Proteolytic Landscapes in Gastric Pathology and Cancerogenesis
Abstract
:1. Introduction
2. The Role of Proteases in H. pylori Colonization and Mucosal Inflammation
3. Proteolytic Impairment of Junctional Integrity and Epithelial Barrier Function
4. The Role of Proteases in Proliferation, Cell Survival, and Neoplastic Transformation
5. Disease Progression in a Proteolytic Environment: Epithelial-Mesenchymal Transition, Metastasis, and Neo-Angiogenesis
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Msc, M.L.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Plummer, M.; Franceschi, S.; Vignat, J.; Forman, D.; De Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 2014, 136, 487–490. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- Correa, P. Helicobacter pylori and gastric carcinogenesis. Am. J. Surg. Pathol. 1995, 19, S37–S43. [Google Scholar]
- Correa, P. Gastric Cancer. Gastroenterol. Clin. N. Am. 2013, 42, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Takahashi-Kanemitsu, A.; Knight, C.T.; Hatakeyama, M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell. Mol. Immunol. 2019, 17, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Wroblewski, L.E., Jr.; Peek, R.M. Helicobacter pylori, Cancer, and the Gastric Microbiota. Adv. Exp. Med. Biol. 2016, 908, 393–408. [Google Scholar] [CrossRef]
- Naumann, M.; Sokolova, O.; Tegtmeyer, N.; Backert, S. Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission. Trends Microbiol. 2017, 25, 316–328. [Google Scholar] [CrossRef]
- Blaser, N.; Backert, S.; Pachathundikandi, S.K. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. Adv. Exp. Med. Biol. 2019, 1149, 77–106. [Google Scholar] [CrossRef]
- Posselt, G.; Crabtree, J.E.; Wessler, S. Proteolysis in Helicobacter pylori-Induced Gastric Cancer. Toxins 2017, 9, 134. [Google Scholar] [CrossRef]
- Sampieri, C.L. Helicobacter pylori and Gastritis: The Role of Extracellular Matrix Metalloproteases, Their Inhibitors, and the Disintegrins and Metalloproteases—A Systematic Literature Review. Am. J. Dig. Dis. 2013, 58, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Bockerstett, K.A.; DiPaolo, R.J. Regulation of Gastric Carcinogenesis by Inflammatory Cytokines. Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, B.-H. Diagnosis and classification of autoimmune gastritis. Autoimmun. Rev. 2014, 13, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Bizzaro, N.; Antico, A.; Villalta, D. Autoimmunity and Gastric Cancer. Int. J. Mol. Sci. 2018, 19, 377. [Google Scholar] [CrossRef] [Green Version]
- Assumpção, P.P.; Barra, W.F.; Ishak, G.; Coelho, L.G.V.; Coimbra, F.J.F.; Freitas, H.C.; Dias-Neto, E.; Camargo, M.C.; Szklo, M. The diffuse-type gastric cancer epidemiology enigma. BMC Gastroenterol. 2020, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- El-Omar, E.M.; Rabkin, C.S.; Gammon, M.D.; Vaughan, T.L.; Risch, H.A.; Schoenberg, J.B.; Stanford, J.L.; Mayne, S.T.; Goedert, J.; Blot, W.J.; et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 2003, 124, 1193–1201. [Google Scholar] [CrossRef]
- Suerbaum, S.; Friedrich, S. MicroCorrespondence. Mol. Microbiol. 1996, 20, 1113–1114. [Google Scholar] [CrossRef]
- Smith, A.W.; Chahal, B.; French, G.L. The human gastric pathogen Helicobacter pylori has a gene encoding an enzyme first classified as a mucinase in Vibrio cholerae. Mol. Microbiol. 1994, 13, 153–160. [Google Scholar] [CrossRef]
- Ebansil, R.; Celli, J.P.; Hardcastle, J.M.; Turner, B.S. The Influence of Mucus Microstructure and Rheology in Helicobacter pylori Infection. Front. Immunol. 2013, 4, 310. [Google Scholar] [CrossRef] [Green Version]
- Kavermann, H.; Burns, B.; Angermüller, K.; Odenbreit, S.; Fischer, W.; Melchers, K.; Haas, R. Identification and Characterization of Helicobacter pylori Genes Essential for Gastric Colonization. J. Exp. Med. 2003, 197, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, M.S.; Noto, J.M.; Piazuelo, M.B.; Hardbower, D.M.; Romero-Gallo, J.; Delgado, A.; Chaturvedi, R.; Correa, P.; Wilson, K.T.; Peek, R.M. Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization. Oncogene 2014, 34, 1865–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.-P.; Cheng, P.; Zhang, J.-Y.; Mao, F.-Y.; Teng, Y.-S.; Liu, Y.-G.; Kong, H.; Wu, X.-L.; Hao, C.-J.; Han, B.; et al. Helicobacter pylori–induced matrix metallopeptidase-10 promotes gastric bacterial colonization and gastritis. Sci. Adv. 2019, 5, eaau6547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, S.R.; Noto, J.M.; Allen, S.S.; Patel, D.A.; Romero-Gallo, J.; Washington, M.K.; Fingleton, B.; Israel, D.A.; Lewis, N.; Wilson, K.; et al. Matrix Metalloproteinase-7 and Premalignant Host Responses in Helicobacter pylori–Infected Mice. Cancer Res. 2010, 70, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Salim, D.K.; Sahin, M.; Köksoy, S.; Adanir, H.; Süleymanlar, I. Local Immune Response in Helicobacter pylori Infection. Medicine 2016, 95, e3713. [Google Scholar] [CrossRef]
- Tsai, H.-F.; Hsu, P.-N. Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cell. Mol. Immunol. 2010, 7, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Algood, H.M.S.; Gallo-Romero, J.; Wilson, K.T.; Peek, R.M., Jr.; Cover, T.L. Host response to Helicobacter pylori infection before initiation of the adaptive immune response. FEMS Immunol. Med. Microbiol. 2007, 51, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Clark, I.M.; Swingler, T.E.; Sampieri, C.L.; Edwards, D. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell Biol. 2008, 40, 1362–1378. [Google Scholar] [CrossRef] [Green Version]
- Thomas Wex, A.S.-M.; Kalinski, T.; Roessner, A.; Malfertheiner, P.; Naumann, M.; Lendeckel, U. Expression of Adam 19 in Helicobacter pylori-Mediated Diseases and Gastric Cancer; Gastric Cancer Research Trends; Nova Science Publishers: New York, NY, USA, 2007; p. 171. [Google Scholar]
