Renal Oncocytoma: The Diagnostic Challenge to Unmask the Double of Renal Cancer
Abstract
:1. Introduction
2. Epidemiology and Risk Factors
2.1. Demographic Characteristics and Incidence
2.2. Recurrence, Metastasis and Mortality
2.3. Risk Factor
3. Classification of Renal Cancers and Histogenesis of Renal Oncocytomas
3.1. Classification
3.2. Histogenesis
4. Macroscopic and Microscopic Appearance
4.1. Gross Anatomy
4.2. Microscopic Anatomy
4.2.1. Histopathologic Examination
4.2.2. Histochemical and Immunohistochemical Staining
4.2.3. Genetic Evaluation
4.2.4. Molecular Profiling
4.3. Grading
4.4. Pseudomalignant Features and Histopathologic Differences between Eosinophilic Renal Neoplasms
4.4.1. Pseudomalignant and Worrisome Features
4.4.2. Chromophobe Renal Cell Carcinoma
4.4.3. High-Grade Oncocytic Tumors
4.4.4. Low-Grade Oncocytic Tumor
4.4.5. Hybrid Oncocytoma/Chromophobe Renal Cell Tumor
4.4.6. Eosinophilic Solid and Cystic RCC
4.4.7. Other RCCs
5. Diagnosis and Staging
5.1. Diagnostic Approach
5.1.1. Diagnostic Role of Renal Ultrasound
5.1.2. Diagnostic Role of Abdominal Computerized Tomography
5.1.3. Diagnostic Role of Abdominal Magnetic Resonance Imaging
5.1.4. Diagnostic Role of Renal SPECT Scan
5.1.5. Diagnostic Role of Renal PET
5.1.6. Diagnostic Role of Renal Tumor Biopsy
5.2. Staging
6. Treatment
7. MiRNAs as Diagnostic Biomarkers for Oncocytoma
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schaffer, J. Beiträge Zur Histologie Menschlicher Organe. IV. Zunge. V. Mundhöhle-Schlundkopf. VI Oesophagus. VII Cardia. Sitz. Akad. Wiss. Math. Nat. Kl. 1897, 106, 353–455. [Google Scholar]
- Hamperl, H. Onkocyten Und Geschwülste Der Speicheldrüsen. Anat. Physiol. Klin. Med. 1931, 282, 724–736. [Google Scholar] [CrossRef]
- Schafer, E.L.; Gruet, M.; Jackson, A.S. Oncocytic Cell Adenoma of the Parotid Gland. Am. J. Surg. 1956, 91, 272–278. [Google Scholar] [CrossRef]
- Zippel, J. Zur Kenntnis Der Onkocyten. Virchows Anat. Physiol. Klin. Med. 1941, 308, 360–382. [Google Scholar] [CrossRef]
- Klein, J.; Valensi, Q.J. Proximal Tubular Adenomas of Kidney with So-Called Oncocytic Features A Clinicopathologic Study of 13 Cases of A Rarely Reported Neoplasm. Cancer 1976, 38, 906–914. [Google Scholar] [CrossRef]
- Kuroda, N.; Toi, M.; Hiroi, M.; Shuin, T.; Enzan, H. Review of Renal Oncocytoma with Focus on Clinical and Pathobiological Aspects. Histol. Histopathol. 2003, 18, 935–942. [Google Scholar] [CrossRef]
- Mitchell, K.M.; Shilkin, K.B. Renal Oncocytoma. Pathology 1982, 14, 75–80. [Google Scholar] [CrossRef]
- Gudbjartsson, T.; Hardarson, S.; Petursdottir, V.; Thoroddsen, A.; Magnusson, J.; Einarsson, G.V. Renal Oncocytoma: A Clinicopathological Analysis of 45 Consecutive Cases. BJU Int. 2005, 96, 1275–1279. [Google Scholar] [CrossRef]
- Perez-Ordonez, B.; Hamed, G.; Campbell, S.; Erlandson, R.A.; Russo, P.; Gaudin, P.B.; Reuter, V.E. Renal Oncocytoma: A Clinicopathologic Study of 70 Cases. Am. J. Surg. Pathol. 1997, 21, 871–883. [Google Scholar] [CrossRef]
- Maranchie, J.; Linehan, W. Hereditary Renal Cell Carcinoma and the von Hippel Lindau Gene. In Renal and Adrenal Tumors: Biology and Management; Belldegrun, A., Ritchie, A.W.S., Figlin, R.A., Oliver, R.T.D., Vaughan, E.D., Eds.; Oxford University Press: Oxford, UK, 2002; p. 99. ISBN 978-0198508229. [Google Scholar]
- Wu, Y.; Du, L.; Li, F.; Zhang, H.; Cai, Y.; Jia, X. Renal Oncocytoma: Contrast-Enhanced Sonographic Features. J. Ultrasound Med. 2013, 32, 441–448. [Google Scholar] [CrossRef]
- Lieber, M.M.; Tomera, K.M.; Farrow, G.M. Renal Oncocytoma. J. Urol. 1981, 125, 481–485. [Google Scholar] [CrossRef]
- Neves, J.B.; Withington, J.; Fowler, S.; Patki, P.; Barod, R.; Mumtaz, F.; O’Brien, T.; Aitchison, M.; Bex, A.; Tran, M.G.B. Contemporary Surgical Management of Renal Oncocytoma: A Nation’s Outcome. BJU Int. 2018, 121, 893–899. [Google Scholar] [CrossRef]
- Fan, Y.H.; Chang, Y.H.; Huang, W.J.S.; Chung, H.J.; Chen, K.K. Renal Oncocytoma: Clinical Experience of Taipei Veterans General Hospital. J. Chin. Med. Assoc. 2008, 71, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Lewi, H.J.E.; Alexander, C.A.; Fleming, S. Renal Oncocytoma. Br. J. Urol. 1986, 58, 12–15. [Google Scholar] [CrossRef]
- Moch, H.; Ohashi, R. Chromophobe Renal Cell Carcinoma: Current and Controversial Issues. Pathology 2021, 53, 101–108. [Google Scholar] [CrossRef]
- Benatiya, M.A.; Rais, G.; Tahri, M.; Barki, A.; el Sayegh, H.; Iken, A.; Nouini, Y.; Lachkar, A.; Benslimane, L.; Errihani, H.; et al. Renal Oncocytoma: Experience of Clinical Urology A, Urology Department, CHU Ibn Sina, Rabat, Morocco and Literature Review. Pan Afr. Med. J. 2012, 12, 1937–8688. [Google Scholar] [CrossRef]
- Yen, T.H.; Chen, Y.; Lin, J.L.; Ng, K.F. Renal Oncocytoma in Taiwan. Renal Failure 2009, 28, 141–147. [Google Scholar] [CrossRef]
- Amin, M.B.; Crotty, T.B.; Tickoo, S.K.; Farrow, G.M. Renal Oncocytoma: A Reappraisal of Morphologic Features with Clinicopathologic Findings in 80 Cases. Am. J. Surg. Pathol. 1997, 21, 1–12. [Google Scholar] [CrossRef]
- Akgul, M.; Al-Obaidy, K.I.; Cheng, L.; Idrees, M.T. Low-Grade Oncocytic Tumour Expands the Spectrum of Renal Oncocytic Tumours and Deserves Separate Classification: A Review of 23 Cases from a Single Tertiary Institute. J. Clin. Pathol. 2021. [Google Scholar] [CrossRef]
- Childs, M.A.; Breau, R.H.; Umbreit, E.C.; Lohse, C.M.; Cheville, J.C.; Thompson, R.H.; Blute, M.L.; Leibovich, B.C. Metachronous Renal Tumours after Surgical Management of Oncocytoma. BJU Int. 2011, 108, 816–819. [Google Scholar] [CrossRef]
- Dechet, C.B.; Bostwick, D.G.; Blute, M.L.; Bryant, S.C.; Zincke, H. Renal Oncocytoma: Multifocality, Bilateralism, Metachronous Tumor Development and Coexistent Renal Cell Carcinoma. J. Urol. 1999, 162, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Sukov, W.R.; Ketterling, R.P.; Lager, D.J.; Carlson, A.W.; Sinnwell, J.P.; Chow, G.K.; Jenkins, R.B.; Cheville, J.C. CCND1 Rearrangements and Cyclin D1 Overexpression in Renal Oncocytomas: Frequency, Clinicopathologic Features, and Utility in Differentiation from Chromophobe Renal Cell Carcinoma. Hum. Pathol. 2009, 40, 1296–1303. [Google Scholar] [CrossRef]
- Henske, E.P. Tuberous Sclerosis and the Kidney: From Mesenchyme to Epithelium, and Beyond. Pediatric Nephrol. 2005, 20, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleem, T.; Cairns, P.; Dulaimi, E.A.; Feder, M.; Testa, J.R.; Uzzo, R.G. The Genetics of Renal Oncocytosis: A Possible Model for Neoplastic Progression. Cancer Genet. Cytogenet. 2004, 152, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Farley, M.; Chan, E.; James, W.D. Birt-Hogg-Dubé Syndrome: A Review of the Literature and the Differential Diagnosis of Firm Facial Papules. J. Am. Acad. Dermatol. 2003, 49, 698–705. [Google Scholar] [CrossRef]
- Hasumi, H.; Baba, M.; Hasumi, Y.; Furuya, M.; Yao, M. Birt-Hogg-Dubé Syndrome: Clinical and Molecular Aspects of Recently Identified Kidney Cancer Syndrome. Int. J. Urol. 2016, 23, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, N.; Chakraborty, R.; Mahajan, Z.; Sharma, A.; Sethi, S.K.; Raina, R. Renal Manifestations of Tuberous Sclerosis Complex. J. Kidney Cancer VHL 2020, 7, 5–19. [Google Scholar] [CrossRef]
- Al-Saleem, T.; Wessner, L.L.; Scheithauer, B.W.; Patterson, K.; Roach, E.S.; Dreyer, S.J.; Fujikawa, K.; Bjornsson, J.; Bernstein, J.; Henske, E.P. Malignant Tumors of the Kidney, Brain, and Soft Tissues in Children and Young Adults with the Tuberous Sclerosis Complex. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1998, 83, 2208–2216. [Google Scholar] [CrossRef]
- Elsamaloty, H.; Abdullah, A.; Elzawawi, M. Multiple Bilateral Renal Oncocytoms in a Known Case of Tuberous Sclerosis: A Case Report. Abdom. Imaging 2010, 35, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Wobker, S.E.; Williamson, S.R. Modern Pathologic Diagnosis of Renal Oncocytoma. J. Kidney Cancer VHL 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Van der Kwast, T.; Perez-Ordoñez, B. Renal Oncocytoma, yet Another Tumour That Does Not Fit in the Dualistic Benign/Malignant Paradigm? J. Clin. Pathol. 2007, 60, 585–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Arber, D.A.; Hasserjianm, R.P.; le Beau, M.M.; et al. WHO Classification of Tumours of the Urinary System and Male Genital Organs; Moch, H., Humphrey, P.A., Ulbright, T.M., Reuter, V.E., Eds.; IARC Publications: Lyon, France, 2017; Volume 8, pp. 11–43. ISBN 978-92-832-2437-2. [Google Scholar]
- Siadat, F.; Trpkov, K. ESC, ALK, HOT and LOT: Three Letter Acronyms of Emerging Renal Entities Knocking on the Door of the WHO Classification. Cancers 2020, 12, 168. [Google Scholar] [CrossRef] [Green Version]
- Delongchamps, N.B.; Galmiche, L.; Eiss, D.; Rouach, Y.; Vogt, B.; Timsit, M.O.; Vieillefond, A.; Méjean, A. Hybrid Tumour “oncocytoma-Chromophobe Renal Cell Carcinoma” of the Kidney: A Report of Seven Sporadic Cases. BJU Int. 2009, 103, 1381–1384. [Google Scholar] [CrossRef]
- Petersson, F.; Gatalica, Z.; Grossmann, P.; Perez Montiel, M.D.; Alvarado Cabrero, I.; Bulimbasic, S.; Swatek, A.; Straka, L.; Tichy, T.; Hora, M.; et al. Sporadic Hybrid Oncocytic/Chromophobe Tumor of the Kidney: A Clinicopathologic, Histomorphologic, Immunohistochemical, Ultrastructural, and Molecular Cytogenetic Study of 14 Cases. Virchows Arch. Int. J. Pathol. 2010, 456, 355–365. [Google Scholar] [CrossRef]
