Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code
Abstract
:1. A Background of Questions
- How is information originated and fashioned from the molecular to the cellular and intercellular level, up to the point of defining the nanotopography, the micro-, and then the macro-anatomy of a given tissue/organ system?
- Many of the processes that have been essential to build up and complete embryogenesis do not cease after birth, but they are timely resumed throughout the entire lifespan. Are these processes essential to maintain the biological identity at the cellular- and the larger anatomical-scale level? In the affirmative, how are they intertwined with the adulthood unfolding of our biology? Alternatively, but perhaps not mutually exclusively, are the anatomy and the biology of an adult individual originated through an afterbirth chronobiology of self-organizing embryonic processes?
- Why are some of these embryonic-like patterns overexpressed throughout diseased, degenerative, or cancer states?
- How can we interpret, and deploy at the therapeutic level, the finding that cancer entails relevant embryogenetic traits, and the observation that tissue regeneration itself may drift towards tumorigenesis, using common pathways in both embryogenesis and cancer? In addition, at what/up to which level does normal coherent tissue regeneration avoid such drift, while making use of the same or similar armamentarium?
- What about the increasing evidence that degenerative diseases, affecting organs with highly specified anatomical diversities and functions, are nevertheless sharing an astonishing superimposable molecular misfolding? Highly diversified tissues nonetheless show a trans-organ nature in the way they are affected by similar molecular derangement(s). This applies, for instance, to the presence of similar misfolded proteins in the brains of subjects with neurodegenerative states and in patients affected with cardiac amyloidotic failure, or cardiac Tau-pathies.
- Overall, how are non-local, long-range communicating patterns established outside the neurally mediated connection(s)?
2. An Ensemble of Physical Energies Acting as the Control Software for Chemical Signaling
2.1. The Molecular Level: Viewing Biology at the Single-Component Feature
- The physical dynamics of molecular folding;
- The establishment of nano-architectonics using supra-interactions;
- The biomolecular recognition and signal propagation afforded through the dynamics of molecular synchronization and swarming.
- The physical properties of signaling molecules intrinsically embed mechanical and electromagnetic patterning, as a whole, in an inseparable nanoworld of physical forces;
- As a consequence, we prefer referring to vibrations as an “inclusive term”, symbolizing the oneness in the way the same forces may emerge from, and be sensed by, cellular molecules;
- Such physical characteristics are fashioned to be expressed as, and consequently, respond to, precise signatures.
2.2. From the Single-Molecule Level to the Collective Behavior: Approaching Biomolecular Recognition
2.3. Electromagnetic and Nanomechanical Energies in the Modulation of Stem Cell Biology
2.4. From the Cellular to the Tissue Level
3. Bioelectricity in Living Organisms: The Emerging of a Morphogenetic Field
3.1. From Pioneering Studies to the New Course
3.2. A Visionary Perspective Awaiting Future Developments
3.3. Novel Evidence Supporting a Morphogenetic Code
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Segura-Valdez, M.L.; Agredano-Moreno, L.T.; Zamora-Cura, A.L.; Lara-Martínez, R.; Jiménez-García, L.F. Visualization of internal in situ cell structure by atomic force microscopy. Histochem. Cell Biol. 2018, 150, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr. Opin. Plant Biol. 2018, 46, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Amarouch, M.Y.; El Hilaly, J.; Mazouzi, D. AFM and FluidFM Technologies: Recent Applications in Molecular and Cellular Biology. Scanning 2018, 2018, 7801274. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; LeClaire, M.; Gimzewski, J.K. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. Nanotechnology 2018, 29, 132001. [Google Scholar] [CrossRef]