- Yoshimura, T.; Tomita, T.; Dixon, M.F.; Axon, A.T.R.; Robinson, P.A.; Crabtree, J.E. ADAMs(A Disintegrin and Metalloproteinase) Messenger RNA Expression in Helicobacter pylori–infected, Normal, and Neoplastic Gastric Mucosa. J. Infect. Dis. 2002, 185, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhou, Y.; Liao, Q.; Ouyang, H. Helicobacter pylori infection promotes the invasion and metastasis of gastric cancer through increasing the expression of matrix metalloproteinase-1 and matrix metalloproteinase-10. Exp. Ther. Med. 2014, 8, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Koyama, S. Significance of cell-surface expression of matrix metalloproteinases and their inhibitors on gastric epithelium and infiltrating mucosal lymphocytes in progression of Helicobacter pylori-associated gastritis. Scand. J. Gastroenterol. 2004, 39, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S. Enhanced cell surface expression of matrix metalloproteinases and their inhibitors, and tumor-induced host response in progression of human gastric carcinoma. Am. J. Dig. Dis. 2004, 49, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Krueger, S.; Hundertmark, T.; Kalinski, T.; Peitz, U.; Wex, T.; Malfertheiner, P.; Naumann, M.; Roessner, A. Helicobacter pylori Encoding the Pathogenicity Island Activates Matrix Metalloproteinase 1 in Gastric Epithelial Cells via JNK and ERK. J. Biol. Chem. 2006, 281, 2868–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rautelin, H.I.; Oksanen, A.M.; Veijola, L.I.; Sipponen, P.I.; Tervahartiala, T.I.; Sorsa, T.A.; Lauhio, A. Enhanced systemic matrix metalloproteinase response in Helicobacter pylori gastritis. Ann. Med. 2009, 41, 208–215. [Google Scholar] [CrossRef]
- Zhao, Z.-S.; Chu, Y.-Q.; Ye, Z.-Y.; Wang, Y.-Y.; Tao, H.-Q. Overexpression of matrix metalloproteinase 11 in human gastric carcinoma and its clinicopathologic significance. Hum. Pathol. 2010, 41, 686–696. [Google Scholar] [CrossRef]
- Zheng, J.; Chu, D.; Wang, D.; Zhu, Y.; Zhang, X.; Ji, G.; Zhao, H.; Wu, G.; Du, J.; Zhao, Q. Matrix metalloproteinase-12 is associated with overall survival in Chinese patients with gastric cancer. J. Surg. Oncol. 2012, 107, 746–751. [Google Scholar] [CrossRef]
- Costa, A.; Ferreira, R.; Pinto-Ribeiro, I.; Sougleri, I.S.; Oliveira, M.J.; Carreto, L.; Santos, M.; Sgouras, D.N.; Carneiro, F.; Leite, M.; et al. Helicobacter pylori Activates Matrix Metalloproteinase 10 in Gastric Epithelial Cells via EGFR and ERK-mediated Pathways. J. Infect. Dis. 2016, 213, 1767–1776. [Google Scholar] [CrossRef] [Green Version]
- Mori, N.; Sato, H.; Hayashibara, T.; Senba, M.; Geleziunas, R.; Wada, A.; Hirayama, T.; Yamamoto, N. Helicobacter pylori induces matrix metalloproteinase-9 through activation of nuclear factor κB. Gastroenterology 2003, 124, 983–992. [Google Scholar] [CrossRef]
- Moss, M.L.; Jin, S.-L.C.; Milla, M.E.; Burkhart, W.; Carter, H.L.; Chen, W.-J.; Clay, W.C.; Didsbury, J.R.; Hassler, D.; Hoffman, C.R.; et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 1997, 385, 733–736. [Google Scholar] [CrossRef]
- Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 1997, 385, 729–733. [Google Scholar] [CrossRef]
- Clendeninn, N.J.; Appelt, K. Matrix Metalloproteinase Inhibitors in Cancer Therapy; Springer: New York, NY, USA, 2000. [Google Scholar]
- Klein, T.; Bischoff, R. Active Metalloproteases of the A Disintegrin And Metalloprotease (ADAM) Family: Biological Function and Structure. J. Proteome Res. 2011, 10, 17–33. [Google Scholar] [CrossRef]
- Slomiany, B.L.; Slomiany, A. Helicobacter pylori-induced gastric mucosal TGF-α ectodomain shedding and EGFR transactivation involves Rac1/p38 MAPK-dependent TACE activation. Inflammopharmacology 2015, 24, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Van den Steen, P.E.; Proost, P.; Wuyts, A.; Van Damme, J.; Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 2000, 96, 2673–2681. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wu, C.; Zhang, X.; Sorokin, L.M. In Vivo Processing of CXCL5 (LIX) by Matrix Metalloproteinase (MMP)-2 and MMP-9 Promotes Early Neutrophil Recruitment in IL-1β–Induced Peritonitis. J. Immunol. 2012, 190, 401–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkington, P.T.G. Matrix metalloproteinases in destructive pulmonary pathology. Thorax 2006, 61, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Hua, Y.; Hu, P.; Li, J.; Hu, G.; Tang, X. Adhesin HpaA of Helicobacter pylori Promoted Migration of AGS Cells via IL-21 Secretion from HpaA-induced CD4+T Cells. Jundishapur J. Microbiol. 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Caruso, R.; Fina, D.; Peluso, I.; Fantini, M.C.; Tosti, C.; Blanco, G.D.V.; Paoluzi, O.A.; Caprioli, F.; Andrei, F.; Stolfi, C.; et al. IL-21 Is Highly Produced in Helicobacter pylori-Infected Gastric Mucosa and Promotes Gelatinases Synthesis. J. Immunol. 2007, 178, 5957–5965. [Google Scholar] [CrossRef] [Green Version]
- Gooz, M.; Shaker, M.; Gooz, P.; Smolka, A.J. Interleukin 1beta induces gastric epithelial cell matrix metalloproteinase secretion and activation during Helicobacter pylori infection. Gut 2003, 52, 1250–1256. [Google Scholar] [CrossRef]