- He, H.; Trpkov, K.; Martinek, P.; Isikci, O.T.; Maggi-Galuzzi, C.; Alaghehbandan, R.; Gill, A.J.; Tretiakova, M.; Lopez, J.I.; Williamson, S.R.; et al. “High-Grade Oncocytic Renal Tumor”: Morphologic, Immunohistochemical and Molecular Genetic Study of 14 Cases. Virchows Arch. Int. J. Pathol. 2018, 473, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.B.; Mirsadraei, L.; Jayakumaran, G.; Al-Ahmadie, H.A.; Fine, S.W.; Gopalan, A.; Sirintrapun, S.J.; Tickoo, S.K.; Reuter, V.E. Somatic Mutations of TSC2 or MTOR Characterize a Morphologically Distinct Subset of Sporadic Renal Cell Carcinoma With Eosinophilic and Vacuolated Cytoplasm. Am. J. Surg. Pathol. 2019, 43, 121–131. [Google Scholar] [CrossRef]
- Trpkov, K.; Bonert, M.; Gao, Y.; Kapoor, A.; He, H.; Yilmaz, A.; Gill, A.J.; Williamson, S.R.; Comperat, E.; Tretiakova, M.; et al. High-Grade Oncocytic Tumour (HOT) of Kidney in a Patient with Tuberous Sclerosis Complex. Histopathology 2019, 75, 440–442. [Google Scholar] [CrossRef]
- Trpkov, K.; Williamson, S.R.; Gao, Y.; Martinek, P.; Cheng, L.; Sangoi, A.R.; Yilmaz, A.; Wang, C.; san Miguel Fraile, P.; Perez Montiel, D.M.; et al. Low-Grade Oncocytic Tumour of Kidney (CD117-Negative, Cytokeratin 7-Positive): A Distinct Entity? Histopathology 2019, 75, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.F.; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.D.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.C.; Fahey, C.C.; et al. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 2014, 26, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, R.; Schraml, P.; Angori, S.; Batavia, A.A.; Rupp, N.J.; Ohe, C.; Otsuki, Y.; Kawasaki, T.; Kobayashi, H.; Kobayashi, K.; et al. Classic Chromophobe Renal Cell Carcinoma Incur a Larger Number of Chromosomal Losses Than Seen in the Eosinophilic Subtype. Cancers 2019, 11, 1492. [Google Scholar] [CrossRef] [Green Version]
- Kolníková, G.; Marinová, P.; Gál, V.; Mečiarová, I.; Mišanko, V.; Rampalová, J.; Jáni, P.; Orthová, S.; Ondriaš, F.; Caňo, M. Renal Oncocytoma with Invasive Histopathologic Features—Case Report. Klin. Onkol. Cas. Ceske A Slov. Onkol. Spol. 2014, 27, 138–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trpkov, K.; Hes, O. New and Emerging Renal Entities: A Perspective Post-WHO 2016 Classification. Histopathology 2019, 74, 31–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trpkov, K.; Williamson, S.R.; Gill, A.J.; Adeniran, A.J.; Agaimy, A.; Alaghehbandan, R.; Amin, M.B.; Argani, P.; Chen, Y.B.; Cheng, L.; et al. Novel, Emerging and Provisional Renal Entities: The Genitourinary Pathology Society (GUPS) Update on Renal Neoplasia. Mod. Pathol. 2021, 34, 1167–1184. [Google Scholar] [CrossRef] [PubMed]
- Störkel, S. Carcinoma and Oncocytoma of the Kidney. Phenotypic Characteristics and Prognostic Features. Veroff. Aus Der Pathol. 1993, 140, 1–165. [Google Scholar]
- Störkel, S.; Pannen, B.; Thoenes, W.; Steart, P.V.; Wagner, S.; Drenckhahn, D. Intercalated Cells as a Probable Source for the Development of Renal Oncocytoma. Virchows Archiv. B 1988, 56, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A.; Paner, G.P.; Skinnider, B.F.; Cohen, C.; Datta, M.W.; Young, A.N.; Srigley, J.R.; Amin, M.B. Expression Analysis of Kidney-Specific Cadherin in a Wide Spectrum of Traditional and Newly Recognized Renal Epithelial Neoplasms: Diagnostic and Histogenetic Implications. Am. J. Surg. Pathol. 2007, 31, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Störkel, S.; Jacobi, G.H. Classification, Histogenesis, and Prognosis of Renal Cell Carcinoma and Renal Oncocytoma. Available online: https://pubmed.ncbi.nlm.nih.gov/2482618/ (accessed on 28 January 2022).
- Krüger, S.; Sotlar, K.; Kausch, I.; Horny, H.P. Expression of KIT (CD117) in Renal Cell Carcinoma and Renal Oncocytoma. Oncology 2005, 68, 269–275. [Google Scholar] [CrossRef]
- Pan, C.-C.; Chen, P.C.-H.; Chiang, H. Overexpression of KIT (CD117) in Chromophobe Renal Cell Carcinoma and Renal Oncocytoma. Am. J. Clin. Pathol. 2004, 121, 878–883. [Google Scholar] [CrossRef]
- Tan, M.H.; Wong, C.F.; Tan, H.L.; Yang, X.J.; Ditlev, J.; Matsuda, D.; Khoo, S.K.; Sugimura, J.; Fujioka, T.; Furge, K.A.; et al. Genomic Expression and Single-Nucleotide Polymorphism Profiling Discriminates Chromophobe Renal Cell Carcinoma and Oncocytoma. BMC Cancer 2010, 10, 1–12. [Google Scholar] [CrossRef]
- Schuetz, A.N.; Yin-Goen, Q.; Amin, M.B.; Moreno, C.S.; Cohen, C.; Hornsby, C.D.; Yang, W.L.; Petros, J.A.; Issa, M.M.; Pattaras, J.G.; et al. Molecular Classification of Renal Tumors by Gene Expression Profiling. J. Mol. Diagn. 2005, 7, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Skala, S.L.; Wang, X.; Zhang, Y.; Mannan, R.; Wang, L.; Narayanan, S.P.; Vats, P.; Su, F.; Chen, J.; Cao, X.; et al. Next-Generation RNA Sequencing-Based Biomarker Characterization of Chromophobe Renal Cell Carcinoma and Related Oncocytic Neoplasms. Eur. Urol. 2020, 78, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Ogasawara, S.; Akiba, J.; Nakayama, M.; Todoroki, K.; Ueda, K.; Sanada, S.; Suekane, S.; Noguchi, M.; Matsuoka, K.; et al. Aldehyde Dehydrogenase 1 Identifies Cells with Cancer Stem Cell-like Properties in a Human Renal Cell Carcinoma Cell Line. PLoS ONE 2013, 8, e75463. [Google Scholar] [CrossRef] [Green Version]
- Corrò, C.; Healy, M.E.; Engler, S.; Bodenmiller, B.; Li, Z.; Schraml, P.; Weber, A.; Frew, I.J.; Rechsteiner, M.; Moch, H. IL-8 and CXCR1 Expression Is Associated with Cancer Stem Cell-like Properties of Clear Cell Renal Cancer. J. Pathol. 2019, 248, 377–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrò, C.; Moch, H. Biomarker Discovery for Renal Cancer Stem Cells. J. Pathol. 2018, 4, 3–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.N.; Amin, M.B.; Moreno, C.S.; Lim, S.D.; Cohen, C.; Petros, J.A.; Marshall, F.F.; Neish, A.S. Expression Profiling of Renal Epithelial Neoplasms: A Method for Tumor Classification and Discovery of Diagnostic Molecular Markers. Am. J. Pathol. 2001, 158, 1639–1651. [Google Scholar] [CrossRef]
- Takahashi, M.; Yang, X.J.; Sugimura, J.; Backdahl, J.; Tretiakova, M.; Qian, C.N.; Gray, S.G.; Knapp, R.; Anema, J.; Kahnoski, R.; et al. Molecular Subclassification of Kidney Tumors and the Discovery of New Diagnostic Markers. Oncogene 2003, 22, 6810–6818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durinck, S.; Stawiski, E.W.; Pavía-Jiménez, A.; Modrusan, Z.; Kapur, P.; Jaiswal, B.S.; Zhang, N.; Toffessi-Tcheuyap, V.; Nguyen, T.T.; Pahuja, K.B.; et al. Spectrum of Diverse Genomic Alterations Define Non-Clear Cell Renal Carcinoma Subtypes. Nat. Genet. 2015, 47, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Kouvonen, P.; Koh, C.C.; Gillet, L.C.; Wolski, W.E.; Röst, H.L.; Rosenberger, G.; Collins, B.C.; Blum, L.C.; Gillessen, S.; et al. Rapid Mass Spectrometric Conversion of Tissue Biopsy Samples into Permanent Quantitative Digital Proteome Maps. Nat. Med. 2015, 21, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaela, F.; Zoran, G.; Kiril, T.; Jeffrey, S.; Ming, Z.; Reza, A.; Williamson, S.R.; Cristina, M.G.; Gill, A.J.; Maria, T.; et al. Eosinophilic Vacuolated Tumor (EVT) of Kidney Demonstrates Sporadic TSC/MTOR Mutations: Next-Generation Sequencing Multi-Institutional Study of 19 Cases. Mod. Pathol. 2021, 35, 344–351. [Google Scholar] [CrossRef]
- Li, K.; Wang, C.; Xiong, X.; Ma, H.; Qi, Y.; Hu, W.; Xiao, S.; Zhou, X.; Pang, L.; Zou, H. Small-Cell Variant Renal Oncocytoma: Case Report on Its Clinicopathological and Genetic Characteristics and Literature Review. Gene 2020, 730, 144266. [Google Scholar] [CrossRef] [PubMed]
- Haifler, M.; Copel, L.; Sandbank, J.; Lang, E.; Raz, O.; Leibovici, D.; Lindner, A.; Zisman, A. Renal Oncocytoma—Are There Sufficient Grounds to Consider Surveillance Following Prenephrectomy Histologic Diagnosis. Urol. Oncol. 2012, 30, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, M.; Dhir, R.; Bastacky, S.I.; Cieply, K.M.; Acquafondata, M.B.; Sherer, C.R.; Mercuri, T.L.; Parwani, A.V. Renal Oncocytoma: A Comparative Clinicopathologic Study and Fluorescent in-Situ Hybridization Analysis of 73 Cases with Long-Term Follow-Up. Diagn. Pathol. 2010, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trpkov, K.; Yilmaz, A.; Uzer, D.; Dishongh, K.M.; Quick, C.M.; Bismar, T.A.; Gokden, N. Renal Oncocytoma Revisited: A Clinicopathological Study of 109 Cases with Emphasis on Problematic Diagnostic Features. Histopathology 2010, 57, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Geramizadeh, B.; Ravanshad, M.; Rahsaz, M. Useful Markers for Differential Diagnosis of Oncocytoma, Chromophobe Renal Cell Carcinoma and Conventional Renal Cell Carcinoma. Indian J. Pathol. Microbiol. 2008, 51, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Crotty, T.B.; Farrow, G.M.; Lieber, M.M. Chromophobe Cell Renal Carcinoma: Clinicopathological Features of 50 Cases. J. Urol. 1995, 154, 964–967. [Google Scholar] [CrossRef]
- Amin, M.B.; Paner, G.P.; Alvarado-Cabrero, I.; Young, A.N.; Stricker, H.J.; Lyles, R.H.; Moch, H. Chromophobe Renal Cell Carcinoma: Histomorphologic Characteristics and Evaluation of Conventional Pathologic Prognostic Parameters in 145 Cases. Am. J. Surg. Pathol. 2008, 32, 1822–1834. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.R.; Gadde, R.; Trpkov, K.; Hirsch, M.S.; Srigley, J.R.; Reuter, V.E.; Cheng, L.; Kunju, L.P.; Barod, R.; Rogers, C.G.; et al. Diagnostic Criteria for Oncocytic Renal Neoplasms: A Survey of Urologic Pathologists. Hum. Pathol. 2017, 63, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranovska, V.V.; Romanenko, A.M.; Zakhartseva, L.M. Histological Differential Diagnostics of Renal Oncocytoma. Exp. Oncol. 2020, 42, 233–237. [Google Scholar] [CrossRef]
