Manipulating the Level of Sensorimotor Stimulation during LI-rTMS Can Improve Visual Circuit Reorganisation in Adult Ephrin-A2A5-/- Mice
Abstract
:1. Introduction
2. Results
2.1. Corticotectal Projections
2.2. Geniculocortical Topography
2.3. Visuomotor Head Tracking
2.4. Concurrent LI-rTMS Does Not Alter Running Behaviour
3. Discussion
3.1. Corticotectal Pathway
3.2. Geniculocortical Pathway
3.3. Head Tracking Behaviour
4. Materials and Methods
4.1. Animals
4.2. Online LI-rTMS of Freely Moving Mice
4.2.1. Coil Support Surgeries
4.2.2. Red-Light (Dark) Environment
4.2.3. Concurrent Locomotion
4.3. Cortical Injections
4.4. Anatomical Tracing Analyses
4.4.1. Topography of Corticotectal Projections
4.4.2. Dispersion of Geniculocortical Neurons
4.5. Visuomotor Head Tracking
4.6. Statistical Analysis
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lefaucheur, J.-P.P.; André-Obadia, N.; Antal, A.; Ayache, S.S.; Baeken, C.; Benninger, D.H.; Cantello, R.M.; Cincotta, M.; de Carvalho, M.; De Ridder, D.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014, 125, 2150–2206. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528, Erratum in Clin. Neurophysiol. 2020, 131, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Z.; Rothwell, J.C.; Edwards, M.J.; Chen, R.S. Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cereb Cortex 2008, 18, 563–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bestmann, S.; Ruff, C.C.; Blakemore, C.; Driver, J.; Thilo, K.V. Spatial Attention Changes Excitability of Human Visual Cortex to Direct Stimulation. Curr. Biol. 2007, 17, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvanto, J.; Pascual-Leone, A. State-dependency of transcranial magnetic stimulation. Brain Topogr. 2008, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ridding, M.C.; Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010, 588, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
- Krucoff, M.O.; Rahimpour, S.; Slutzky, M.W.; Edgerton, V.R.; Turner, D.A. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Front. Neurosci. 2016, 10, 584. [Google Scholar] [CrossRef]
- Zoe Tsagaris, K.; Labar, D.R.; Edwards, D.J. A framework for combining rtms with behavioral therapy. Front. Syst. Neurosci. 2016, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Y.; Tseng, H.Y.; Liao, K.K.; Wang, C.J.; Lai, K.L.; Yang, Y.R. rTMS combined with task-oriented training to improve symmetry of interhemispheric corticomotor excitability and gait performance after stroke: A randomized trial. Neurorehabil Neural. Repair 2012, 26, 222–230. [Google Scholar] [CrossRef]
- Rossi, S.; Rossini, P.M. TMS in cognitive plasticity and the potential for rehabilitation. Trends Cogn. Sci. 2004, 8, 273–279. [Google Scholar] [CrossRef]
- Koganemaru, S.; Fukuyama, H.; Mima, T. Two is More Than One: How to Combine Brain Stimulation Rehabilitative Training for Functional Recovery? Front. Syst. Neurosci. 2015, 9, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, K.A.; Rodger, J. Repetitive transcranial magnetic stimulation for stroke rehabilitation-potential therapy or misplaced hope? Restor. Neurol. Neurosci. 2015, 33, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Sefton, A.J.; Dreher, B.; Harvey, A.R.; Martin, P.R. Visual System. Rat Nerv. Syst. 2015, 9, 947–983. [Google Scholar] [CrossRef]
- Wilkinson, D.G. Multiple roles of eph receptors and ephrins in neural development. Nat. Rev. Neurosci. 2001, 2, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Feldheim, D.A.; Kim, Y.-I.; Bergemann, A.D.; Frisé, J.; Barbacid, M.; Flanagan, J.G. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 2000, 25, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Rodger, J.; Salvatore, L.; Migani, P. Should I stay or should I go? Ephs and ephrins in neuronal migration. Neurosignals 2012, 20, 190–201. [Google Scholar] [CrossRef]