- Yin, Y.; Grabowska, A.M.; A Clarke, P.; Whelband, E.; Robinson, K.; Argent, R.H.; Tobias, A.; Kumari, R.; Atherton, J.C.; A Watson, S. Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: Links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut 2010, 59, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Waldum, H.L.; Sagatun, L.; Mjønes, P. Gastrin and Gastric Cancer. Front. Endocrinol. 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- McClurg, U.L.; Danjo, K.; King, H.O.; Scott, G.B.; Robinson, P.A.; Crabtree, J.E. Epithelial cell ADAM17 activation by Helicobacter pylori: Role of ADAM17 C-terminus and Threonine-735 phosphorylation. Microbes Infect. 2015, 17, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ii, M.; Yamamoto, H.; Adachi, Y.; Maruyama, Y.; Shinomura, Y. Role of Matrix Metalloproteinase-7 (Matrilysin) in Human Cancer Invasion, Apoptosis, Growth, and Angiogenesis. Exp. Biol. Med. 2006, 231, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.-H.; Woessner, J.F.; McNeish, J.D.; Stamenkovic, I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev. 2002, 16, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Bergin, P.J.; Raghavan, S.; Svensson, H.; Starckx, S.; Van Aelst, I.; Gjertsson, I.; Opdenakker, G.; Quiding-Järbrink, M. Gastric gelatinase B/matrix metalloproteinase-9 is rapidly increased in Helicobacter felis-induced gastritis. FEMS Immunol. Med Microbiol. 2008, 52, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Stalin, S.; Das, N.; Choudhury, S.T.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials 2012, 33, 2991–3001. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Park, Y.S.; Paik, H.-D.; Chang, H.I. Effect of anthocyanins on expression of matrix metalloproteinase-2 in naproxen-induced gastric ulcers. Br. J. Nutr. 2011, 106, 1792–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, Y.-C.; Kuo, H.-Y.; Chang, W.-L.; Yang, H.-B.; Lu, C.-C.; Cheng, H.-C.; Wu, M.-S.; Sheu, B.-S. H. pylori isolates with amino acid sequence polymorphisms as presence of both HtrA-L171 & CagL-Y58/E59 increase the risk of gastric cancer. J. Biomed. Sci. 2019, 26, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarzecka, U.; Matkowska, D.; Backert, S.; Skorko-Glonek, J. Importance of two PDZ domains for the proteolytic and chaperone activities of Helicobacter pylori serine protease HtrA. Cell. Microbiol. 2020, 23, e13299. [Google Scholar] [CrossRef]
- Zarzecka, U.; Harrer, A.; Zawilak-Pawlik, A.; Skorko-Glonek, J.; Backert, S. Chaperone activity of serine protease HtrA of Helicobacter pylori as a crucial survival factor under stress conditions. Cell Commun. Signal. 2019, 17, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Salama, N.R.; Shepherd, B.; Falkow, S. Global Transposon Mutagenesis and Essential Gene Analysis of Helicobacter pylori. J. Bacteriol. 2004, 186, 7926–7935. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Backert, S.; Hammond, C.E.; Gooz, M.; Smolka, A.J. Helicobacter pylori CagL Activates ADAM17 to Induce Repression of the Gastric H, K-ATPase α Subunit. Gastroenterology 2010, 139, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. S1), 177–183. [Google Scholar] [CrossRef] [Green Version]
- Wroblewski, L.E.; Noble, P.-J.M.; Pagliocca, A.; Pritchard, D.M.; Hart, C.A.; Campbell, F.; Dodson, A.R.; Dockray, G.J.; Varro, A. Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: Role in epithelial cell migration. J. Cell Sci. 2003, 116, 3017–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirrmeister, W.; Gnad, T.; Wex, T.; Higashiyama, S.; Wolke, C.; Naumann, M.; Lendeckel, U. Ectodomain shedding of E-cadherin and c-Met is induced by Helicobacter pylori infection. Exp. Cell Res. 2009, 315, 3500–3508. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-J.; Wu, D.-C.; Cheng, K.-H.; Chen, L.-T.; Hung, W.-C. RECK Inhibits Stemness Gene Expression and Tumorigenicity of Gastric Cancer Cells by Suppressing ADAM-Mediated Notch1 Activation. J. Cell. Physiol. 2013, 229, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Najy, A.J.; Day, K.C.; Day, M.L. The Ectodomain Shedding of E-cadherin by ADAM15 Supports ErbB Receptor Activation. J. Biol. Chem. 2008, 283, 18393–18401. [Google Scholar] [CrossRef] [Green Version]
- Klessner, J.L.; Desai, B.V.; Amargo, E.V.; Getsios, S.; Green, K.J. EGFR and ADAMs Cooperate to Regulate Shedding and Endocytic Trafficking of the Desmosomal Cadherin Desmoglein 2. Mol. Biol. Cell 2009, 20, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Zeng, R.; Li, X.; Gorodeski, G.I. Estrogen Abrogates Transcervical Tight Junctional Resistance by Acceleration of Occludin Modulation. J. Clin. Endocrinol. Metab. 2004, 89, 5145–5155. [Google Scholar] [CrossRef] [Green Version]
- Noe, V.; Fingleton, B.; Jacobs, K.; Crawford, H.; Vermeulen, S.; Steelant, W.; Bruyneel, E.; Matrisian, L.; Mareel, M. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci. 2001, 114, 111–118. [Google Scholar] [CrossRef]
- Przybylo, J.A.; Radisky, D.C. Matrix metalloproteinase-induced epithelial–mesenchymal transition: Tumor progression at Snail’s pace. Int. J. Biochem. Cell Biol. 2007, 39, 1082–1088. [Google Scholar] [CrossRef]
- Davies, G.; Jiang, W.; Mason, M.D. Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: A key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin. Cancer Res. 2001, 7, 3289–3297. [Google Scholar] [PubMed]
- Pflugfelder, S.C.; Farley, W.; Luo, L.; Chen, L.Z.; de Paiva, C.S.; Olmos, L.C.; Li, D.-Q.; Fini, M.E. Matrix Metalloproteinase-9 Knockout Confers Resistance to Corneal Epithelial Barrier Disruption in Experimental Dry Eye. Am. J. Pathol. 2005, 166, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Symowicz, J.; Adley, B.P.; Gleason, K.J.; Johnson, J.J.; Ghosh, S.; Fishman, D.A.; Hudson, L.G.; Stack, M.S. Engagement of Collagen-Binding Integrins Promotes Matrix Metalloproteinase-9–Dependent E-Cadherin Ectodomain Shedding in Ovarian Carcinoma Cells. Cancer Res. 2007, 67, 2030–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorch, J.H.; Klessner, J.; Park, J.K.; Getsios, S.; Wu, Y.L.; Stack, M.S.; Green, K.J. Epidermal Growth Factor Receptor Inhibition Promotes Desmosome Assembly and Strengthens Intercellular Adhesion in Squamous Cell Carcinoma Cells. J. Biol. Chem. 2004, 279, 37191–37200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covington, M.D.; Burghardt, R.C.; Parrish, A.R. Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). Am. J. Physiol. Physiol. 2006, 290, F43–F51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.S.; Costa, A.C.; Osório, H.; Pinto, M.L.; Relvas, S.; Dinis-Ribeiro, M.; Carneiro, F.; Leite, M.; Figueiredo, C. Helicobacter pylori PqqE is a new virulence factor that cleaves junctional adhesion molecule A and disrupts gastric epithelial integrity. Gut Microbes 2021, 13, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Hoy, B.; Löwer, M.; Weydig, C.; Carra, G.; Tegtmeyer, N.; Geppert, T.; Schröder, P.; Sewald, N.; Backert, S.; Schneider, G.; et al. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep. 2010, 11, 798–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernegger, S.; Vidmar, R.; Fonovic, M.; Posselt, G.; Turk, B.; Wessler, S. Identification of Desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Commun. Signal. 2021, 19, 1–12. [Google Scholar] [CrossRef]
- Tegtmeyer, N.; Wessler, S.; Necchi, V.; Rohde, M.; Harrer, A.; Rau, T.T.; Asche, C.I.; Boehm, M.; Loessner, H.; Figueiredo, C.; et al. Helicobacter pylori Employs a Unique Basolateral Type IV Secretion Mechanism for CagA Delivery. Cell Host Microbe 2017, 22, 552–560.e5. [Google Scholar] [CrossRef] [Green Version]
- Steinhusen, U.; Weiske, J.; Badock, V.; Tauber, R.; Bommert, K.; Huber, O. Cleavage and Shedding of E-cadherin after Induction of Apoptosis. J. Biol. Chem. 2001, 276, 4972–4980. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Du, J.; Liu, F.; Wang, X.; Li, X.; Li, Y. Role of caspase-3/E-cadherin in Helicobacter pylori-induced apoptosis of gastric epithelial cells. Oncotarget 2017, 8, 59204–59216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nava, P.; Laukoetter, M.G.; Hopkins, A.; Laur, O.; Gerner-Smidt, K.; Green, K.J.; Parkos, C.A.; Nusrat, A. Desmoglein-2: A Novel Regulator of Apoptosis in the Intestinal Epithelium. Mol. Biol. Cell 2007, 18, 4565–4578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, P.M.; Lapointe, T.K.; Jackson, S.; Beck, P.L.; Jones, N.L.; Buret, A.G. Helicobacter pylori Activates Calpain via Toll-Like Receptor 2 To Disrupt Adherens Junctions in Human Gastric Epithelial Cells. Infect. Immun. 2011, 79, 3887–3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yulis, M.; Quirós, M.; Hilgarth, R.; Parkos, C.A.; Nusrat, A. Intracellular Desmoglein-2 cleavage sensitizes epithelial cells to apoptosis in response to pro-inflammatory cytokines. Cell Death Dis. 2018, 9, 389. [Google Scholar] [CrossRef] [Green Version]
- Dixon, M.F.; Genta, R.M.; Yardley, J.H.; Correa, P. Classification and Grading of Gastritis. The updated Sydney System. In-ternational Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol. 1996, 20, 1161–1181. [Google Scholar] [CrossRef] [PubMed]
- Smolka, A.J.; Schubert, M.L. Helicobacter pylori-Induced Changes in Gastric Acid Secretion and Upper Gastrointestinal Disease. Curr. Top. Microbiol. Immunol. 2017, 400, 227–252. [Google Scholar] [CrossRef]
- Sáenz, J.B.; Mills, J.C. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 257–273. [Google Scholar] [CrossRef]
- Willet, S.; Mills, J.C. Stomach Organ and Cell Lineage Differentiation: From Embryogenesis to Adult Homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 546–559. [Google Scholar] [CrossRef] [Green Version]
- Buckley, A.; Turner, J.R. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb. Perspect. Biol. 2017, 10, a029314. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Huang, H. Insights into the Role of Cell–Cell Junctions in Physiology and Disease. Int. Rev. Cell Mol. Biol. 2013, 306, 187–221. [Google Scholar] [CrossRef] [PubMed]
- Zihni, C.; Mills, C.; Matter, K.; Balda, M. Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2013, 70, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Niessen, C.M.; Leckband, D.; Yap, A.S. Tissue Organization by Cadherin Adhesion Molecules: Dynamic Molecular and Cellular Mechanisms of Morphogenetic Regulation. Physiol. Rev. 2011, 91, 691–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, K.J.; Jaiganesh, A.; A Broussard, J. Desmosomes: Essential contributors to an integrated intercellular junction network. F1000Research 2019, 8, 2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczyk, A.P.; Green, K.J. Structure, Function, and Regulation of Desmosomes. Prog. Mol. Biol. Transl. Sci. 2013, 116, 95–118. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.P.; Nanes, B.A. Adherens Junction Turnover: Regulating Adhesion Through Cadherin Endocytosis, Degradation, and Recycling. In Adherens Junctions: From Molecular Mechanisms to Tissue Development and Disease; Springer: Berlin/Heidelberg, Germany, 2012; pp. 197–222. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.A.; Uppada, S.; Achkar, I.W.; Hashem, S.; Yadav, S.K.; Shanmugakonar, M.; Al-Naemi, H.A.; Haris, M.; Uddin, S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front. Physiol. 2018, 9, 1942. [Google Scholar] [CrossRef] [Green Version]
- Wachtel, M.; Frei, K.; Ehler, E.; Fontana, A.; Winterhalter, K.; Gloor, S. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J. Cell Sci. 1999, 112, 4347–4356. [Google Scholar] [CrossRef]
- Gorodeski, G.I. Estrogen Decrease in Tight Junctional Resistance Involves Matrix-Metalloproteinase-7-Mediated Remodeling of Occludin. Endocrinology 2007, 148, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Casas, E.; Barron, C.; Francis, S.A.; McCormack, J.M.; McCarthy, K.M.; Schneeberger, E.E.; Lynch, R.D. Cholesterol efflux stimulates metalloproteinase-mediated cleavage of occludin and release of extracellular membrane particles containing its C-terminal fragments. Exp. Cell Res. 2010, 316, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Willemsen, L.E.M.; Hoetjes, J.P.; Van Deventer, S.J.H.; Van Tol, E.A.F. Abrogation of IFN-gamma mediated epithelial barrier disruption by serine protease inhibition. Clin. Exp. Immunol. 2005, 142, 275–284. [Google Scholar] [CrossRef]