- Truong, L.D.; Shen, S.S. Immunohistochemical Diagnosis of Renal Neoplasms. Arch. Pathol. Lab. Med. 2011, 135, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Skinnider, B.F.; Folpe, A.L.; Hennigar, R.A.; Lim, S.D.; Cohen, C.; Tamboli, P.; Young, A.; de Peralta-Venturina, M.; Amin, M.B. Distribution of Cytokeratins and Vimentin in Adult Renal Neoplasms and Normal Renal Tissue: Potential Utility of a Cytokeratin Antibody Panel in the Differential Diagnosis of Renal Tumors. Am. J. Surg. Pathol. 2005, 29, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Adley, B.; Papavero, V.; Sugimura, J.; Teh, B.; Yang, X.J. Diagnostic Value of Cytokeratin 7 and Parvalbumin in Differentiating Chromophobe Renal Cell Carcinoma from Renal Oncocytoma. Anal. Quant. Cytol. Histol. 2006, 28, 228–236. [Google Scholar] [PubMed]
- Liu, L.; Qian, J.; Singh, H.; Meiers, I.; Zhou, X.; Bostwick, D.G. Immunohistochemical Analysis of Chromophobe Renal Cell Carcinoma, Renal Oncocytoma, and Clear Cell Carcinoma: An Optimal and Practical Panel for Differential Diagnosis. Arch. Pathol. Lab. Med. 2007, 131, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Leroy, X.; Moukassa, D.; Copin, M.C.; Saint, F.; Mazeman, E.; Gosselin, B. Utility of Cytokeratin 7 for Distinguishing Chromophobe Renal Cell Carcinoma from Renal Oncocytoma. Eur. Urol. 2000, 37, 484–487. [Google Scholar] [CrossRef]
- Kryvenko, O.N.; Jorda, M.; Argani, P.; Epstein, J.I. Diagnostic Approach to Eosinophilic Renal Neoplasms. Arch. Pathol. Lab. Med. 2014, 138, 1531–1541. [Google Scholar] [CrossRef] [Green Version]
- Adley, B.P.; Gupta, A.; Lin, F.; Luan, C.; Teh, B.T.; Yang, X.J. Expression of Kidney-Specific Cadherin in Chromophobe Renal Cell Carcinoma and Renal Oncocytoma. Am. J. Clin. Pathol. 2006, 126, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Barthelemy, A.; Feng, G.; Gentil-Perret, A.; Peoc’h, M.; Genin, C.; Tostain, J. S100A1: A Powerful Marker to Differentiate Chromophobe Renal Cell Carcinoma from Renal Oncocytoma. Histopathology 2007, 50, 642–647. [Google Scholar] [CrossRef]
- Rocca, P.C.; Brunelli, M.; Gobbo, S.; Eccher, A.; Bragantini, E.; Mina, M.M.; Ficarra, V.; Zattoni, F.; Zamò, A.; Pea, M.; et al. Diagnostic Utility of S100A1 Expression in Renal Cell Neoplasms: An Immunohistochemical and Quantitative RT-PCR Study. Mod. Pathol. 2007, 20, 722–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, N.; Kanomata, N.; Yamaguchi, T.; Imamura, Y.; Ohe, C.; Sakaida, N.; Hes, O.; Michal, M.; Shuin, T.; Lee, G.H. Immunohistochemical Application of S100A1 in Renal Oncocytoma, Oncocytic Papillary Renal Cell Carcinoma, and Two Variants of Chromophobe Renal Cell Carcinoma. Med. Mol. Morphol. 2011, 44, 111–115. [Google Scholar] [CrossRef]
- Reuter, V.E.; Argani, P.; Zhou, M.; Delahunt, B. Best Practices Recommendations in the Application of Immunohistochemistry in the Kidney Tumors: Report from the International Society of Urologic Pathology Consensus Conference. Am. J. Surg. Pathol. 2014, 38, e35–e49. [Google Scholar] [CrossRef]
- Huo, L.; Sugimura, J.; Tretiakova, M.S.; Patton, K.T.; Gupta, R.; Popov, B.; Laskin, W.B.; Yeldandi, A.; Teh, B.T.; Yang, X.J. C-Kit Expression in Renal Oncocytomas and Chromophobe Renal Cell Carcinomas. Hum. Pathol. 2005, 36, 262–268. [Google Scholar] [CrossRef]
- Tickoo, S.K.; Amin, M.B.; Zarbo, R.J. Colloidal Iron Staining in Renal Epithelial Neoplasms, Including Chromophobe Renal Cell Carcinoma: Emphasis on Technique and Patterns of Staining. Am. J. Surg. Pathol. 1998, 22, 419–424. [Google Scholar] [CrossRef]
- Skinnider, B.F.; Jones, E.C. Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. A Comparison of Colloidal Iron Staining and Electron Microscopy. Am. J. Clin. Pathol. 1999, 111, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Brunelli, M.; Eble, J.N.; Zhang, S.; Martignoni, G.; Delahunt, B.; Cheng, L. Eosinophilic and Classic Chromophobe Renal Cell Carcinomas Have Similar Frequent Losses of Multiple Chromosomes from among Chromosomes 1, 2, 6, 10, and 17, and This Pattern of Genetic Abnormality Is Not Present in Renal Oncocytoma. Mod. Pathol. 2005, 18, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Tolkunov, D.; Aviv, H.; Hakimi, A.A.; Yao, M.; Hsieh, J.J.; Ganesan, S.; Chan, C.S.; White, E. The Genomic Landscape of Renal Oncocytoma Identifies a Metabolic Barrier to Tumorigenesis. Cell Rep. 2015, 13, 1895–1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, D.C. Mitochondria and Cancer. Nat. Rev. Cancer 2012, 12, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparre, G.; Romeo, G.; Rugolo, M.; Porcelli, A.M. Learning from Oncocytic Tumors: Why Choose Inefficient Mitochondria? Biochim. Biophys. Acta 2011, 1807, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Graef, M.; Nunnari, J. Mitochondria Regulate Autophagy by Conserved Signalling Pathways. EMBO J. 2011, 30, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Al-Aynati, M.; Chen, V.; Salama, S.; Shuhaibar, H.; Treleaven, D.; Vincic, L. Interobserver and Intraobserver Variability Using the Fuhrman Grading System for Renal Cell Carcinoma. Arch. Pathol. Lab. Med. 2003, 127, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Bektas, S.; Bahadir, B.; Kandemir, N.O.; Barut, F.; Gul, A.E.; Ozdamar, S.O. Intraobserver and Interobserver Variability of Fuhrman and Modified Fuhrman Grading Systems for Conventional Renal Cell Carcinoma. Kaohsiung J. Med. Sci. 2009, 25, 596–600. [Google Scholar] [CrossRef] [Green Version]
- Lang, H.; Lindner, V.; de Fromont, M.; Molinié, V.; Letourneux, H.; Meyer, N.; Martin, M.; Jacqmin, D. Multicenter Determination of Optimal Interobserver Agreement Using the Fuhrman Grading System for Renal Cell Carcinoma: Assessment of 241 Patients with > 15-Year Follow-Up. Cancer 2005, 103, 625–629. [Google Scholar] [CrossRef]
- Delahunt, B. Advances and Controversies in Grading and Staging of Renal Cell Carcinoma. Mod. Pathol. 2009, 22 (Suppl. 2), S24–S36. [Google Scholar] [CrossRef]
- Kim, H.; Cho, N.H.; Kim, D.S.; Kwon, Y.M.; Kim, E.K.; Rha, S.H.; Park, Y.W.; Shim, J.W.; Lee, S.S.; Lee, S.N.; et al. Renal Cell Carcinoma in South Korea: A Multicenter Study. Hum. Pathol. 2004, 35, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Patard, J.J.; Leray, E.; Rioux-Leclercq, N.; Cindolo, L.; Ficarra, V.; Zisman, A.; de La Taille, A.; Tostain, J.; Artibani, W.; Abbou, C.C.; et al. Prognostic Value of Histologic Subtypes in Renal Cell Carcinoma: A Multicenter Experience. J. Clin. Oncol. 2007, 23, 2763–2771. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, B.; Eble, J.N.; McCredie, M.R.E.; Bethwaite, P.B.; Stewart, J.H.; Bilous, A.M. Morphologic Typing of Papillary Renal Cell Carcinoma: Comparison of Growth Kinetics and Patient Survival in 66 Cases. Hum. Pathol. 2001, 32, 590–595. [Google Scholar] [CrossRef]
- Fuhrman, S.A.; Lasky, L.C.; Limas, C. Prognostic Significance of Morphologic Parameters in Renal Cell Carcinoma. Am. J. Surg. Pathol. 1982, 6, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, B.; Srigley, J.R.; Egevad, L.; Montironi, R. International Society of Urological Pathology Grading and Other Prognostic Factors for Renal Neoplasia. Eur. Urol. 2014, 66, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Warren, A.Y.; Harrison, D. WHO/ISUP Classification, Grading and Pathological Staging of Renal Cell Carcinoma: Standards and Controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [Green Version]
- Samaratunga, H.; Gianduzzo, T.; Delahunt, B. The ISUP System of Staging, Grading and Classification of Renal Cell Neoplasia. J. Kidney Cancer VHL 2014, 1, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Dagher, J.; Delahunt, B.; Rioux-Leclercq, N.; Egevad, L.; Srigley, J.R.; Coughlin, G.; Dunglinson, N.; Gianduzzo, T.; Kua, B.; Malone, G.; et al. Clear Cell Renal Cell Carcinoma: Validation of World Health Organization/International Society of Urological Pathology Grading. Histopathology 2017, 71, 918–925. [Google Scholar] [CrossRef]
- Srigley, J.R.; Delahunt, B.; Eble, J.N.; Egevad, L.; Epstein, J.I.; Grignon, D.; Hes, O.; Moch, H.; Montironi, R.; Tickoo, S.K.; et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am. J. Surg. Pathol. 2013, 37, 1469–1489. [Google Scholar] [CrossRef]
- Delahunt, B.; McKenney, J.K.; Lohse, C.M.; Leibovich, B.C.; Thompson, R.H.; Boorjian, S.A.; Cheville, J.C. A Novel Grading System for Clear Cell Renal Cell Carcinoma Incorporating Tumor Necrosis. Am. J. Surg. Pathol. 2013, 37, 311–322. [Google Scholar] [CrossRef]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grünwald, V.; Gillessen, S.; Horwich, A. Renal Cell Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up†. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef] [Green Version]
- Ljungberg, B.; Albiges, L.; Bedke, J.; Bex, A.; Capitanio, U.; Giles, R.H.; Hora, M.; Klatte, T.; Lam, T.; Marconi, L.; et al. EAU Guidelines. Edn. Presented at the EAU Annual Congress Milan 2021. ISBN 978-94-92671-13-4. Available online: https://uroweb.org/guideline/renal-cell-carcinoma/#6 (accessed on 30 January 2022).
