Molecular Cytogenetic Characterization of Novel 1RS.1BL Translocation and Complex Chromosome Translocation Lines with Stripe Rust Resistance
Abstract
:1. Introduction
2. Results
2.1. Development and Identification of the Novel Translocation Lines
2.2. Effect of Translocations on Agronomic Traits
2.3. Resistance Analysis of Translocation Lines
3. Discussion
3.1. Origin of Complex Chromosome Translocations
3.2. Effect of the Novel 1RS.1BL Translocation on Agronomic Characters and Resistance to Stripe Rust
3.3. Effect of the CCT on Agronomic Characters and Resistance to Stripe Rust
3.4. Evolutionary Significance and Breeding Value of Novel CCT Line
4. Materials and Methods
4.1. Development of Plant Materials with Chromosome Translocations
4.2. Detection of ω-Secalin Protein
4.3. Molecular Analysis
4.4. Identification of Chromosomes
4.5. Field Experiments for Determining Agronomic Traits
4.6. Resistance Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Zhang, Z.; Wang, Z.; Li, N.; Sha, Y.; Wang, X.; Ding, N.; Li, Y.; Zhao, J.; Wu, Y.; et al. Genome sequences of the five Sitopsis species of Aegilops and the origin of polyploid wheat B-subgenome. Mol. Plant 2022, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.; Levy, A.A. Origin and evolution of wheat and related Triticeae Species. In Alien Introgression in Wheat; Molnar-Lang, M., Carla, C., Jaroslav, D., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 21–76. [Google Scholar]
- Liu, C.J.; Atkinson, M.D.; Chinoy, C.N.; Devos, K.M.; Gale, M.D. Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor. Appl. Genet. 1992, 83, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.C.; Sorrells, M.E.; Van Deynze, A.E.; Lu, Y.H.; Atkinson, M.; Bernard, M.; Leroy, P.; Faris, J.D.; Anderson, J.A. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 1995, 141, 721–731. [Google Scholar] [CrossRef]
- Badaeva, E.D.; Dedkova, O.S.; Gay, G.; Pukhalskyi, V.A.; Zelenin, A.V.; Bernard, S.; Bernard, M. Chromosomal rearrangements in wheat: Their types and distribution. Genome 2007, 50, 907–926. [Google Scholar] [CrossRef] [PubMed]
- Joppa, L.R.; Nevo, E.; Beiles, A. Chromosome translocations in wild populations of tetraploid emmer wheat in Israel and Turkey. Theor. Appl. Genet. 1995, 91, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Friebe, B.; Jiang, J.; Raupp, W.J.; McIntosh, R.A.; Gill, B.S. Characterization of wheat-alien translocations conferring resistance to disease and pests: Current status. Euphytica 1996, 91, 59–87. [Google Scholar] [CrossRef]
- Chhuneja, P.; Kaur, S.; Goel, R.K.; Aghaee-Sarbarzeh, M.; Prashar, M.; Dhaliwal, H.S. Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 2008, 55, 849–859. [Google Scholar] [CrossRef]
- Molnár-Láng, M.; Molnár, I.; Szakács, E.; Linc, G.; Bedö, Z. Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In Genomics of Plant Genetic Resources; Roberto, T., Andreas, G., Emile, F., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2014; pp. 255–283. [Google Scholar]
- Ren, T.H.; Chen, F.; Yan, B.J.; Zhang, H.Q.; Ren, Z.L. Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica 2012, 183, 133–146. [Google Scholar] [CrossRef]
- Gazza, L.; Galassi, E.; Ciccoritti, R.; Cacciatori, P.; Pogna, N.E. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet. Resour. Crop Evol. 2016, 63, 209–219. [Google Scholar] [CrossRef]
- Chen, P.D.; Qi, L.L.; Zhou, B.; Zhang, S.Z.; Liu, D. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 1995, 91, 1125–1128. [Google Scholar] [CrossRef]