- Wilks, T.A.; Rodger, J.; Harvey, A.R. A role for ephrin-As in maintaining topographic organization in register across interconnected central visual pathways. Eur. J. Neurosci. 2010, 31, 613–622. [Google Scholar] [CrossRef]
- Cang, J.; Kaneko, M.; Yamada, J.; Woods, G.; Stryker, M.P.; Feldheim, D.A. Ephrin-As guide the formation of functional maps in the visual cortex. Neuron 2005, 48, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Cang, J.; Wang, L.; Stryker, M.P.; Feldheim, D.A. Roles of ephrin-As and structured activity in the development of functional maps in the superior colliculus. J. Neurosci. 2008, 28, 11015–11023. [Google Scholar] [CrossRef] [Green Version]
- Triplett, J.W.; Owens, M.T.; Yamada, J.; Lemke, G.; Cang, J.; Stryker, M.P.; Feldheim, D.A. Retinal input instructs alignment of visual topographic maps. Cell 2009, 139, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Rodger, J.; Mo, C.; Wilks, T.; Dunlop, S.A.; Sherrard, R.M. Transcranial pulsed magnetic field stimulation facilitates reorganization of abnormal neural circuits and corrects behavioral deficits without disrupting normal connectivity. FASEB J. 2012, 26, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
- Makowiecki, K.; Harvey, A.R.; Sherrard, R.M.; Rodger, J. Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J. Neurosci. 2014, 34, 10780–10792. [Google Scholar] [CrossRef] [PubMed]
- Poh, E.Z.; Harvey, A.R.; Makowiecki, K.; Rodger, J. Online LI-rTMS during a Visual Learning Task: Differential Impacts on Visual Circuit and Behavioural Plasticity in Adult Ephrin-A2A5-/- Mice. eNeuro 2018, 5, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grehl, S.; Viola, H.M.; Fuller-Carter, P.I.; Carter, K.W.; Dunlop, S.A.; Hool, L.C.; Sherrard, R.M.; Rodger, J. Cellular and molecular changes to cortical neurons following low intensity repetitive magnetic stimulation at different frequencies. Brain Stimul. 2015, 8, 114–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakan, J.M.P.; Lowe, S.C.; Dylda, E.; Keemink, S.W.; Currie, S.P.; Coutts, C.A.; Rochefort, N.L. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. Elife 2016, 5, 14985. [Google Scholar] [CrossRef]
- Niell, C.M.; Stryker, M.P. Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex. Neuron 2010, 65, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Makowiecki, K.; Garrett, A.; Harvey, A.R.; Rodger, J. Low-intensity repetitive transcranial magnetic stimulation requires concurrent visual system activity to modulate visual evoked potentials in adult mice. Sci. Rep. 2018, 8, 5792. [Google Scholar] [CrossRef]
- Marlatt, M.W.; Potter, M.C.; Lucassen, P.J.; van Praag, H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev. Neurobiol. 2012, 72, 943–952. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, LP3017–LP3022. [Google Scholar] [CrossRef] [Green Version]
- de Sousa Fernandes, M.S.; Ordônio, T.F.; Santos, G.C.J.; Santos, L.E.R.; Calazans, C.T.; Gomes, D.A.; Santos, T.M. Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies. Neural Plast. 2020, 2020, 8856621. [Google Scholar] [CrossRef]
- Sleiman, S.F.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Abou Haidar, E.; Stringer, T.; Ulja, D.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 2016, 5, e15092. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Arroyo, S.; Hestrin, S. Subthreshold Mechanisms Underlying State-Dependent Modulation of Visual Responses. Neuron 2013, 80, 350–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Tucciarone, J.M.; Espinosa, J.S.; Sheng, N.; Darcy, D.P.; Nicoll, R.A.; Huang, Z.J.; Stryker, M.P. A Cortical Circuit for Gain Control by Behavioral State. Cell 2014, 156, 1139–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, G.B.; Bonhoeffer, T.; Hübener, M. Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse. Neuron 2012, 74, 809–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polack, P.-O.; Friedman, J.; Golshani, P. Cellular mechanisms of brain state–dependent gain modulation in visual cortex. Nat. Neurosci. 2013, 16, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Vinck, M.; Batista-Brito, R.; Knoblich, U.; Cardin, J.A. Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding. Neuron 2015, 86, 740–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, M.; Stryker, M.P. Sensory experience during locomotion promotes recovery of function in adult visual cortex. Elife 2014, 3, e02798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogge, A.-K.; Röder, B.; Zech, A.; Hötting, K. Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. Neuroimage 2018, 179, 471–479. [Google Scholar] [CrossRef]
- Harvey, A.R.; Worthington, D.R. The projection from different visual cortical areas to the rat superior colliculus. J. Comp. Neurol. 1990, 298, 281–292. [Google Scholar] [CrossRef]
- Cahill, H.; Nathans, J. The optokinetic reflex as a tool for quantitative analyses of nervous system function in mice: Application to genetic and drug-induced variation. PLoS ONE 2008, 3, e2055. [Google Scholar] [CrossRef] [Green Version]
- Cang, J.; Feldheim, D.A. Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 2013, 36, 51–77. [Google Scholar] [CrossRef] [PubMed]
- Haustead, D.J.; Lukehurst, S.S.; Clutton, G.T.; Bartlett, C.A.; Dunlop, S.A.; Arrese, C.A.; Sherrard, R.M.; Rodger, J. Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A-/- mice. J. Neurosci. 2008, 28, 7376–7386. [Google Scholar] [CrossRef] [Green Version]
- Moliadze, V.; Zhao, Y.; Eysel, U.; Funke, K. Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J. Physiol. 2003, 553, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.A.; Pasley, B.N.; Duong, T.; Freeman, R.D. Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 2007, 317, 1918–1921. [Google Scholar] [CrossRef] [Green Version]
- Pasley, B.N.; Allen, E.A.; Freeman, R.D. State-Dependent Variability of Neuronal Responses to Transcranial Magnetic Stimulation of the Visual Cortex. Neuron 2009, 62, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Hooks, B.M.; Chen, C. Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System. Neuron 2020, 106, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 2005, 6, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Fagiolini, M.; Hensch, T.K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 2000, 404, 183–186. [Google Scholar] [CrossRef]
- Huang, Z.J.; Kirkwood, A.; Pizzorusso, T.; Porciatti, V.; Morales, B.; Bear, M.F.; Maffei, L.; Tonegawa, S. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 1999, 98, 739–755. [Google Scholar] [CrossRef] [Green Version]
- Gersner, R.; Kravetz, E.; Feil, J.; Pell, G.; Zangen, A. Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: Differential outcomes in anesthetized and awake animals. J Neurosci 2011, 31, 7521–7526. [Google Scholar] [CrossRef]
- Castillo-Padilla, D.V.; Funke, K. Effects of chronic iTBS-rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark-reared rats. Dev. Neurobiol. 2016, 76, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, G.; Di Pino, G.; Capone, F.; Ranieri, F.; Florio, L.; Todisco, V.; Tedeschi, G.; Funke, K.; Di Lazzaro, V. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Mix, A.; Hoppenrath, K.; Funke, K. Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Dev. Neurobiol. 2015, 75, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Galanis, C.; Muller-Dahlhaus, F.; Opitz, A.; Wierenga, C.J.; Szabo, G.; Ziemann, U.; Deller, T.; Funke, K.; Vlachos, A. Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat. Commun. 2016, 7, 10020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funke, K.; Benali, A. Modulation of Cortical Inhibition by rTMS—Findings Obtained from Animal Models. J. Physiol. 2011, 589, 4423–4435. [Google Scholar] [CrossRef]