- Lee, L.Y.; Wu, C.M.; Wang, C.C.; Yu, J.S.; Liang, Y.; Huang, K.H.; Lo, C.-H.; Hwang, T.L. Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression. Histol. Histopathol. 2008, 515–521. [Google Scholar] [CrossRef]
- Honda, M.; Mori, M.; Ueo, H.; Sugimachi, K.; Akiyoshi, T. Matrix metalloproteinase-7 expression in gastric carcinoma. Gut 1996, 39, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Kourtidis, A.; Lu, R.; Pence, L.J.; Anastasiadis, P.Z. A central role for cadherin signaling in cancer. Exp. Cell Res. 2017, 358, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Bruner, H.C.; Derksen, P.W. Loss of E-Cadherin-Dependent Cell–Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb. Perspect. Biol. 2017, 10, a029330. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, M.M.; Day, M.L. Soluble E-cadherin: More than a symptom of disease. Front. Biosci. 2012, 17, 1948–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.O.O.; Lam, S.K.; Chu, K.M.; Lam, C.M.; Kwok, E.; Leung, S.Y.; Yuen, S.T.; Law, S.Y.K.; Hui, W.M.; Lai, K.C.; et al. Soluble E-cadherin is a valid prognostic marker in gastric carcinoma. Gut 2001, 48, 808–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maretzky, T.; Reiss, K.; Ludwig, A.; Buchholz, J.; Scholz, F.; Proksch, E.; de Strooper, B.; Hartmann, D.; Saftig, P. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and catenin translocation. Proc. Natl. Acad. Sci. USA 2005, 102, 9182–9187. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, X.; Du, J.; Yin, Y.; Li, Y. Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori. Exp. Cell Res. 2018, 367, 196–204. [Google Scholar] [CrossRef]
- King, I.A.; Angst, B.D.; Hunt, D.M.; Buxton, R.S.; Kruger, M.; Arnemann, J. Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse. Differentiation 1997, 62, 83–96. [Google Scholar] [CrossRef]
- Biedermann, K.; Vogelsang, H.; Becker, I.; Plaschke, S.; Siewert, J.R.; Höfler, H.; Keller, G. Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J. Pathol. 2005, 207, 199–206. [Google Scholar] [CrossRef]
- Kamekura, R.; Nava, P.; Feng, M.; Quiros, M.; Nishio, H.; Weber, D.A.; Parkos, C.A.; Nusrat, A. Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier. Mol. Biol. Cell 2015, 26, 3165–3177. [Google Scholar] [CrossRef] [PubMed]
- Kolegraff, K.; Nava, P.; Laur, O.; Parkos, C.A.; Nusrat, A. Characterization of full-length and proteolytic cleavage fragments of desmoglein-2 in native human colon and colonic epithelial cell lines. Cell Adhes. Migr. 2011, 5, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Bergin, P.J.; Anders, E.; Sicheng, W.; Erik, J.; Jennie, A.; Hans, L.; Pierre, M.; Qiang, P.-H.; Marianne, Q.-J. Increased Production of Matrix Metalloproteinases in Helicobacter pylori-Associated Human Gastritis. Helicobacter 2004, 9, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Carl-McGrath, S.; Lendeckel, U.; Ebert, M.; Roessner, A.; Röcken, C. The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int. J. Oncol. 2005, 26, 17–24. [Google Scholar] [CrossRef]
- Kwok, T.; Zabler, D.; Urman, S.; Rohde, M.; Hartig, R.; Wessler, S.; Misselwitz, R.; Berger, J.; Sewald, N.; König, W.; et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007, 449, 862–866. [Google Scholar] [CrossRef]
- David, J.; Rajasekaran, A.K. Dishonorable Discharge: The Oncogenic Roles of Cleaved E-Cadherin Fragments. Cancer Res. 2012, 72, 2917–2923. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.A. The role of tight junctions in cancer metastasis. Semin. Cell Dev. Biol. 2014, 36, 224–231. [Google Scholar] [CrossRef]
- Christiansen, J.J.; Rajasekaran, A.K. Reassessing Epithelial to Mesenchymal Transition as a Prerequisite for Carcinoma Invasion and Metastasis. Cancer Res. 2006, 66, 8319–8326. [Google Scholar] [CrossRef] [Green Version]
- Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Cancer 2002, 2, 161–174. [Google Scholar] [CrossRef]
- Radisky, D.C.; Levy, D.D.; Littlepage, L.E.; Liu, H.; Nelson, C.M.; Fata, J.E.; Leake, D.; Godden, E.L.; Albertson, D.G.; Nieto, M.A.; et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005, 436, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Jing, C.; Chang, X.; Ding, D.; Han, T.; Yang, J.; Lu, Z.; Hu, X.; Liu, Z.; Wang, J.; et al. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J. Transl. Med. 2019, 17, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeeszadeh-Sarmazdeh, M.; Do, L.D.; Hritz, B.G. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020, 9, 1313. [Google Scholar] [CrossRef] [PubMed]
- Kubben, F.J.G.M.; Sier, C.F.M.; Van Duijn, W.; Griffioen, G.; Hanemaaijer, R.; Van De Velde, C.J.H.; Van Krieken, J.H.J.M.; Lamers, C.B.H.W.; Verspaget, H.W. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer. Br. J. Cancer 2006, 94, 1035–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Xi, H.; Wei, B.; Chen, L. The prognostic role of matrix metalloproteinase 2 in gastric cancer: A systematic review with meta-analysis. J. Cancer Res. Clin. Oncol. 2014, 140, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Torii, A.; Kodera, Y.; Uesaka, K.; Hirai, T.; Yasui, K.; Morimoto, T.; Yamamura, Y.; Kato, T.; Hayakawa, T.; Fujimoto, N.; et al. Plasma concentration of matrix metalloproteinase 9 in gastric cancer. Br. J. Surg. 1997, 84, 133–136. [Google Scholar]
- Wu, C.-Y.; Wu, M.-S.; Chiang, E.; Chen, Y.-J.; Chen, C.-J.; Chi, N.-H.; Shih, Y.-T.; Chen, G.-H.; Lin, J.-T. Plasma Matrix Metalloproteinase-9 Level Is Better than Serum Matrix Metalloproteinase-9 Level to Predict Gastric Cancer Evolution. Clin. Cancer Res. 2007, 13, 2054–2060. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-Q.; Song, S.; Wang, J.-H.; Zhang, S.-L. Expression of MMP-3 and TIMP-3 in gastric cancer tissue and its clinical significance. Oncol. Lett. 2011, 2, 1319–1322. [Google Scholar] [CrossRef] [Green Version]