- Luo, P.G.; Luo, H.Y.; Chang, Z.J.; Zhang, H.Y.; Zhang, M.; Ren, Z.L. Characterization and chromosomal location of Pm40 in common wheat: A new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 2009, 118, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wang, J.; He, F.; Ma, H.; Wang, H. Molecular cytogenetic, identification of a wheat (Triticum aestivum)—American dune grass (Leymus mollis) translocation line resistant to stripe rust. Genet. Mol. Res. 2012, 11, 3198–3206. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.; Lyerly, J.H.; Worthington, M.L.; Parks, W.R.; Cowger, C.; Marshall, D.S.; Brown-Guedira, G.; Murphy, J.P. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor. Appl. Genet. 2015, 128, 303–312. [Google Scholar] [CrossRef]
- Kawahara, T. Identification of reciprocal translocation chromosome types in the emmer wheats. III. Six chromosome types in Triticum dicoccoides. Jpn. J. Genet. 1987, 62, 197–204. [Google Scholar]
- Tan, C.T.; Yan, L. Duplicated, deleted and translocated VRN-2 genes in hexaploid wheat. Euphytica 2016, 208, 277–284. [Google Scholar] [CrossRef]
- Schlegel, R.; Korzun, V. About the origin of 1RS.1BL wheat–rye chromosome translocations from Germany. Plant Breed. 1997, 116, 537–540. [Google Scholar] [CrossRef]
- Rabinovich, S.V. Importance of wheat—Rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 1998, 100, 323–340. [Google Scholar] [CrossRef]
- Ren, T.; Ren, Z.; Yang, M.; Yan, B.; Tan, F.; Fu, S.; Tang, Z.; Li, Z. Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Mol. Breed. 2018, 38, 101. [Google Scholar] [CrossRef]
- Kumlay, A.M.; Baenziger, P.S.; Gill, K.S.; Shelton, D.R.; Graybosch, R.A.; Lukaszewski, A.J.; Wesenberg, D.M. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 2003, 43, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Mago, R.; Miah, H.; Lawrence, G.J.; Wellings, C.R.; Spielmeyer, W.; Bariana, H.S.; McIntosh, R.A.; Pryor, A.J.; Ellis, J.G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 2005, 112, 41–50. [Google Scholar] [CrossRef]
- Ren, T.H.; Yang, Z.J.; Yan, B.J.; Zhang, H.Q.; Fu, S.L.; Ren, Z.L. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 2009, 169, 207–213. [Google Scholar] [CrossRef]
- Howell, T.; Hale, I.; Jankuloski, L.; Bonafede, M.; Gilbert, M.; Dubcovsky, J. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status. Theor. Appl. Genet. 2014, 127, 2695–2709. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.X.; Chen, X.M.; Line, R.F.; Leung, H.; Wellings, C.R. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 2001, 44, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, R. A compendium of reciprocal translocations in wheat. Wheat Inf. Serv. 1996, 83, 35–46. [Google Scholar]
- Chai, J.F.; Zhou, R.H.; Jia, J.Z.; Liu, X. Development and application of a new codominant PCR marker for detecting 1BL.1RS wheat–rye chromosome translocations. Plant Breed. 2006, 125, 302–304. [Google Scholar] [CrossRef]
- Tang, Z.X.; Yang, Z.J.; Fu, S.L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 2014, 55, 313–318. [Google Scholar] [CrossRef]
- Ren, T.; Tang, Z.; Fu, S.; Yan, B.; Tan, F.; Ren, Z.; Li, Z. Molecular cytogenetic characterization of novel wheat-rye T1RS.1BL translocation lines with high resistance to diseases and great agronomic traits. Front. Plant Sci. 2017, 8, 799. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.; He, M.; Sun, Z.; Tan, F.; Luo, P.; Tang, Z.; Fu, S.; Yan, B.; Ren, Z.; Li, Z. The polymorphisms of oligonucleotide probes in wheat cultivars determined by ND-FISH. Molecules 2019, 24, 1126. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Yang, M.; Fei, Y.; Tan, F.; Ren, Z.; Yan, B.; Zhang, H.; Tang, Z. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines. PLoS ONE 2013, 8, e70483. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, S.; Natarajan, A.T.; Hande, M.P. Chromosomal instability-mechanisms and consequences. Mut. Res. 2015, 793, 176–184. [Google Scholar] [CrossRef]