- Lenz, M.; Vlachos, A. Releasing the Cortical Brake by Non-Invasive Electromagnetic Stimulation? rTMS Induces LTD of GABAergic Neurotransmission. Front. Neural Circuits 2016, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.D.; Bennett, W.; Bindoff, A.D.; Bolland, S.; Collins, J.; Langley, R.C.; Garry, M.I.; Summers, J.J.; Hinder, M.R.; Rodger, J.; et al. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul. 2021, 14, 1498–1507. [Google Scholar] [CrossRef]
- Stryker, M.P.; Löwel, S. Amblyopia: New molecular/pharmacological and environmental approaches. Vis. Neurosci. 2018, 35, 256. [Google Scholar] [CrossRef]
- Sale, A.; Maya Vetencourt, J.F.; Medini, P.; Cenni, M.C.; Baroncelli, L.; De Pasquale, R.; Maffei, L. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 2007, 10, 679–681. [Google Scholar] [CrossRef]
- Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K. Removing brakes on adult brain plasticity: From molecular to behavioral interventions. J. Neurosci. 2010, 30, 14964–14971. [Google Scholar] [CrossRef]
- Pfeiffenberger, C.; Yamada, J.; Feldheim, D.A. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J. Neurosci. 2006, 26, 12873–12884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, T.; Torborg, C.L.; Feller, M.B.; O’Leary, D.D.M. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 2003, 40, 1147–1160. [Google Scholar] [CrossRef] [Green Version]
- Grubb, M.S.; Rossi, F.M.; Changeux, J.P.; Thompson, I.D. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Neuron 2003, 40, 1161–1172. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, A.R.; Plas, D.T.; Gonzalez, E.; Crair, M.C. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse. J. Neurosci. 2005, 25, 6929–6938. [Google Scholar] [CrossRef]
- Abrahamyan, A.; Clifford, C.W.G.; Arabzadeh, E.; Harris, J.A. Improving Visual Sensitivity with Subthreshold Transcranial Magnetic Stimulation. J. Neurosci. 2011, 31, 3290–3294. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef]
- Luo, L.; O’Leary, D.D.M. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 2005, 28, 127–156. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Lu, Y.; Yang, F.; Shen, W.; Tang, T.T.T.; Feng, L.; Duan, S.; Lu, B. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat. Neurosci. 2010, 13, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Madore, M.R.; Poh, E.; Bollard, S.J.; Rivera, J.; Taylor, J.; Cheng, J.; Booth, E.; Nable, M.; Heath, A.; Yesavage, J.; et al. Moving back in the brain to drive the field forward: Targeting neurostimulation to different brain regions in animal models of depression and neurodegeneration. J. Neurosci. Methods 2021, 360, 109261. [Google Scholar] [CrossRef]
- Aberra, A.S.; Wang, B.; Grill, W.M.; Peterchev, A.V. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul. 2020, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Pashut, T.; Magidov, D.; Ben-Porat, H.; Wolfus, S.; Friedman, A.; Perel, E.; Lavidor, M.; Bar-Gad, I.; Yeshurun, Y.; Korngreen, A. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Front. Cell Neurosci. 2014, 8, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pashut, T.; Wolfus, S.; Friedman, A.; Lavidor, M.; Bar-Gad, I.; Yeshurun, Y.; Korngreen, A. Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput. Biol. 2011, 7, e1002022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrada, I.; Hordacre, B.; Hillier, S.L. Does Sensory Retraining Improve Sensation and Sensorimotor Function Following Stroke: A Systematic Review and Meta-Analysis. Front. Neurosci. 2019, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, I.J.; Parsons, M.W.; Neilson, C.; Carey, L.M. Task-specific training: Evidence for and translation to clinical practice. Occup Ther Int. 2009, 16, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.E. Two Visual Systems. Science 1969, 163, 895–902. [Google Scholar] [CrossRef]