- Petersson, F.; Šíma, R.; Grossmann, P.; Michal, M.; Kuroda, N.; Hora, M.; Yang, X.; Kinkor, Z.; Trivunic, S.; Žalud, R.; et al. Renal Small Cell Oncocytoma with Pseudorosettes A Histomorphologic, Immunohistochemical, and Molecular Genetic Study of 10 Cases. Hum. Pathol. 2011, 42, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Omiyale, A.O.; Carton, J. Renal Oncocytoma with Vascular and Perinephric Fat Invasion. Ther. Adv. Urol. 2019, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wobker, S.E.; Przybycin, C.G.; Sircar, K.; Epstein, J.I. Renal Oncocytoma with Vascular Invasion: A Series of 22 Cases. Hum. Pathol. 2016, 58, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Preciado, C.; Nayak, A.; Schwartz, L.E.; Guzzo, T.J.; Williamson, S.R.; Palmer, M.B.; Lal, P. Renal Oncocytoma with Both Lymphovascular Invasion and Prominent Intracytoplasmic Vacuole-Like Spaces: A Case Report and Review of the Literature. Int. J. Surg. Pathol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.L.; Rajandram, R.; Morais, C.; Yap, N.Y.; Samaratunga, H.; Gobe, G.C.; Wood, S.T. Differentiation of Oncocytoma from Chromophobe Renal Cell Carcinoma (RCC): Can Novel Molecular Biomarkers Help Solve an Old Problem? J. Clin. Pathol. 2014, 67, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Tickoo, S.K.; Amin, M.B. Discriminant Nuclear Features of Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Analysis of Their Potential Utility in the Differential Diagnosis. Am. J. Clin. Pathol. 1998, 110, 782–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazal, P.R.; Exner, M.; Haitel, A.; Krieger, S.; Thomson, R.B.; Aronson, P.S.; Susani, M. Expression of Kidney-Specific Cadherin Distinguishes Chromophobe Renal Cell Carcinoma from Renal Oncocytoma. Hum. Pathol. 2005, 36, 22–28. [Google Scholar] [CrossRef]
- Smith, S.C.; Sirohi, D.; Ohe, C.; McHugh, J.B.; Hornick, J.L.; Kalariya, J.; Karia, S.; Snape, K.; Hodgson, S.V.; Cani, A.K.; et al. A Distinctive, Low-Grade Oncocytic Fumarate Hydratase-Deficient Renal Cell Carcinoma, Morphologically Reminiscent of Succinate Dehydrogenase-Deficient Renal Cell Carcinoma. Histopathology 2017, 71, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Liu, N.; Wang, F.; Guo, Y.; Yang, B.; Cao, Z.; Wang, Y.; Wang, Y.; Zhang, W.; Huang, Q.; et al. Characterization of a Distinct Low-Grade Oncocytic Renal Tumor (CD117-Negative and Cytokeratin 7-Positive) Based on a Tertiary Oncology Center Experience: The New Evidence from China. Virchows Arch. 2021, 478, 449–458. [Google Scholar] [CrossRef]
- Mai, K.T.; Dhamanaskar, P.; Belanger, E.; Stinson, W.A. Hybrid Chromophobe Renal Cell Neoplasm. Pathol. Res. Pract. 2005, 201, 385–389. [Google Scholar] [CrossRef]
- Trpkov, K.; Hes, O.; Bonert, M.; Lopez, J.I.; Bonsib, S.M.; Nesi, G.; Comperat, E.; Sibony, M.; Berney, D.M.; Martinek, P.; et al. Eosinophilic, Solid, and Cystic Renal Cell Carcinoma: Clinicopathologic Study of 16 Unique, Sporadic Neoplasms Occurring in Women. Am. J. Surg. Pathol. 2016, 40, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Trpkov, K.; Abou-Ouf, H.; Hes, O.; Lopez, J.I.; Nesi, G.; Comperat, E.; Sibony, M.; Osunkoya, A.O.; Zhou, M.; Gokden, N.; et al. Eosinophilic Solid and Cystic Renal Cell Carcinoma (ESC RCC): Further Morphologic and Molecular Characterization of ESC RCC as a Distinct Entity. Am. J. Surg. Pathol. 2017, 41, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- Parilla, M.; Kadri, S.; Patil, S.A.; Ritterhouse, L.; Segal, J.; Henriksen, K.J.; Antic, T. Are Sporadic Eosinophilic Solid and Cystic Renal Cell Carcinomas Characterized by Somatic Tuberous Sclerosis Gene Mutations? Am. J. Surg. Pathol. 2018, 42, 911–917. [Google Scholar] [CrossRef]
- Campbell, S.; Uzzo, R.G.; Allaf, M.E.; Bass, E.B.; Cadeddu, J.A.; Chang, A.; Clark, P.E.; Davis, B.J.; Derweesh, I.H.; Giambarresi, L.; et al. Renal Mass and Localized Renal Cancer: AUA Guideline. J. Urol. 2017, 198, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Bertolotto, M.; Bucci, S.; Valentino, M.; Currò, F.; Sachs, C.; Cova, M.A. Contrast-Enhanced Ultrasound for Characterizing Renal Masses. Eur. J. Radiol. 2018, 105, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Jamis-Dow, C.A.; Choyke, P.L.; Jennings, S.B.; Linehan, W.M.; Thakore, K.N.; Walther, M.M. Small (< or = 3-Cm) Renal Masses: Detection with CT versus US and Pathologic Correlation. Radiology 1996, 198, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, C.; Antunes, N.; Paño, B.; Sebastia, C. Imaging Characterization of Renal Masses. Medicina 2021, 57, 51. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.; Nielsen, M.; Ewertsen, C. Ultrasonography of the Kidney: A Pictorial Review. Diagnostics 2015, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarze, V.; Marschner, C.; Negrão de Figueiredo, G.; Knösel, T.; Rübenthaler, J.; Clevert, D.A. Single-Center Study: The Diagnostic Performance of Contrast-Enhanced Ultrasound (CEUS) for Assessing Renal Oncocytoma. Scand. J. Urol. 2020, 54, 135–140. [Google Scholar] [CrossRef]
- Cantisani, V.; Bertolotto, M.; Weskott, H.P.; Romanini, L.; Grazhdani, H.; Passamonti, M.; Drudi, F.M.; Malpassini, F.; Isidori, A.; Meloni, F.M.; et al. Growing Indications for CEUS: The Kidney, Testis, Lymph Nodes, Thyroid, Prostate, and Small Bowel. Eur. J. Radiol. 2015, 84, 1675–1684. [Google Scholar] [CrossRef]
- Barr, R.G.; Peterson, C.; Hindi, A. Evaluation of Indeterminate Renal Masses with Contrast-Enhanced US: A Diagnostic Performance Study. Radiology 2014, 271, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.J.; Hayes, W.S.; Hartman, D.S.; McCarthy, W.F.; Davis, C.J. Renal Oncocytoma and Carcinoma: Failure of Differentiation with CT. Radiology 1993, 186, 693–696. [Google Scholar] [CrossRef]
- Choudhary, S.; Rajesh, A.; Mayer, N.J.; Mulcahy, K.A.; Haroon, A. Renal Oncocytoma: CT Features Cannot Reliably Distinguish Oncocytoma from Other Renal Neoplasms. Clin. Radiol. 2009, 64, 517–522. [Google Scholar] [CrossRef]
- Wildberger, J.E.; Adam, G.; Boeckmann, W.; Münchau, A.; Brauers, A.; Günther, R.W.; Füzesi, L. Computed Tomography Characterization of Renal Cell Tumors in Correlation with Histopathology. Investig. Radiol. 1997, 32, 596–601. [Google Scholar] [CrossRef]
- Li, X.; Nie, P.; Zhang, J.; Hou, F.; Ma, Q.; Cui, J. Differential Diagnosis of Renal Oncocytoma and Chromophobe Renal Cell Carcinoma Using CT Features: A Central Scar-Matched Retrospective Study. Acta Radiol. 2022, 63, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhu, Q.; Zhu, W.; Chen, W.; Wang, S. Comparative Study of CT Appearances in Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Acta Radiol. 2016, 57, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Scialpi, M.; Martorana, E.; Rondoni, V.; Eissa, A.; el Sherbiny, A.; Bevilacqua, L.; Ros, L.H.; Escartín Martínez, I.; Milizia, M.; Manganaro, L.; et al. Value of Triphasic MDCT in the Differentiation of Small Renal Cell Carcinoma and Oncocytoma. Urologia 2017, 84, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Ching, B.C.; Tan, H.S.; Tan, P.H.; Toh, C.K.; Kanesvaran, R.; Ng, Q.S.; Tan, M.H. Differential Radiologic Characteristics of Renal Tumours on Multiphasic Computed Tomography. Singap. Med. J. 2017, 58, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, V.G.; Kanagarajah, P.; Morillo, G.; Caruso, D.J.; Ayyathurai, R.; Leveillee, R.; Jorda, M. Differentiation of Oncocytoma and Renal Cell Carcinoma in Small Renal Masses. World J. Urol. 2011, 29, 787–792. [Google Scholar] [CrossRef]
- Jung, I.K.; Jeong, Y.C.; Kyung, C.M.; Hak, J.L.; Seung, H.K. Segmental Enhancement Inversion at Biphasic Multidetector CT: Characteristic Finding of Small Renal Oncocytoma. Radiology 2009, 252, 441–448. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, M.E.; Tran, P.; Hanbidge, A.; Rogalla, P. Small Renal Oncocytomas: Is Segmental Enhancement Inversion a Characteristic Finding at Biphasic MDCT? Am. J. Roentgenol. 2012, 199, 1312–1315. [Google Scholar] [CrossRef] [PubMed]
- McGahan, J.P.; Lamba, R.; Fisher, J.; Starshak, P.; Ramsamooj, R.; Fitzgerald, E.; Yen, P. Is Segmental Enhancement Inversion on Enhanced Biphasic MDCT a Reliable Sign for the Noninvasive Diagnosis of Renal Oncocytomas? Am. J. Roentgenol. 2011, 197, W674–W679. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, N.F.; Ewing, S.L. Calcified Renal Oncocytoma. Am. J. Roentgenol. 1983, 141, 747–749. [Google Scholar] [CrossRef]
- Ibarguren, R.L.; Vesga Molina, F.; Lozano Ortega, J.; Zabala Egurrola, J.; Arruza Echavarría, A.; Pertusa Peña, C. Oncocitoma Renal Calcificado [Calcified Renal Oncocytoma. Arch. Españoles Urol. 1994, 47, 233–236. [Google Scholar]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Kocak, B.; Durmaz, E.S.; Erdim, C.; Ates, E.; Kaya, O.K.; Kilickesmez, O. Radiomics of Renal Masses: Systematic Review of Reproducibility and Validation Strategies. Am. J. Roentgenol. 2020, 214, 129–136. [Google Scholar] [CrossRef]
