
(A) | 1000 | 0.0 ± 0.0c | 22.7 ± 4.6b | 52.9 ± 4.1b | 43.9 ± 4.0a |
800 | 0.0 ± 0.0c | 6.7 ± 2.6c | 0.0 ± 0.0d | 18.7 ± 2.3b | |
400 | 0.0 ± 0.0c | 0.0 ± 0.0 | 0.0 ± 0.0d | 6.7 ± 2.3c | |
(B) | 1000 | 32.6 ± 4.5c | 44.4 ± 5.1a | 0.0 ± 0.0d | 38.3 ± 5.0a |
800 | 20.6 ± 2.2b | 18.9 ± 6.4b | 0.0 ± 0.0d | 18.1 ± 2.2b | |
400 | 5.9 ± 1.0c | 4.3 ± 1.2d | 0.0 ± 0.0d | 7.9 ± 2.2c | |
(C) | 1000 | 0.0 ± 0.0c | 15.8 ± 2.3b | 42.1 ± 1.7c | 23.2 ± 3.0b |
800 | 0.0 ± 0.0c | 8.9 ± 2.6c | 0.0 ± 0.0d | 0.0 ± 0.0d | |
400 | 0.0 ± 0.0c | 0.0 ± 0.0d | 0.0 ± 0.0d | 0.0 ± 0.0d | |
(D) | 1000 | 0.0 ± 0.0c | 16.7 ± 3.8b | 0.0 ± 0.0d | 21.8 ± 1.5b |
800 | 0.0 ± 0.0c | 7.8 ± 1.3c | 0.0 ± 0.0d | 10.4 ± 1.5c | |
400 | 0.0 ± 0.0c | 2.6 ± 0.4d | 0.0 ± 0.0d | 2.4 ± 0.3d | |
Cycloximide | 50 µg/mL | 16.1 ± 2.8b | 9.7 ± 3.0c | 71.1 ± 5.1a | 42.2 ± 2.6a |
Compound | Absorbance (734 nm) at Different Concentrations (µg/mL) | IC50 (µg/mL) | ||||
---|---|---|---|---|---|---|
C.500 | C.250 | C.125 | C.62 | C.31 | ||
GMFX-o-phdn | 0.160 | 0.191 | 0.589 | 1.685 | 1.900 | 169.7 |
A | 0.019 | 0.110 | 0.589 | 1.685 | 1.974 | 164.6 |
B | 0.313 | 1.733 | 2.326 | 2.377 | 2.226 | 300.2 * |
C | 0.006 | 0.290 | 1.590 | 2.415 | 2.196 | 362.2 * |
D | 0.040 | 1.179 | 2.191 | 2.214 | 2.158 | 232.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Mohamed, A.A. Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Some Phyto- or Human Pathogens. Int. J. Mol. Sci. 2022, 23, 2110. https://doi.org/10.3390/ijms23042110
Elshafie HS, Sadeek SA, Camele I, Mohamed AA. Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Some Phyto- or Human Pathogens. International Journal of Molecular Sciences. 2022; 23(4):2110. https://doi.org/10.3390/ijms23042110
Chicago/Turabian StyleElshafie, Hazem S., Sadeek A. Sadeek, Ippolito Camele, and Amira A. Mohamed. 2022. "Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Some Phyto- or Human Pathogens" International Journal of Molecular Sciences 23, no. 4: 2110. https://doi.org/10.3390/ijms23042110
APA StyleElshafie, H. S., Sadeek, S. A., Camele, I., & Mohamed, A. A. (2022). Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Some Phyto- or Human Pathogens. International Journal of Molecular Sciences, 23(4), 2110. https://doi.org/10.3390/ijms23042110