- Peirson, S.N.; Brown, L.A.; Pothecary, C.A.; Benson, L.A.; Fisk, A.S. Light and the laboratory mouse. J. Neurosci. Methods 2018, 300, 26–36. [Google Scholar] [CrossRef]
- Paxinos, G.; Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates; Elsevier: Amsterdam, The Netherlands, 2008; Volume 3, ISBN 0123694604. [Google Scholar]
- Rashid, T.; Upton, A.L.; Blentic, A.; Ciossek, T.; Knöll, B.; Thompson, I.D.; Drescher, U. Opposing gradients of Ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron 2005, 47, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Abdeljalil, J.; Hamid, M.; Abdel-Mouttalib, O.; Stephane, R.; Raymond, R.; Johan, A.; Jose, S.; Pierre, C.; Serge, P. The optomotor response: A robust first-line visual screening method for mice. Vis. Res 2005, 45, 1439–1446. [Google Scholar] [CrossRef] [Green Version]
- Prusky, G.T.; Alam, N.M.; Beekman, S.; Douglas, R.M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 2004, 45, 4611–4616. [Google Scholar] [CrossRef] [Green Version]
- Muller, P.A.; Dhamne, S.C.; Vahabzadeh-Hagh, A.M.; Pascual-Leone, A.; Jensen, F.E.; Rotenberg, A. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation. PLoS ONE 2014, 9, e91065. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.T.; St George, L. Repetitive Transcranial Magnetic Stimulation: A Call for Better Data. Front. Neural. Circuits 2016, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambiaghi, M.; Crupi, R.; Bautista, E.L.; Elsamadisi, A.; Malik, W.; Pozdniakova, H.; Han, Z.; Buffelli, M.; Battaglia, F. The Effects of 1-Hz rTMS on Emotional Behavior and Dendritic Complexity of Mature and Newly Generated Dentate Gyrus Neurons in Male Mice. Int. J. Environ. Res. Public Health 2020, 17, 4047. [Google Scholar] [CrossRef] [PubMed]
- Sabel, B.A.; Thut, G.; Haueisen, J.; Henrich-Noack, P.; Herrmann, C.S.; Hunold, A.; Kammer, T.; Matteo, B.; Sergeeva, E.G.; Waleszczyk, W.; et al. Vision modulation, plasticity and restoration using non-invasive brain stimulation—An IFCN-sponsored review. Clin. Neurophysiol. 2020, 131, 887–911. [Google Scholar] [CrossRef] [PubMed]
Dark | Locomotion | ||||
---|---|---|---|---|---|
Sham | LI-rTMS | Sham | LI-rTMS | ||
No. of successful injections per subject | One colour | 8 | 8 | 6 | 6 |
Two colours | 2 | 2 | 3 | 3 | |
Total no. of injections | 12 | 12 | 12 | 12 | |
No. of TZs per successful injection | =1 | 4 | 8 | 9 | 8 |
>1 | 8 (67%) | 4 (33%) | 3 (25%) | 4 (33%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poh, E.Z.; Green, C.; Agostinelli, L.; Penrose-Menz, M.; Karl, A.-K.; Harvey, A.R.; Rodger, J. Manipulating the Level of Sensorimotor Stimulation during LI-rTMS Can Improve Visual Circuit Reorganisation in Adult Ephrin-A2A5-/- Mice. Int. J. Mol. Sci. 2022, 23, 2418. https://doi.org/10.3390/ijms23052418
Poh EZ, Green C, Agostinelli L, Penrose-Menz M, Karl A-K, Harvey AR, Rodger J. Manipulating the Level of Sensorimotor Stimulation during LI-rTMS Can Improve Visual Circuit Reorganisation in Adult Ephrin-A2A5-/- Mice. International Journal of Molecular Sciences. 2022; 23(5):2418. https://doi.org/10.3390/ijms23052418
Chicago/Turabian StylePoh, Eugenia Z., Courtney Green, Luca Agostinelli, Marissa Penrose-Menz, Ann-Kathrin Karl, Alan R. Harvey, and Jennifer Rodger. 2022. "Manipulating the Level of Sensorimotor Stimulation during LI-rTMS Can Improve Visual Circuit Reorganisation in Adult Ephrin-A2A5-/- Mice" International Journal of Molecular Sciences 23, no. 5: 2418. https://doi.org/10.3390/ijms23052418