- Li, X.; Ma, Q.; Nie, P.; Zheng, Y.; Dong, C.; Xu, W. A CT-Based Radiomics Nomogram for Differentiation of Renal Oncocytoma and Chromophobe Renal Cell Carcinoma with a Central Scar-Matched Study. Br. J. Radiol. 2022, 95, 20210534. [Google Scholar] [CrossRef]
- Akın, I.B.; Altay, C.; Güler, E.; Çamlıdağ, İ.; Harman, M.; Danacı, M.; Tuna, B.; Yörükoğlu, K.; Seçil, M. Discrimination of Oncocytoma and Chromophobe Renal Cell Carcinoma Using MRI. Diagn. Interv. Radiol. 2019, 25, 5–13. [Google Scholar] [CrossRef]
- Rosenkrantz, A.B.; Hindman, N.; Fitzgerald, E.F.; Niver, B.E.; Melamed, J.; Babb, J.S. MRI Features of Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Am. J. Roentgenol. 2010, 195, W421–W427. [Google Scholar] [CrossRef] [PubMed]
- Lopes Vendrami, C.; Parada Villavicencio, C.; Dejulio, T.J.; Chatterjee, A.; Casalino, D.D.; Horowitz, J.M.; Oberlin, D.T.; Yang, G.Y.; Nikolaidis, P.; Miller, F.H. Differentiation of Solid Renal Tumors with Multiparametric MR Imaging. Radiographics 2017, 37, 2026–2042. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.S.; Friedman, A.C.; Hartman, D.S.; Radecki, P.D.; Caroline, D.F. Scar Sign of Renal Oncocytoma: Magnetic Resonance Imaging Appearance and Lack of Specificity. Urol. Radiol. 1986, 8, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.R.; Glickman, J.N.; Zou, K.H.; Teo, S.Y.; Mortelé, K.J.; Rocha, M.S.; Silverman, S.G. Renal Cell Carcinoma: T1 and T2 Signal Intensity Characteristics of Papillary and Clear Cell Types Correlated with Pathology. Am. J. Roentgenol. 2009, 192, 1524–1530. [Google Scholar] [CrossRef]
- Harmon, W.J.; King, B.F.; Lieber, M.M. Renal Oncocytoma: Magnetic Resonance Imaging Characteristics. J. Urol. 1996, 155, 863–867. [Google Scholar] [CrossRef]
- Pretorius, E.S.; Siegelman, E.S.; Ramchandani, P.; Cangiano, T.; Banner, M.P. Renal Neoplasms Amenable to Partial Nephrectomy: MR Imaging. Radiology 1999, 212, 28–34. [Google Scholar] [CrossRef]
- Pedrosa, I.; Sun, M.R.; Spencer, M.; Genega, E.M.; Olumi, A.F.; Dewolf, W.C.; Rofsky, N.M. MR Imaging of Renal Masses: Correlation with Findings at Surgery and Pathologic Analysis. Radiographics 2008, 28, 985–1003. [Google Scholar] [CrossRef]
- Taouli, B.; Thakur, R.K.; Mannelli, L.; Babb, J.S.; Kim, S.; Hecht, E.M.; Lee, V.S.; Israel, G.M. Renal Lesions: Characterization with Diffusion-Weighted Imaging versus Contrast-Enhanced MR Imaging. Radiology 2009, 251, 398–407. [Google Scholar] [CrossRef] [Green Version]
- De Silva, S.; Lockhart, K.R.; Aslan, P.; Nash, P.; Hutton, A.; Malouf, D.; Lee, D.; Cozzi, P.; MacLean, F.; Thompson, J. The Diagnostic Utility of Diffusion Weighted MRI Imaging and ADC Ratio to Distinguish Benign from Malignant Renal Masses: Sorting the Kittens from the Tigers. BMC Urol. 2021, 21, 67. [Google Scholar] [CrossRef]
- Hotker, A.M.; Mazaheri, Y.; Wibmer, A.; Zheng, J.; Moskowitz, C.S.; Tickoo, S.K.; Russo, P.; Hricak, H.; Akin, O. Use of DWI in the Differentiation of Renal Cortical Tumors. Am. J. Roentgenol. 2016, 206, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Schieda, N.; Al-Subhi, M.; Flood, T.A.; El-Khodary, M.; McInnes, M.D.F. Diagnostic accuracy of segmental enhancement inversion for the diagnosis of renal oncocytoma using biphasic computed tomography (CT) and multiphase contrast-enhanced magnetic resonance (MRI). Eur. Radiol. 2014, 24, 2787–2794. [Google Scholar] [CrossRef] [PubMed]
- Low, G.; Huang, G.; Fu, W.; Moloo, Z.; Girgis, S. Review of Renal Cell Carcinoma and Its Common Subtypes in Radiology. World J. Radiol. 2016, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, F.; Tricaud, E.; Lasserre, A.S.; Petitpierre, F.; Bernhard, J.C.; le Bras, Y.; Yacoub, M.; Bouzgarrou, M.; Ravaud, A.; Grenier, N. Routinely Performed Multiparametric Magnetic Resonance Imaging Helps to Differentiate Common Subtypes of Renal Tumours. Eur. Radiol. 2014, 24, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Lanzman, R.S.; Robson, P.M.; Sun, M.R.; Patel, A.D.; Mentore, K.; Wagner, A.A.; Genega, E.M.; Rofsky, N.M.; Alsop, D.C.; Pedrosa, I. Arterial Spin-Labeling MR Imaging of Renal Masses: Correlation with Histopathologic Findings. Radiology 2012, 265, 799–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Li, S.Q.; Lin, J.Q.; Yu, W.; Eberlin, L.S. Mass Spectrometry Imaging Enables Discrimination of Renal Oncocytoma from Renal Cell Cancer Subtypes and Normal Kidney Tissues. Cancer Res. 2020, 80, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Razik, A.; Goyal, A.; Sharma, R.; Kandasamy, D.; Seth, A.; Das, P.; Ganeshan, B. MR Texture Analysis in Differentiating Renal Cell Carcinoma from Lipid-Poor Angiomyolipoma and Oncocytoma. Br. J. Radiol. 2020, 93, 20200569. [Google Scholar] [CrossRef]
- Gormley, T.S.; van Every, M.J.; Moreno, A.J. Renal Oncocytoma: Preoperative Diagnosis Using Technetium 99m Sestamibi Imaging. Urology 1996, 48, 33–39. [Google Scholar] [CrossRef]
- Rowe, S.P.; Gorin, M.A.; Gordetsky, J.; Ball, M.W.; Pierorazio, P.M.; Higuchi, T.; Epstein, J.I.; Allaf, M.E.; Javadi, M.S. Initial Experience Using 99mTc-MIBI SPECT/CT for the Differentiation of Oncocytoma from Renal Cell Carcinoma. Clin. Nucl. Med. 2015, 40, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorin, M.A.; Rowe, S.P.; Baras, A.S.; Solnes, L.B.; Ball, M.W.; Pierorazio, P.M.; Pavlovich, C.P.; Epstein, J.I.; Javadi, M.S.; Allaf, M.E. Prospective Evaluation of (99 m)Tc-Sestamibi SPECT/CT for the Diagnosis of Renal Oncocytomas and Hybrid Oncocytic/Chromophobe Tumors. Eur. Urol. 2016, 69, 413–416. [Google Scholar] [CrossRef]
- Tzortzakakis, A.; Gustafsson, O.; Karlsson, M.; Ekström-Ehn, L.; Ghaffarpour, R.; Axelsson, R. Visual Evaluation and Differentiation of Renal Oncocytomas from Renal Cell Carcinomas by Means of 99m Tc-Sestamibi SPECT/CT. EJNMMI Res. 2017, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Yang, B.; Dong, A.; Ye, H.; Cheng, C.; Pan, G.; Zuo, C. Dual-Phase 99mTc-MIBI SPECT/CT in the Characterization of Enhancing Solid Renal Tumors: A Single-Institution Study of 147 Cases. Clin. Nucl. Med. 2020, 45, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Aide, N.; Cappele, O.; Bottet, P.; Bensadoun, H.; Regeasse, A.; Comoz, F.; Sobrio, F.; Bouvard, G.; Agostini, D. Efficiency of [(18)F]FDG PET in Characterising Renal Cancer and Detecting Distant Metastases: A Comparison with CT. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Blake, M.A.; McKernan, M.; Setty, B.; Fischman, A.J.; Mueller, P.R. Renal Oncocytoma Displaying Intense Activity on 18F-FDG PET. Am. J. Roentgenol. 2006, 186, 269–270. [Google Scholar] [CrossRef]
- Makis, W.; Ciarallo, A.; Novales-Diaz, J.; Lisbona, R. Incidental Bilateral Renal Oncocytoma in a Patient with Metastatic Carcinoma of Unknown Primary: A Pitfall on (18)F-FDG PET/CT. Nucl. Med. Mol. Imaging 2011, 45, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.E.; White, R.L.; Zuger, J.H.; Sasser, H.C.; Teigland, C.M. Clinical Use of Fluorodeoxyglucose F 18 Positron Emission Tomography for Detection of Renal Cell Carcinoma. J. Urol. 2004, 171, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Shriki, J.; Murthy, V.; Brown, J. Renal Oncocytoma on 1-11C Acetate Positron Emission Tomography: Case Report and Literature Review. Mol. Imaging Biol. 2006, 8, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Choi, E.; Idrees, M.T.; Chen, S.; Wu, H.H. Percutaneous Biopsy of the Renal Mass: FNA or Core Needle Biopsy? Cancer Cytopathol. 2017, 125, 407–415. [Google Scholar] [CrossRef]
- Volpe, A.; Finelli, A.; Gill, I.S.; Jewett, M.A.S.; Martignoni, G.; Polascik, T.J.; Remzi, M.; Uzzo, R.G. Rationale for Percutaneous Biopsy and Histologic Characterisation of Renal Tumours. Eur. Urol. 2012, 62, 491–504. [Google Scholar] [CrossRef]
- Barwari, K.; Kummerlin, I.P.; ten Kate, F.J.; Algaba, F.; Trias, I.; Wijkstra, H.; de la Rosette, J.J.; Laguna, P. What Is the Added Value of Combined Core Biopsy and Fine Needle Aspiration in the Diagnostic Process of Renal Tumours? World J. Urol. 2013, 31, 823–827. [Google Scholar] [CrossRef] [Green Version]
- Burruni, R.; Lhermitte, B.; Cerantola, Y.; Tawadros, T.; Meuwly, J.Y.; Berthold, D.; Jichlinski, P.; Valerio, M. The Role of Renal Biopsy in Small Renal Masses. Can. Urol. Assoc. J. 2016, 10, E28–E33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, H.D.; Druskin, S.C.; Rowe, S.P.; Pierorazio, P.M.; Gorin, M.A.; Allaf, M.E. Surgical Histopathology for Suspected Oncocytoma on Renal Mass Biopsy: A Systematic Review and Meta-Analysis. BJU Int. 2017, 119, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Richard, P.O.; Jewett, M.A.S.; Bhatt, J.R.; Kachura, J.R.; Evans, A.J.; Zlotta, A.R.; Hermanns, T.; Juvet, T.; Finelli, A. Renal Tumor Biopsy for Small Renal Masses: A Single-Center 13-Year Experience. Eur. Urol. 2015, 68, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.D.; Johnson, M.H.; Pierorazio, P.M.; Sozio, S.M.; Sharma, R.; Iyoha, E.; Bass, E.B.; Allaf, M.E. Diagnostic Accuracy and Risks of Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma: Systematic Review of the Literature. J. Urol. 2016, 195, 1340–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villeirs, G.M.; de Visschere, P.J.; Pattyn, E. Small Renal Masses: To Biopsy or Not? The Role of Imaging in the Evaluation. Eur. Urol. Focus 2016, 2, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Maturen, K.E.; Nghiem, H.V.; Caoili, E.M.; Higgins, E.G.; Wolf, J.S.; Wood, D.P. Renal Mass Core Biopsy: Accuracy and Impact on Clinical Management. Am. J. Roentgenol. 2007, 188, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Hoare, D.; Evans, H.; Richards, H.; Samji, R. Evaluating the Role for Renal Biopsy in T1 and T2 Renal Masses: A Single-Centre Study. Can. Urol. Assoc. J. 2018, 12, E226–E230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alle, N.; Tan, N.; Huss, J.; Huang, J.; Pantuck, A.; Raman, S.S. Percutaneous Image-Guided Core Biopsy of Solid Renal Masses: Analysis of Safety, Efficacy, Pathologic Interpretation, and Clinical Significance. Abdom. Radiol. 2018, 43, 1813–1819. [Google Scholar] [CrossRef]