- Yeh, Y.-C.; Sheu, B.-S.; Cheng, H.-C.; Wang, Y.-L.; Yang, H.-B.; Wu, J.-J. Elevated Serum Matrix Metalloproteinase-3 and -7 in H. pylori-Related Gastric Cancer Can Be Biomarkers Correlating with a Poor Survival. Am. J. Dig. Dis. 2009, 55, 1649–1657. [Google Scholar] [CrossRef]
- Lynch, C.C.; Vargo-Gogola, T.; Matrisian, L.M.; Fingleton, B. Cleavage of E-Cadherin by Matrix Metalloproteinase-7 Promotes Cellular Proliferation in Nontransformed Cell Lines via Activation of RhoA. J. Oncol. 2010, 2010, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ni, P.; Yu, M.; Zhang, R.; He, M.; Wang, H.; Chen, S.; Duan, G. Prognostic Significance of ADAM17 for Gastric Cancer Survival: A Meta-Analysis. Medicina 2020, 56, 322. [Google Scholar] [CrossRef]
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2010, 41, 271–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Cao, H.; Chaturvedi, R.; Krishna, U.; Hobbs, S.S.; Dempsey, P.J.; Peek, R.M.; Cover, T.L.; Washington, M.K.; Wilson, K.T.; et al. Epidermal Growth Factor Receptor Activation Protects Gastric Epithelial Cells From Helicobacter pylori-Induced Apoptosis. Gastroenterology 2009, 136, 1297–1307.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crabtree, J.E.; Jeremy, A.H.; Duval, C.; Dixon, M.F.; Danjo, K.; Carr, I.M.; Pritchard, D.M.; Robinson, P.A. Effects of EGFR Inhibitor on Helicobacter pylori Induced Gastric Epithelial Pathology in Vivo. Pathogens 2013, 2, 571–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, J.D.; Vucic, D. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Front. Cell Dev. Biol. 2020, 8, 365. [Google Scholar] [CrossRef]
- Mannello, F.; Luchetti, F.; Falcieri, E.; Papa, S. Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 2005, 10, 19–24. [Google Scholar] [CrossRef]
- Maubach, G.; Vieth, M.; Boccellato, F.; Naumann, M. Helicobacter pylori-induced NF-κB: Trailblazer for gastric pathophysiology. Trends Mol. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Gonciarz, W.; Krupa, A.; Hinc, K.; Obuchowski, M.; Moran, A.P.; Gajewski, A.; Chmiela, M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS ONE 2019, 14, e0220636. [Google Scholar] [CrossRef] [Green Version]
- Hartung, M.L.; Gruber, D.C.; Koch, K.N.; Grüter, L.; Rehrauer, H.; Tegtmeyer, N.; Backert, S.; Müller, A.H. pylori -Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression. Cell Rep. 2015, 13, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Maeda, S.; Yoshida, H.; Mitsuno, Y.; Hirata, Y.; Ogura, K.; Shiratori, Y.; Omata, M. Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori. Gut 2002, 50, 771–778. [Google Scholar] [CrossRef]
- Devi, S.; A Ansari, S.; Tenguria, S.; Kumar, N.; Ahmed, N. Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori. Nucleic Acids Res. 2016, 44, 9393–9412. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, N.; Macdonald, T.T. The Role of Matrix Metalloproteinases in Stromal/Epithelial Interactions in the Gut. Physiology 2007, 22, 401–409. [Google Scholar] [CrossRef] [PubMed]
- McCracken, K.W.; Catá, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.-H.; Mayhew, C.; Spence, J.R.; Zavros, Y.; et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 2014, 516, 400–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertaux-Skeirik, N.; Feng, R.; Schumacher, M.A.; Li, J.; Mahe, M.M.; Engevik, A.C.; Javier, J.E.; Peek, R.M., Jr.; Ottemann, K.; Orian-Rousseau, V.; et al. CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation. PLoS Pathog. 2015, 11, e1004663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Zhou, H.; Zhang, C.; He, J.; Wei, H.; Zhou, M.; Lu, Y.; Sun, Y.; Ding, J.W.; Zeng, J.; et al. ADAM17 promotes epithelial-mesenchymal transition via TGF-β/Smad pathway in gastric carcinoma cells. Int. J. Oncol. 2016, 49, 2520–2528. [Google Scholar] [CrossRef] [PubMed]
- Deryugina, E.I.; Quigley, J.P. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006, 25, 9–34. [Google Scholar] [CrossRef]
- Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2000, 2, 737–744. [Google Scholar] [CrossRef]
- Partyka, R.; Gonciarz, M.; Jałowiecki, P.; Kokocińska, D.; Byrczek, T. VEGF and metalloproteinase 2 (MMP 2) expression in gastric cancer tissue. Med. Sci. Monit. 2012, 18, BR130–BR134. [Google Scholar] [CrossRef] [Green Version]
- Webb, A.H.; Gao, B.T.; Goldsmith, Z.K.; Irvine, A.S.; Saleh, N.; Lee, R.P.; Lendermon, J.B.; Bheemreddy, R.; Zhang, Q.; Brennan, R.C.; et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 2017, 17, 1–11. [Google Scholar] [CrossRef]
- Holmberg, C.; Ghesquière, B.; Impens, F.; Gevaert, K.; Kumar, J.D.; Cash, N.; Kandola, S.; Hegyi, P.; Wang, T.C.; Dockray, G.J.; et al. Mapping Proteolytic Processing in the Secretome of Gastric Cancer-Associated Myofibroblasts Reveals Activation of MMP-1, MMP-2, and MMP-3. J. Proteome Res. 2013, 12, 3413–3422. [Google Scholar] [CrossRef]
- Blavier, L.; Lazaryev, A.; Shi, X.-H.; Dorey, F.J.; Shackleford, G.M.; DeClerck, Y.A. Stromelysin-1 (MMP-3) is a target and a regulator of Wnt1-induced epithelial-mesenchymal transition (EMT). Cancer Biol. Ther. 2010, 10, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Gencer, S.; Cebeci, A.; Irmak-Yazicioglu, M.B. Silencing of the MMP-3 gene by siRNA transfection in gastric cancer AGS cells. J. Gastrointest. Liver Dis. 2011, 20. Available online: https://www.researchgate.net/profile/Salih-Gencer-2/publication/50937198_Silencing_of_the_MMP-3_gene_by_siRNA_transfection_in_gastric_cancer_AGS_cells/links/0912f5146f702501d2000000/Silencing-of-the-MMP-3-gene-by-siRNA-transfection-in-gastric-cancer-AGS-cells.pdf (accessed on 4 January 2022).