- Madan, K.; Nieuwint, A.W.; van Bever, Y. Recombination in a balanced complex translocation of a mother leading to a balanced reciprocal translocation in the child. Review of 60 cases of balanced complex translocations. Hum. Genet. 1997, 99, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Devos, K.M.; Dubkovsky, J.; Dvorak, J.; Chinoy, C.N.; Gale, M.D. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 1995, 91, 282–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestra, B.; Naranjo, T. Structural chromosome differentiation between Triticum timopheevii and T. turgidum and T. aestivum. Theor. Appl. Genet. 1999, 98, 744–750. [Google Scholar] [CrossRef]
- Sears, E.R. Transfer of alien genetic material to wheat. In Wheat Science-Today and Tomorrow; Evans, L.T., Peacock, W.J., Eds.; Cambridge University Press: London, UK, 1981; pp. 75–89. [Google Scholar]
- Endo, T.R.; Gill, B.S. The deletion stocks of common wheat. J. Hered. 1996, 87, 295–307. [Google Scholar] [CrossRef]
- Masoudi-Nejad, A.; Nasuda, S.; McIntosh, R.A.; Endo, T.R. Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res. 2002, 10, 349–357. [Google Scholar] [CrossRef]
- Ren, T.; Sun, Z.; Ren, Z.; Tan, F.; Luo, P.; Tang, Z.; Fu, S.; Li, Z. Molecular and cytogenetic characterization of a wheat-rye 7BS.7RL translocation line with resistance to stripe rust, powdery mildew and Fusarium head blight. Phytopathology 2020, 110, 1713–1720. [Google Scholar] [CrossRef]
- Ren, Z.L.; Lelley, T.; Röbbelen, G. The use of monosomic rye addition lines for transferring rye chromatin into bread wheat. II. The breeding value of homozygous wheat/rye translocations. Plant Breed. 1990, 10, 265–270. [Google Scholar] [CrossRef]
- Ren, T.H.; Chen, F.; Zou, Y.T.; Jia, Y.H.; Zhang, H.Q.; Yan, B.J.; Ren, Z.L. Evolutionary trends of microsatellites during speciation process and phylogenetic relationships in the genus Secale. Genome 2011, 54, 316–326. [Google Scholar] [CrossRef]
- Ko, J.M.; Seo, B.B.; Suh, D.Y.; Do, G.S.; Park, D.S.; Kwack, Y.H. Production of a new wheat line possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theor. Appl. Genet. 2002, 104, 171–176. [Google Scholar] [CrossRef]
- Qi, W.; Tang, Y.; Zhu, W.; Li, D.; Diao, C.; Xu, L.; Zeng, J.; Wang, Y.; Fan, X.; Sha, L. Molecular cytogenetic characterization of a new wheat-rye 1BL1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta 2016, 244, 405–416. [Google Scholar] [CrossRef]
- Han, G.H.; Liu, S.Y.; Wang, J.; Jin, Y.L.; Zhou, Y.L.; Luo, Q.L.; Liu, H.; Zhao, H.; An, D.G. Identification of an elite wheat-rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Dis. 2020, 104, 2940–2948. [Google Scholar] [CrossRef] [PubMed]
- McKendry, A.L.; Tague, D.N.; Miskin, K.E. Effect of 1BL.1RS on agronomic performance of soft red winter wheat. Crop Sci. 1996, 36, 844–847. [Google Scholar] [CrossRef]
- Villareal, R.L.; Toro, E.D.; Mujeeb-Kazi, A.; Rajaram, S. The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breed. 1995, 114, 497–500. [Google Scholar] [CrossRef]