- Marconi, L.; Dabestani, S.; Lam, T.B.; Hofmann, F.; Stewart, F.; Norrie, J.; Bex, A.; Bensalah, K.; Canfield, S.E.; Hora, M.; et al. Systematic Review and Meta-Analysis of Diagnostic Accuracy of Percutaneous Renal Tumour Biopsy. Eur. Urol. 2016, 69, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual; Springer: Berlin/Heidelberg, Germany, 2017; pp. 739–748. [Google Scholar] [CrossRef]
- Neves, J.B.; Varley, R.; Agnesi, S.; Withington, J.; Rodrigues, F.B.; Warren, H.; Yuminaga, Y.; Capitanio, U.; Rode, N.; Grant, L.; et al. Growth and Renal Function Dynamics of Renal Oncocytomas in Patients on Active Surveillance. BJU Int. 2021, 128, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Larcher, A.; Fallara, G.; Trevisani, F.; Porrini, E.; di Marco, F.; Baiamonte, G.; Re, C.; Bettiga, A.; Dell’Antonio, G.; et al. Parenchymal Biopsy in the Management of Patients with Renal Cancer. World J. Urol. 2021, 39, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- Alamara, C.; Karapanagiotou, E.M.; Tourkantonis, I.; Xyla, V.; Maurer, C.C.; Lykourinas, M.; Pandha, H.; Syrigos, K.N. Renal Oncocytoma: A Case Report and Short Review of the Literature. Eur. J. Intern. Med. 2008, 19, e67–e69. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Murray, C.A.; McInnes, M.D.; Chatelain, R.; Siddaiah, M.; Al-Dandan, O.; Narayanasamy, S.; Schieda, N. CT Imaging of Solid Renal Masses: Pitfalls and Solutions. Clin. Radiol. 2017, 72, 708–721. [Google Scholar] [CrossRef]
- Liu, S.; Lee, S.; Rashid, P.; Bangash, H.; Hamid, A.; Lau, J.; Cohen, R. Active Surveillance Is Suitable for Intermediate Term Follow-up of Renal Oncocytoma Diagnosed by Percutaneous Core Biopsy. BJU Int. 2016, 118 (Suppl. 3), 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuzillet, Y.; Lechevallier, E.; Andre, M.; Daniel, L.; Nahon, O.; Coulange, C. Follow-up of Renal Oncocytoma Diagnosed by Percutaneous Tumor Biopsy. Urology 2005, 66, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Warren, H.; Neves, J.B.; Tran, M.G.B. Renal Oncocytoma: Landscape of Diagnosis and Management. BJU Int. 2021, 128, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, F.; Pani, A.; Floris, M.; Martini, A.; Dell’antonio, G.; Capitanio, U.; Bettiga, A.; Larcher, A.; Cinque, A.; Bertini, R.; et al. Unexpected Outcomes of Renal Function after Radical Nephrectomy: Histology Relevance along with Clinical Aspects. J. Clin. Med. 2021, 10, 3322. [Google Scholar] [CrossRef] [PubMed]
- Derweesh, I.H.; Autorino, R.; Bensalah, K.; Capitanio, U. Partial Nephrectomy for Large or Complex Masses: Option or Obsolete? Eur. Urol. 2017, 72, 76–77. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Larcher, A.; Trevisani, F.; Muttin, F.; Cianflone, F.; Montorsi, F.; Salonia, A.; Bertini, R.; Capitanio, U. Postoperative Complications Increase the Risk of Long-Term Chronic Kidney Disease after Nephron-Sparing Surgery in Patients with Renal Cancer and Normal Preoperative Renal Function. BJU Int. 2019, 124, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Larcher, A.; Cianflone, F.; Trevisani, F.; Nini, A.; Mottrie, A.; Mari, A.; Campi, R.; Tellini, R.; Briganti, A.; et al. Hypertension and Cardiovascular Morbidity Following Surgery for Kidney Cancer. Eur. Urol. Oncol. 2020, 3, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Liatsikos, E.; Kallidonis, P.; Do, M.; Dietel, A.; Al-Aown, A.; Constantinidis, C.; Stolzenburg, J.U. Laparoscopic Radical and Partial Nephrectomy: Technical Issues and Outcome. World J. Urol. 2013, 31, 785–791. [Google Scholar] [CrossRef]
- Gershman, B.; Thompson, R.H.; Boorjian, S.A.; Lohse, C.M.; Costello, B.A.; Cheville, J.C.; Leibovich, B.C. Radical Versus Partial Nephrectomy for CT1 Renal Cell Carcinoma. Eur. Urol. 2018, 74, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Liao, Z. Comparison of Radical Nephrectomy and Partial Nephrectomy for T1 Renal Cell Carcinoma: A Meta-Analysis. Urol. Int. 2018, 101, 175–183. [Google Scholar] [CrossRef]
- Leveridge, M.J.; Finelli, A.; Kachura, J.R.; Evans, A.; Chung, H.; Shiff, D.A.; Fernandes, K.; Jewett, M.A.S. Outcomes of Small Renal Mass Needle Core Biopsy, Nondiagnostic Percutaneous Biopsy, and the Role of Repeat Biopsy. Eur. Urol. 2011, 60, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Richard, P.O.; Jewett, M.A.S.; Bhatt, J.R.; Evans, A.J.; Timilsina, N.; Finelli, A. Active Surveillance for Renal Neoplasms with Oncocytic Features Is Safe. J. Urol. 2016, 195, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, S.; Fernandes, K.A.; Finelli, A.; Robinette, M.; Fleshner, N.; Jewett, M.A.S. Most Renal Oncocytomas Appear to Grow: Observations of Tumor Kinetics with Active Surveillance. J. Urol. 2011, 186, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Bravi, C.A.; Vertosick, E.; Benfante, N.; Tin, A.; Sjoberg, D.; Hakimi, A.A.; Touijer, K.; Montorsi, F.; Eastham, J.; Russo, P.; et al. Impact of Acute Kidney Injury and Its Duration on Long-Term Renal Function After Partial Nephrectomy. Eur. Urol. 2019, 76, 398–403. [Google Scholar] [CrossRef]
- Jones, J.; Nguyen, H.; Drummond, K.; Morokoff, A. Circulating Biomarkers for Glioma: A Review. Neurosurgery 2021, 88, E221–E230. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, S.; Datta, S.; Ray, J.G.; Chaudhuri, K.; Chatterjee, R. Liquid Biopsy: MiRNA as a Potential Biomarker in Oral Cancer. Cancer Epidemiol. 2019, 58, 137–145. [Google Scholar] [CrossRef]
- Hamam, R.; Hamam, D.; Alsaleh, K.A.; Kassem, M.; Zaher, W.; Alfayez, M.; Aldahmash, A.; Alajez, N.M. Circulating MicroRNAs in Breast Cancer: Novel Diagnostic and Prognostic Biomarkers. Cell Death Dis. 2017, 8, e3045. [Google Scholar] [CrossRef] [Green Version]
- McGuire, A.; Brown, J.A.L.; Kerin, M.J. Metastatic Breast Cancer: The Potential of MiRNA for Diagnosis and Treatment Monitoring. Cancer Metastasis Rev. 2015, 34, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcuello, M.; Vymetalkova, V.; Neves, R.P.L.; Duran-Sanchon, S.; Vedeld, H.M.; Tham, E.; van Dalum, G.; Flügen, G.; Garcia-Barberan, V.; Fijneman, R.J.; et al. Circulating Biomarkers for Early Detection and Clinical Management of Colorectal Cancer. Mol. Asp. Med. 2019, 69, 107–122. [Google Scholar] [CrossRef]
- Cinque, A.; Vago, R.; Trevisani, F. Circulating RNA in Kidney Cancer: What We Know and What We Still Suppose. Genes 2021, 12, 835. [Google Scholar] [CrossRef] [PubMed]
- Cinque, A.; Capasso, A.; Vago, R.; Lee, M.W.; Floris, M.; Trevisani, F. The Role of Circulating Biomarkers in the Oncological Management of Metastatic Renal Cell Carcinoma: Where Do We Stand Now? Biomedicines 2021, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Todd, N.W.; Zhang, H.; Yu, L.; Lingxiao, X.; Mei, Y.; Guarnera, M.; Liao, J.; Chou, A.; Lu, C.L.; et al. Plasma MicroRNAs as Potential Biomarkers for Non-Small-Cell Lung Cancer. Lab. Investig. 2011, 91, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian MicroRNAs Predominantly Act to Decrease Target MRNA Levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of MicroRNAs in Serum: A Novel Class of Biomarkers for Diagnosis of Cancer and Other Diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mall, C.; Rocke, D.M.; Durbin-Johnson, B.; Weiss, R.H. Stability of MiRNA in Human Urine Supports Its Biomarker Potential. Biomark. Med. 2013, 7, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiberio, P.; Callari, M.; Angeloni, V.; Daidone, M.G.; Appierto, V. Challenges in Using Circulating MiRNAs as Cancer Biomarkers. BioMed Res. Int. 2015, 2015, 10. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Brandenstein, M.; Schlosser, M.; Herden, J.; Heidenreich, A.; Störkel, S.; Fries, J.W.U. MicroRNAs as Urinary Biomarker for Oncocytoma. Dis. Markers 2018, 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Von Brandenstein, M.; Puetz, K.; Schlosser, M.; Löser, H.; Kallinowski, J.P.; Gödde, D.; Buettner, R.; Störkel, S.; Fries, J.W.U. Vimentin 3, the New Hope, Differentiating RCC versus Oncocytoma. Dis. Markers 2015, 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Vohwinkel, C.U.; Lecuona, E.; Sun, H.; Sommer, N.; Vadász, I.; Chandel, N.S.; Sznajder, J.I. Elevated CO(2) Levels Cause Mitochondrial Dysfunction and Impair Cell Proliferation. J. Biol. Chem. 2011, 286, 37067–37076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonnet, H.; Demont, J.; Pfeiffer, K.; Guenaneche, L.; Bouvier, R.; Brandt, U.; Schägger, H.; Godinot, C. Mitochondrial Complex I Is Deficient in Renal Oncocytomas. Carcinogenesis 2003, 24, 1461–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Sasayama, T.; Tanaka, K.; Nakamizo, S.; Nishihara, M.; Mizukawa, K.; Kohta, M.; Koyama, J.; Miyake, S.; Taniguchi, M.; et al. MicroRNA-183 Upregulates HIF-1α by Targeting Isocitrate Dehydrogenase 2 (IDH2) in Glioma Cells. J. Neuro-Oncol. 2013, 111, 273–283. [Google Scholar] [CrossRef]