- Yoo, Y.A.; Kang, M.H.; Lee, H.J.; Kim, B.-H.; Park, J.K.; Kim, H.K.; Kim, J.S.; Oh, S.C. Sonic Hedgehog Pathway Promotes Metastasis and Lymphangiogenesis via Activation of Akt, EMT, and MMP-9 Pathway in Gastric Cancer. Cancer Res. 2011, 71, 7061–7070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Ye, Y.; Zhu, X. MMP-9 secreted by tumor associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway. Biomed. Pharmacother. 2019, 117, 109096. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Takahashi, H.; Murai, Y.; Cui, Z.; Nomoto, K.; Niwa, H.; Tsuneyama, K.; Takano, Y. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006, 26, 3579–3583. [Google Scholar] [PubMed]
- Fu, C.-K.; Chang, W.-S.; Tsai, C.-W.; Wang, Y.-C.; Yang, M.-D.; Hsu, H.-S.; Chao, C.-Y.; Yu, C.-C.; Chen, J.-C.; Pei, J.-S.; et al. The Association of MMP9 Promoter Rs3918242 Genotype With Gastric Cancer. Anticancer Res. 2021, 41, 3309–3315. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Tsai, Y.-T.; Hua, K.-T.; Chang, K.-C.; Kuo, M.-L.; Lin, M.-T. Eicosapentaenoic acid and docosahexaenoic acid inhibit macrophage-induced gastric cancer cell migration by attenuating the expression of matrix metalloproteinase 10. J. Nutr. Biochem. 2012, 23, 1434–1439. [Google Scholar] [CrossRef]
- Kou, Y.-B.; Zhang, S.-Y.; Zhao, B.-L.; Ding, R.; Liu, H.; Li, S. Knockdown of MMP11 Inhibits Proliferation and Invasion of Gastric Cancer Cells. Int. J. Immunopathol. Pharmacol. 2013, 26, 361–370. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Wang, C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol. Lett. 2018, 15, 7000–7006. [Google Scholar] [CrossRef]
- Decock, J.; Thirkettle, S.; Wagstaff, L.; Edwards, D.R. Matrix metalloproteinases: Protective roles in cancer. J. Cell. Mol. Med. 2011, 15, 1254–1265. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Lou, G.; Zhou, J. MT1-MMP promotes the proliferation and invasion of gastric carcinoma cells via regulating vimentin and E-cadherin. Mol. Med. Rep. 2019, 19, 2519–2526. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q.; Wang, Y.; Gao, Y. Overexpression of MMP14 predicts the poor prognosis in gastric cancer. Medicine 2021, 100, e26545. [Google Scholar] [CrossRef] [PubMed]
- Cevenini, A.; Orrù, S.; Mancini, A.; Alfieri, A.; Buono, P.; Imperlini, E. Molecular Signatures of the Insulin-like Growth Factor 1-mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers. Int. J. Mol. Sci. 2018, 19, 2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baj, J.; Korona-Głowniak, I.; Forma, A.; Maani, A.; Sitarz, E.; Rahnama-Hezavah, M.; Radzikowska, E.; Portincasa, P. Mechanisms of the Epithelial–Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020, 9, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blok, P.; E Craanen, M.; Dekker, W.; Tytgat, G.N. Loss of E-cadherin expression in early gastric cancer. Histopathology 1999, 34, 410–415. [Google Scholar] [CrossRef]
- Kamikihara, T.; Ishigami, S.; Arigami, T.; Matsumoto, M.; Okumura, H.; Uchikado, Y.; Kita, Y.; Kurahara, H.; Kijima, Y.; Ueno, S.; et al. Clinical implications of N-cadherin expression in gastric cancer. Pathol. Int. 2012, 62, 161–166. [Google Scholar] [CrossRef]
- Backert, S.; Schmidt, T.P.; Harrer, A.; Wessler, S. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori’s Attack on Tight and Adherens Junctions. Curr. Top. Microbiol. Immunol. 2017, 400, 195–226. [Google Scholar] [CrossRef]
- Brouxhon, S.M.; Kyrkanides, S.; Teng, X.; Athar, M.; Ghazizadeh, S.; Simon, M.; O’Banion, M.K.; Ma, L. Soluble E-cadherin: A critical oncogene modulating receptor tyrosine kinases, MAPK and PI3K/Akt/mTOR signaling. Oncogene 2013, 33, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, M.M.; Sandhu, B.; Day, M.L. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells. Cell. Signal. 2012, 24, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Wu, X.; Yokoyama, Y.; Okuzaki, D.; Taguchi, M.; Hirose, H.; Wang, J.; Hata, T.; Inoue, A.; Hiraki, M.; et al. E-cadherin-Fc chimera protein matrix enhances cancer stem-like properties and induces mesenchymal features in colon cancer cells. Cancer Sci. 2019, 110, 3520–3532. [Google Scholar] [CrossRef]
- Inge, L.J.; Barwe, S.P.; D’Ambrosio, J.; Gopal, J.; Lu, K.; Ryazantsev, S.; Rajasekaran, S.A.; Rajasekaran, A.K. Soluble E-cadherin promotes cell survival by activating epidermal growth factor receptor. Exp. Cell Res. 2011, 317, 838–848. [Google Scholar] [CrossRef]
- Weydig, C.; Starzinski-Powitz, A.; Carra, G.; Löwer, J.; Wessler, S. CagA-independent disruption of adherence junction complexes involves E-cadherin shedding and implies multiple steps in Helicobacter pylori pathogenicity. Exp. Cell Res. 2007, 313, 3459–3471. [Google Scholar] [CrossRef]
- Song, X.; Xin, N.; Wang, W.; Zhao, C. Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget 2015, 6, 35579–35588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, S.R.; Wroblewski, L.E.; Weydig, C.; Romero-Gallo, J.; O’Brien, D.P.; Israel, D.A.; Krishna, U.S.; Fingleton, B.; Reynolds, A.B.; Wessler, S.; et al. p120 and Kaiso Regulate Helicobacter pylori-induced Expression of Matrix Metalloproteinase-7. Mol. Biol. Cell 2008, 19, 4110–4121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez-Carmona, M.; Lesage, J.; Cataldo, D.; Gilles, C. EMT and inflammation: Inseparable actors of cancer progression. Mol. Oncol. 2017, 11, 805–823. [Google Scholar] [CrossRef] [PubMed]
- Athauda, G.; Giubellino, A.; Coleman, J.; Horak, C.; Steeg, P.S.; Lee, M.-J.; Trepel, J.; Wimberly, J.; Sun, J.; Coxon, A.; et al. c-Met Ectodomain Shedding Rate Correlates with Malignant Potential. Clin. Cancer Res. 2006, 12, 4154–4162. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z. Role of epithelial-mesenchymal transition in gastric cancer initiation and progression. World J. Gastroenterol. 2014, 20, 5403–5410. [Google Scholar] [CrossRef]
- Sternlicht, M.D.; Bissell, M.J.; Werb, Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 2000, 19, 1102–1113. [Google Scholar] [CrossRef] [Green Version]
- Foda, H.D.; Zucker, S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov. Today 2001, 6, 478–482. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Xu, G. Human macrophage metalloelastase expression in gastric cancer and its relationship with gastric cancer prognosis. J. Exp. Clin. Cancer Res. 2007, 26, 361–366. [Google Scholar]