- Kim, W.; Johnson, J.W.; Baenziger, P.S.; Lukaszewski, A.J.; Gaines, C.S. Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 2004, 44, 1254–1258. [Google Scholar] [CrossRef]
- Wen, Y.; Wu, H.; Zhou, W.; Wang, E.; Yu, J.; Wei, R.; Xue, M.; Sun, J.; Zhu, W.; Cheng, B.; et al. Generation of wheat intra-species translocation line showing resistance to powdery mildew and its chromosome pattern in C-banding and in situ hybridization. Acta Genet. Sin. 1997, 24, 513–518. [Google Scholar]
- Ren, T.; Li, Z.; Yan, B.; Tan, F.; Tang, Z.; Fu, S.; Yang, M.; Ren, Z. De novo balanced complex chromosome rearrangements involving chromosomes 1B and 3B of wheat and 1R of rye. Genome 2016, 59, 1076–1084. [Google Scholar] [CrossRef]
- Qi, Z.J.; Chen, P.D.; Liu, D.J.; Li, Q.Q. A new secondary reciprocal translocation discovered in Chinese wheat. Euphytica 2004, 137, 333–338. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Yang, J.; He, H.; Jin, H.; Li, X.; Ren, T.; Ren, Z.; Li, F.; Han, X.; et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 2021, 53, 574. [Google Scholar] [CrossRef]
- Ren, Z.L.; Zhang, H.Q. Induction of small-segment-translocation between wheat and rye chromosomes. Sci. China 1997, 40, 323–331. [Google Scholar] [CrossRef]
- Liu, Z.; Yue, W.; Li, D.; Wang, R.R.C.; Kong, X.; Lu, K.; Wang, G.; Dong, Y.; Jin, W.; Zhang, X. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 2008, 117, 445–456. [Google Scholar] [CrossRef]
- Wan, A.; Zhao, Z.; Chen, X.; He, Z.; Jin, S.; Jia, Q.; Yao, G.; Yang, J.; Wang, B.; Li, G. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp tritici in China in 2002. Plant Dis. 2004, 88, 896–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Translocation Lines and Wheat Parent | PH (cm) | SLN (per Spike) | KN (per Spike) | KW (per Spike) | TKW (g) | NS (m−2) | GY (kg/ha) | HI (%) |
---|---|---|---|---|---|---|---|---|
RT855-13 (CCT) | 92.6b | 24.4a | 59.20a | 2.15b | 36.4b | 362.7a | 6081.1a | 47.53a |
RT855-14 | 101.3a | 21.8b | 52.55ab | 2.02b | 38.5b | 350.4a | 5936.9a | 46.09ab |
Mianyang 11 | 97.8a | 21.4b | 45.86b | 2.51a | 49.2a | 273.2b | 5428.2b | 44.99b |
Lines | CYR29 | CYR31 | SY5 | SY7 | In the Field |
---|---|---|---|---|---|
RT855-13 (CCT) | 0 | 0 | 0 | 1 | 2 |
RT855-14 | 0 | 0 | 0 | 1 | 6 |
Mianyang 11 (wheat parent) | 8 | 7 | 8 | 7 | 8 |
Chuan-Nong 11 (CK) | 8 | 8 | 8 | 1 | 7 |
Weining rye | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ren, Z.; Tan, F.; Luo, P.; Ren, T. Molecular Cytogenetic Characterization of Novel 1RS.1BL Translocation and Complex Chromosome Translocation Lines with Stripe Rust Resistance. Int. J. Mol. Sci. 2022, 23, 2731. https://doi.org/10.3390/ijms23052731
Li Z, Ren Z, Tan F, Luo P, Ren T. Molecular Cytogenetic Characterization of Novel 1RS.1BL Translocation and Complex Chromosome Translocation Lines with Stripe Rust Resistance. International Journal of Molecular Sciences. 2022; 23(5):2731. https://doi.org/10.3390/ijms23052731
Chicago/Turabian StyleLi, Zhi, Zhenglong Ren, Feiquan Tan, Peigao Luo, and Tianheng Ren. 2022. "Molecular Cytogenetic Characterization of Novel 1RS.1BL Translocation and Complex Chromosome Translocation Lines with Stripe Rust Resistance" International Journal of Molecular Sciences 23, no. 5: 2731. https://doi.org/10.3390/ijms23052731
APA StyleLi, Z., Ren, Z., Tan, F., Luo, P., & Ren, T. (2022). Molecular Cytogenetic Characterization of Novel 1RS.1BL Translocation and Complex Chromosome Translocation Lines with Stripe Rust Resistance. International Journal of Molecular Sciences, 23(5), 2731. https://doi.org/10.3390/ijms23052731