- Körner, C.; Keklikoglou, I.; Bender, C.; Wörner, A.; Münstermann, E.; Wiemann, S. MicroRNA-31 Sensitizes Human Breast Cells to Apoptosis by Direct Targeting of Protein Kinase C Epsilon (PKCepsilon). J. Biol. Chem. 2013, 288, 8750–8761. [Google Scholar] [CrossRef] [Green Version]
- Gandellini, P.; Folini, M.; Longoni, N.; Pennati, M.; Binda, M.; Colecchia, M.; Samoni, R.; Supino, R.; Moretti, R.; Limonta, P.; et al. MiR-205 Exerts Tumor-Suppressive Functions in Human Prostate through down-Regulation of Protein Kinase Cepsilon. Cancer Res. 2009, 69, 2287–2295. [Google Scholar] [CrossRef] [Green Version]
- Von Brandenstein, M.; Pandarakalam, J.J.; Kroon, L.; Loeser, H.; Herden, J.; Braun, G.; Wendland, K.; Dienes, H.P.; Engelmann, U.; Fries, J.W.U. MicroRNA 15a, Inversely Correlated to PKCα, Is a Potential Marker to Differentiate between Benign and Malignant Renal Tumors in Biopsy and Urine Samples. Am. J. Pathol. 2012, 180, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, M.; Zhang, L.; Bi, Y.; Wang, P.; Li, J.; Jiang, X. MicroRNA-205 Suppresses the Invasion and Epithelial-Mesenchymal Transition of Human Gastric Cancer Cells. Mol. Med. Rep. 2016, 13, 4767–4773. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yang, L.; Ma, Y.; Zhao, X.; Wang, H. MicroRNA-205 Mediates Proteinase-Activated Receptor 2 (PAR 2) -Promoted Cancer Cell Migration. Cancer Investig. 2017, 35, 601–609. [Google Scholar] [CrossRef]
- Adhami, M.; Haghdoost, A.A.; Sadeghi, B.; Malekpour Afshar, R. Candidate MiRNAs in Human Breast Cancer Biomarkers: A Systematic Review. Breast Cancer 2018, 25, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.R.; Gomes, C.C.; Santos, M.F. Role of MicroRNAs in Endocrine Cancer Metastasis. Mol. Cell. Endocrinol. 2017, 456, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Yue, X. MiR-205 Serves as a Prognostic Factor and Suppresses Proliferation and Invasion by Targeting Insulin-like Growth Factor Receptor 1 in Human Cervical Cancer. Tumour Biol. 2017, 39. [Google Scholar] [CrossRef] [Green Version]
- Chung, T.K.H.; Cheung, T.H.; Huen, N.Y.; Wong, K.W.Y.; Lo, K.W.K.; Yim, S.F.; Siu, N.S.S.; Wong, Y.M.; Tsang, P.T.; Pang, M.W.; et al. Dysregulated MicroRNAs and Their Predicted Targets Associated with Endometrioid Endometrial Adenocarcinoma in Hong Kong Women. Int. J. Cancer 2009, 124, 1358–1365. [Google Scholar] [CrossRef]
- Li, J.; Hu, K.; Gong, G.; Zhu, D.; Wang, Y.; Liu, H.; Wu, X. Upregulation of MiR-205 Transcriptionally Suppresses SMAD4 and PTEN and Contributes to Human Ovarian Cancer Progression. Sci. Rep. 2017, 7, 41330. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wu, S.; Zhao, R.; Deng, Q. MiR-205 Promotes Proliferation, Migration and Invasion of Nasopharyngeal Carcinoma Cells by Activation of AKT Signalling. J. Int. Med. Res. 2016, 44, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.; Guo, T.; Sun, H.; Cai, R.; Rui, Q.; Xi, Z. MiR-205 as a Biological Marker in Non-Small Cell Lung Cancer. Biomed. Pharmacother. 2017, 91, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Eyking, A.; Reis, H.; Frank, M.; Gerken, G.; Schmid, K.W.; Cario, E. MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer. PLoS ONE 2016, 11, e0156871. [Google Scholar] [CrossRef]
- Ali, S.; Dubaybo, H.; Brand, R.E.; Sarkar, F.H. Differential Expression of MicroRNAs in Tissues and Plasma Co-Exists as a Biomarker for Pancreatic Cancer. J. Cancer Sci. Ther. 2015, 7, 336. [Google Scholar] [CrossRef]
- Yamada, Y.; Nishikawa, R.; Kato, M.; Okato, A.; Arai, T.; Kojima, S.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Regulation of HMGB3 by Antitumor MiR-205-5p Inhibits Cancer Cell Aggressiveness and Is Involved in Prostate Cancer Pathogenesis. J. Hum. Genet. 2018, 63, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Ganji, S.M.; Saidijam, M.; Amini, R.; Mousavi-Bahar, S.H.; Shabab, N.; Seyedabadi, S.; Mahdavinezhad, A. Evaluation of MicroRNA-99a and MicroRNA-205 Expression Levels in Bladder Cancer. Int. J. Mol. Cell. Med. 2017, 6, 87–95. [Google Scholar] [CrossRef]
- Mitash, N.; Tiwari, S.; Agnihotri, S.; Mandhani, A. Bladder Cancer: Micro RNAs as Biomolecules for Prognostication and Surveillance. Indian J. Urol. 2017, 33, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.A.; Green, B.B.; Seigne, J.D.; Schned, A.R.; Marsit, C.J. MicroRNA Molecular Profiling from Matched Tumor and Bio-Fluids in Bladder Cancer. Mol. Cancer 2015, 14, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratert, N.; Meyer, H.A.; Jung, M.; Lioudmer, P.; Mollenkopf, H.J.; Wagner, I.; Miller, K.; Kilic, E.; Erbersdobler, A.; Weikert, S.; et al. MiRNA Profiling Identifies Candidate Mirnas for Bladder Cancer Diagnosis and Clinical Outcome. J. Mol. Diagn. 2013, 15, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Dai, W.; Wang, X.; Chen, W.; Shen, C.; Ye, G.; Li, L. Circulating MiR-205: A Promising Biomarker for the Detection and Prognosis Evaluation of Bladder Cancer. Tumour Biol. 2016, 37, 8075–8082. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Ma, P.; Wu, D.; Shu, Y.; Gao, W. Functions and Mechanisms of MicroRNA-31 in Human Cancers. Biomed. Pharmacother. 2018, 108, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, Y.; Lin, J.; Liu, Y.; Luo, K.; Cao, Y.; Wang, T.; Jin, H.; Su, Z.; Wu, H.; et al. Circulating MiR-31 as an Effective Biomarker for Detection and Prognosis of Human Cancer: A Meta-Analysis. Oncotarget 2017, 8, 28660–28671. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, Q.; Wang, K.; Dai, Y.; Yang, J.; Xue, S.; Han, F.; Zhang, Q.; Liu, J.; Wu, W. Decreased Expression of MicroRNA-31 Associates with Aggressive Tumor Progression and Poor Prognosis in Patients with Bladder Cancer. Clin. Transl. Oncol. 2013, 15, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Wszolek, M.F.; Rieger-Christ, K.M.; Kenney, P.A.; Gould, J.J.; Silva Neto, B.; LaVoie, A.K.; Logvinenko, T.; Libertino, J.A.; Summerhayes, I.C. A MicroRNA Expression Profile Defining the Invasive Bladder Tumor Phenotype. Urol. Oncol. 2011, 29, 794–801.e1. [Google Scholar] [CrossRef]
- Fuse, M.; Kojima, S.; Enokida, H.; Chiyomaru, T.; Yoshino, H.; Nohata, N.; Kinoshita, T.; Sakamoto, S.; Naya, Y.; Nakagawa, M.; et al. Tumor Suppressive MicroRNAs (MiR-222 and MiR-31) Regulate Molecular Pathways Based on MicroRNA Expression Signature in Prostate Cancer. J. Hum. Genet. 2012, 57, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Mytsyk, Y.; Dosenko, V.; Borys, Y.; Kucher, A.; Gazdikova, K.; Busselberg, D.; Caprnda, M.; Kruzliak, P.; Farooqi, A.A.; Lubov, M. MicroRNA-15a Expression Measured in Urine Samples as a Potential Biomarker of Renal Cell Carcinoma. Int. Urol. Nephrol. 2018, 50, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Kane, C.J.; Mallin, K.; Ritchey, J.; Cooperberg, M.R.; Carroll, P.R. Renal Cell Cancer Stage Migration: Analysis of the National Cancer Data Base. Cancer 2008, 113, 78–83. [Google Scholar] [CrossRef]
- Ahmad, A.E.; Finelli, A.; Jewett, M.A.S. Surveillance of Small Renal Masses. Urology 2016, 98, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.K.; Kim, K.; Kwak, C.; Kim, H.H.; Byun, S.S.; Lee, S.E.; Hong, S.K. Risk of Metastasis for T1a Renal Cell Carcinoma. World J. Urol. 2016, 34, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Shuch, B.; Hanley, J.M.; Lai, J.C.; Vourganti, S.; Setodji, C.M.; Dick, A.W.; Chow, W.H.; Saigal, C.S. Adverse Health Outcomes Associated with Surgical Management of the Small Renal Mass. J. Urol. 2014, 191, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Van Poppel, H.; Becker, F.; Cadeddu, J.A.; Gill, I.S.; Janetschek, G.; Jewett, M.A.S.; Laguna, M.P.; Marberger, M.; Montorsi, F.; Polascik, T.J.; et al. Treatment of Localised Renal Cell Carcinoma. Eur. Urol. 2011, 60, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, A.; Brown, M.D.; Finelli, A.; Jewett, M.A.S.; Diamandis, E.P.; Yousef, G.M. Prognostic Urinary MiRNAs for the Assessment of Small Renal Masses. Clin. Biochem. 2020, 75, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Butz, H.; Nofech-Mozes, R.; Ding, Q.; Khella, H.W.Z.; Szabó, P.M.; Jewett, M.; Finelli, A.; Lee, J.; Ordon, M.; Stewart, R.; et al. Exosomal MicroRNAs Are Diagnostic Biomarkers and Can Mediate Cell-Cell Communication in Renal Cell Carcinoma. Eur. Urol. Focus 2016, 2, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Wulfken, L.M.; Moritz, R.; Ohlmann, C.; Holdenrieder, S.; Jung, V.; Becker, F.; Herrmann, E.; Walgenbach-Brünagel, G.; von Ruecker, A.; Müller, S.C.; et al. MicroRNAs in Renal Cell Carcinoma: Diagnostic Implications of Serum MiR-1233 Levels. PLoS ONE 2011, 6, e25787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, S.; Wulfken, L.M.; Holdenrieder, S.; Moritz, R.; Ohlmann, C.H.; Jung, V.; Becker, F.; Herrmann, E.; Walgenbach-Brünagel, G.; von Ruecker, A.; et al. Analysis of Serum MicroRNAs (MiR-26a-2*, MiR-191, MiR-337-3p and MiR-378) as Potential Biomarkers in Renal Cell Carcinoma. Cancer Epidemiol. 2012, 36, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, F.G.; Tolkach, Y.; Deng, M.; Schmidt, D.; Perner, S.; Kristiansen, G.; Müller, S.C.; Ellinger, J. Serum MiR-122-5p and MiR-206 Expression: Non-Invasive Prognostic Biomarkers for Renal Cell Carcinoma. Clin. Epigenetics 2018, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.; Wang, L.; Li, Y.; Huang, C.; Zeng, L.; Yang, J. Differential MicroRNA Expression in Renal Cell Carcinoma. Oncol. Lett. 2013, 6, 769–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiravit, S.; Teerasamit, W.; Thiravit, P. The Different Faces of Renal Angiomyolipomas on Radiologic Imaging: A Pictorial Review. Br. J. Radiol. 2018, 91, 20170533. [Google Scholar] [CrossRef] [PubMed]