- Chang, W.-J. Inflammation-related factors predicting prognosis of gastric cancer. World J. Gastroenterol. 2014, 20, 4586–4596. [Google Scholar] [CrossRef]
Group/Protease | Putative Target | Importance |
---|---|---|
Colonization and Mucosal Inflammation | ||
ADAM17 | proTNF-α [53], TGF-α [44] | pro-inflammatory [44,53] response transcriptional repression of the gastric H, K–adenosine triphosphatase α-subunit, reduced acid production [63] |
MMP1 (collagenase-1) | proTNF-α, proIL-1β [42] | pro-inflammatory effect [64] |
MMP2 (gelatinase A) | CXCL5 [46] | neutrophil recruitment [46], upregulated via IL-21 [48,49] |
MMP7 (matrilysin-1) | proTNF-α [65] HB-EGF [51,54] | reduced inflammation, dampens the production of the cytokines [22], immune cells infiltration [24] |
MMP9 (gelatinase B) | CXCL5 [46] | neutrophil recruitment [45,46], upregulated via IL-21 [48,49], macrophages infiltration [56], pro-inflammatory and anti-inflammatory activity [64] |
MMP10 (stromelysin-2) | supports bacterial colonization, fosters tissue inflammation, recruitment of T cells [23] | |
Hp0169 | Type I collagen | colonization of Mongolian gerbils [21] |
HtrA | chronic inflammation [59] | |
Impairment of Junctional Integrity and Epithelial Barrier Function | ||
ADAM10 | E-cadherin [66] | loss of AJ [66], stem-like phenotype in cancer stem cells and supports anchorage independent growth [67] |
ADAM15 | E-cadherin [68] desmoglein-2 [69] | impaired cell adhesiveness [69] |
ADAM17 | desmoglein-2 [69] | impaired cell adhesiveness [69], stem-like phenotype in cancer stem cells and supports anchorage independent growth [67] |
MMP2 (gelatinase A) | Occludin [70] | increase in epithelial or endothelial permeability [70] |
MMP3 (stromelysin-1) | E-cadherin [71] | disintegration of cell-cell junctions, destabilization of cell-ECM interactions [72] |
MMP7 (matrilysin-1) | E-cadherin [51,71,73] | abnormal cell aggregation and increase in cells invasiveness [64] |
MMP9 (gelatinase B) | Occluding [74] E-cadherin [75] desmoglein-2 [76] | impaired cell adhesiveness [76] |
MMP14 (MT1-MMP) | E-cadherin [77] | adhesion reduction [64] |
Hp1012 | JAM-A [78] | impaired barrier function, reduced intercellular adhesion and increased invasive potential of epithelial cells [78] |
HtrA | E-cadherin [79,80] desmoglein-2 [80] occludin, claudin [81] | disruption of intercellular junction access to basolateral space [79,80,81] |
caspase-3 | E-cadherin [82,83] desmoglein-2 [84] | |
calpain | E-cadherin [85] desmoglein-2 [86] |
Group/Protease | Putative Target | Importance |
---|---|---|
Neoplastic Transformation, Proliferation, and Cell Survival | ||
ADAM9 and -15 | gastric cancer cell lines proliferation [117] | |
ADAM10 | Notch1 [67] | stem-like phenotype in cancer stem cells and supports anchorage independent growth [67] |
ADAM12 | decreases gastric cancer cell lines proliferation [117] | |
ADAM17 | HB-EGF [53] Notch1 [67] | reduces apoptosis [135], poor prognosis in gastric cancer [133], induces pro-survival signaling via the EGFR [44,135,136], cancer stem like phenotype, anchorage-independent growth [67] |
MMP7 (matrilysin-1) | promotes proliferation in non-transformed epithelial cells [132] | |
MMP12 (macrophage metalloelastase) | inversely correlates with disease outcome [37,134] | |
caspase-3 | executioner caspase, activation by caspase-8, -9, or -10 [139], activation induced by H. pylori LPS and induced MMP9 [140], H. pylori induction of anti-apoptotic proteins of the cIAP family to reduce caspase-3-dependent apoptosis [141,142] | |
caspase-8 | initiator caspase, limited proteolytic (including autocatalytic) activity, engaged by death receptors, including tumor necrosis factor receptor 1 (TNFR1) and Fas/CD95 [139], TieA-protein-induced apoptosis [143] | |
HtrA | HtrA L171 variant was enriched in gastric cancer patients and may increase efficiency in basolateral CagA delivery by H pylori and risk for developing gastric cancer [59] | |
Epithelial-Mesenchymal Transition (EMT), Metastasis and Neo-Angiogenesis | ||
ADAM10 | E-cadherin [66,110] c-Met [66] | E-cadherin cleavage induced EMT [144], c-Met-associated pro-oncogenic signaling cascades [145,146] |
ADAM17 | EMT [147] | |
MMP2 (gelatinase A) | invasive growth, angiogenesis [134,148,149,150,151], cell migration [152], cell proliferation, migration of epithelial cells [64] | |
MMP3 (stromelysin-1) | SNAIL-dependent EMT [72], WNT-induced β-catenin signaling [153], migration [152,154], invasion [154], angiostatin-like fragments, cell proliferation, release of VEGF, upregulation of angiogenesis [64] | |
MMP7 (matrilysin-1) | EMT marker expression [51], migration and invasion capacity [65], proliferation [132], cell differentiation, vasoconstriction and cell growth [64] | |
MMP9 (gelatinase B) | invasive growth [134,148,155,156], angiogenesis [134,148,149,151,157], tumor cell resistance [64], promoter allele Rs3918242 is associated with metastasis [158], tumor-associated macrophages-derived MMP9 supports metastasis in gastric cancer [156] | |
MMP10 (stromelysin-2) | invasion [38], migration [159], tumor-associated macrophages-derived MMP10 promotes cell migration [159] | |
MMP11 (stromelysin-3) | IGF1-dependent invasive potential of gastric cancer cells [160,161], decreases cancer cell sensitivity to NK cells [64] | |
MMP12 (macrophage metalloelastase) | angiogenesis [134,162] | |
MMP14 (MT1-MMP) | cell migration, epithelial cell migration, adhesion reduction [64], migration and invasion [163,164] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernegger, S.; Jarzab, M.; Wessler, S.; Posselt, G. Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. Int. J. Mol. Sci. 2022, 23, 2419. https://doi.org/10.3390/ijms23052419
Bernegger S, Jarzab M, Wessler S, Posselt G. Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. International Journal of Molecular Sciences. 2022; 23(5):2419. https://doi.org/10.3390/ijms23052419
Chicago/Turabian StyleBernegger, Sabine, Miroslaw Jarzab, Silja Wessler, and Gernot Posselt. 2022. "Proteolytic Landscapes in Gastric Pathology and Cancerogenesis" International Journal of Molecular Sciences 23, no. 5: 2419. https://doi.org/10.3390/ijms23052419
APA StyleBernegger, S., Jarzab, M., Wessler, S., & Posselt, G. (2022). Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. International Journal of Molecular Sciences, 23(5), 2419. https://doi.org/10.3390/ijms23052419