Grade | Criteria |
---|---|
Grade 1 | The neoplastic cell nuclei are small and round. The nucleoli are difficult to see even when the cells are examined with a high magnification lens. |
Grade 2 | The neoplastic cell nuclei are slightly larger and irregularly shaped. Nucleoli are easier to see but only after the cells are examined with a high magnification lens. |
Grade 3 | The neoplastic cell nuclei are obviously irregular and enlarged. The nucleoli are easy to see even when the cells are examined with a low magnification lens. |
Grade 4 | The neoplastic cell nuclei are bizarre, extremely irregular and often multilobed. Sarcomatoid and rhabdoid cells are included in this category. |
Grade | Criteria from the Original Classification for Both Ccrcc and Paprcc | Criteria from the Revised Classification, Tumor Necrosis Integrated, for Ccrcc Only |
---|---|---|
Grade 1 | Tumor cell nucleoli absent or inconspicuous and basophilic at 400× magnification | WHO/ISUP grade 1 WHO/ISUP grade 2, without necrosis |
Grade 2 | Tumor cell nucleoli conspicuous and eosinophilic at 400× magnification and visible but not prominent at 100× magnification | WHO/ISUP grade 2, necrosis WHO/ISUP grade 3, without necrosis |
Grade 3 | Tumor cell nucleoli conspicuous and eosinophilic at 100× magnification | WHO/ISUP grade 3 with necrosis WHO/ISUP grade 4 without necrosis |
Grade 4 | Tumors showing extreme nuclear pleomorphism, tumor giant cells and/or the presence of any proportion of tumor showing sarcomatoid and/or rhabdoid differentiation | WHO/ISUP grade 4 with necrosis Sarcomatoid and/or rhabdoid differentiation |
Renal Mass | Gross Anatomy | Histology and Architecture | Cytology | CK7 | KIT | Vimentin |
---|---|---|---|---|---|---|
RO | Solid appearance mahogany brown-tan, brown color 30–50% central scar Less common: hemorrhagic areas (20–27.5%), fat-infiltration, and renal vein invasion, (pseudo-malignant features) | Variable Common: nested, solid, tubular, cystic, tubule-cystic Uncommon: with papillary changes, trabecular, Pseudomalignant: with foci of clear cells, of chRCC-like cells (<5% of tumor extension) or small cells and pseudorosettes, foci of coagulative necrosis (1.8%) | Round-regular nuclei, central and sometimes prominent nucleoli Eosinophilic granular cytoplasm ≤1 mitotic figure | <5% positivity Focal staining of sparse or cluster of cells | Positive | Negative Focal staining of central scar |
chRCC | Uncommon central scar Malignant features | Solid Trabecular | Irregular wrinkled, (“raisinoid”) nuclei, nuclear atypia Granular eosinophilic cytoplasm (eosinophilic variant) Granular clear cytoplasm (classic chRCC) | Positive (>5%) Diffuse staining especially (eosinophilic variant > classic chRCC) | Positive | Negative |
HOCT | Similar to RO and chRCC | Solid-alveolar | Round nuclei, prominent nucleoli, granular eosinophilic oncocytes with indistinct cytoplasmic margins + chRCC-like cells with slight eosinophilia, irregular nucleus, and distinct cytoplasmic borders Perinuclear halos and binucleated cells | Positive in the majority of cases | Often focal positivity | Positive only focally or negative |
HOT | Solid brown single mass | Solid-nested sometimes tubulocystic or trabecular similarly to RO | No significant nuclear atypia if not in few cases, with irregular nuclei and binucleation Prominent and large nucleoli Eosinophilic cells with granular cytoplasm, featuring vacuoles or eosinophilic inclusions (proposed renomination in “sporadic RCC with eosinophilic and vacuolated cytoplasm”) Prominent cytoplasmic membranes Thick-walled vessels | Negative Only single cells stain positive | Positive (up to 64%) | Negative |
LOT | Solid, well-circumscribed, single brown mass | Solid, nested Only focally tubular | Regular and round nuclei without significant nuclear atypia indicative of a low-grade, and fine chromatin Polygonal eosinophilic cells, with vacuoles and inclusions | Positive | Negative | Variable From negative to <35% positive |
ESC RCC | Defined capsule Solid and macrocystic appearance | Diffuse nested or acinar | Eosinophilic component: eosinophilic cells, with basophilic coarse granules (“stippling”), round-oval nuclei, prominent nucleoli, and only focal nuclear membrane irregularities. Cystic component: cystic trabeculae, the cysts’ lumen is lined with neoplastic epithelium having a hobnail arrangement. Common: presence of histiocytes and lymphocytes | Negative | Negative | Positive |
Non-chromophobe RCC | Solid appearance Hemorrhagic areas Uncommon central scar Perinephric fat infiltration, renal vein invasion | Variable (solid; papillary; tubulocystic) | Variable Usually, round to oval irregular nuclei, with nuclear-nucleolar atypia Hobnailing with macronucleoli in tubulocystic RCC WHO/ISUP grading system of nuclear findings used for staging purpose in ccRCCs and papRCC | Variable Minimal in the eosinophilic variant of papRCC | Negative | Positive |
US | CT | MRI | SPECT | |
---|---|---|---|---|
Morphology | Well-defined, variable echogenicity, more often hyperechogenic, 20% mild vascularization with CD | Well-defined, mildly hypervascular/hyperdense with respect to renal parechyma | Well-defined, >60% homogeneous signal intensity T1—hypointense signal, but variable findings lead to overlap with RCC T2—hyperintensity, variable | Hypermetabolic masses, can be combined with CT to increase the definition and to obtain tomographic scans |
Enhancement, contrast media or radiotracer | 85% hyperenhancing, half of them have delayed venous wash-out, no specific microperfusion patterns Spoke-wheel vascular pattern when the central scar is present | Hyperenhancing, delayed wash-out Spoke-wheel pattern if a central scar is present SEI—present but not different with RCC | 60% isointense in the dynamic post-gadolinium phase, 40% hypointense in the delayed phase, 80% isointense and 20% hypointense Central scar -T1 hypointensity, T2 hyperintensity, possible delayed enhancement and a spoke-wheel pattern SEI—present but not different from RCC | Hypermetabolic mass, significantly higher values, early and delayed relative uptake versus other RCCs, especially in the delayed phase (>120′) |
Additional features | Radiomics—remarkable and promising, especially regarding SEI and radiomic signature, need further validation | DWI—a higher and significantly different ADC from RCC is inconsistently reported Radiomics—remarkable and promising, need further validation | ||
Diagnostic accuracy | Suboptimal, especially for solid small renal masses, 21–58% | Variable and inconsistent reports in distinguishing RO from RCC | Variable and inconsistent reports in distinguishing RO from RCC | SPECT/CT has 87.5–100% sensitivity, 95.2–96.6% specificity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevisani, F.; Floris, M.; Minnei, R.; Cinque, A. Renal Oncocytoma: The Diagnostic Challenge to Unmask the Double of Renal Cancer. Int. J. Mol. Sci. 2022, 23, 2603. https://doi.org/10.3390/ijms23052603
Trevisani F, Floris M, Minnei R, Cinque A. Renal Oncocytoma: The Diagnostic Challenge to Unmask the Double of Renal Cancer. International Journal of Molecular Sciences. 2022; 23(5):2603. https://doi.org/10.3390/ijms23052603
Chicago/Turabian StyleTrevisani, Francesco, Matteo Floris, Roberto Minnei, and Alessandra Cinque. 2022. "Renal Oncocytoma: The Diagnostic Challenge to Unmask the Double of Renal Cancer" International Journal of Molecular Sciences 23, no. 5: 2603. https://doi.org/10.3390/ijms23052603
APA StyleTrevisani, F., Floris, M., Minnei, R., & Cinque, A. (2022). Renal Oncocytoma: The Diagnostic Challenge to Unmask the Double of Renal Cancer. International Journal of Molecular Sciences, 23(5), 2603. https://doi.org/10.3390/ijms23052603