- Sahu, S.; Ghosh, S.K.; Fujita, D.; Bandyopadhyay, A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: Effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 2014, 4, 7303. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, L.; Sahu, S.; Ghosh, S.; Shiga, T.; Fujita, D.; Bandyopadhyay, A. Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell. J. Integr. Neurosci. 2016, 15, 435–462. [Google Scholar] [CrossRef]
- Acbas, G.; Niessen, K.A.; Snell, E.; Markelz, A. Optical measurements of long-range protein vibrations. Nat. Commun. 2014, 5, 3076. [Google Scholar] [CrossRef]
- Cheng, J.-X.; Xie, X.S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015, 350, aaa8870. [Google Scholar] [CrossRef]
- Browne, A.W.; Arnesano, C.; Harutyunyan, N.; Khuu, T.; Martinez, J.C.; Pollack, H.A.; Koos, D.S.; Lee, T.C.; Fraser, S.E.; Moats, R.A.; et al. Structural and Functional Characterization of Human Stem-Cell-Derived Retinal Organoids by Live Imaging. Investig. Opthalmology Vis. Sci. 2017, 58, 3311–3318. [Google Scholar] [CrossRef]
- Heraud, P.; Cowan, M.F.; Marzec, K.M.; Møller, B.L.; Blomstedt, C.K.; Gleadow, R. Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Sci. Rep. 2018, 8, 2691. [Google Scholar] [CrossRef]
- Blackshaw, S.; Snyder, S.H. Encephalopsin: A Novel Mammalian Extraretinal Opsin Discretely Localized in the Brain. J. Neurosci. 1999, 19, 3681–3690. [Google Scholar] [CrossRef] [PubMed]
- Hoang, N.; Schleicher, E.; Kacprzak, S.; Bouly, J.P.; Picot, M.; Wu, W.; Berndt, A.; Wolf, E.; Bittl, R.; Ahmad, M. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 2008, 6, e160. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, M.; Terakita, A. Diversity of animal opsin-based pigments and their optogenetic potential. Biochim. Biophys. Acta 2014, 1837, 710–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, M.L.; Blasic, J.R.; Bok, M.J.; Cameron, E.G.; Pringle, T.; Cronin, T.W.; Robinson, P.R. Shedding new light on opsin evolution. Proc. R. Soc. B Boil. Sci. 2011, 279, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailes, H.J.; Lucas, R.J. Human melanopsin forms a pigment maximally sensitive to blue light (lambdamax approximately 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc. Biol. Sci. 2013, 280, 20122987. [Google Scholar] [CrossRef] [Green Version]
- Ankri, R.; Friedman, H.; Savion, N.; Kotev-Emeth, S.; Breitbart, H.; Lubart, R. Visible light induces nitric oxide (NO) formation in sperm and endothelial cells. Lasers Surg. Med. 2010, 42, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Garza, Z.C.F.; Born, M.; Hilbers, P.A.J.; van Riel, N.A.W.; Liebmann, J. Visible Blue Light Therapy: Molecular Mechanisms and Therapeutic Opportunities. Curr. Med. Chem. 2019, 25, 5564–5577. [Google Scholar] [CrossRef]
- Iyanagi, T. Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. Biochim. Biophys. Acta 2019, 1860, 233–258. [Google Scholar] [CrossRef]
- Terakita, A.; Nagata, T. Functional Properties of Opsins and their Contribution to Light-Sensing Physiology. Zool. Sci. 2014, 31, 653–659. [Google Scholar] [CrossRef]
- Kojima, D.; Mori, S.; Torii, M.; Wada, A.; Morishita, R.; Fukada, Y. UV-Sensitive Photoreceptor Protein OPN5 in Humans and Mice. PLoS ONE 2011, 6, e26388. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, D.; Schwarz, W. TRPV Channels in Mast Cells as a Target for Low-Level-Laser Therapy. Cells 2014, 3, 662–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.-H.; Zhou, Y.; Chen, J.-Y.; Zhou, L.-W. Mitochondrial signaling for histamine releases in laser-irradiated RBL-2H3 mast cells. Lasers Surg. Med. 2010, 42, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-Z.; Chen, J.-Y.; Yu, J.-T.; Zhou, L.-W. Effects of Low Power Laser Irradiation on Intracellular Calcium and Histamine Release in RBL-2H3 Mast Cells. Photochem. Photobiol. 2007, 83, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Kumbalasiri, T.; Provencio, I. Melanopsin and other novel mammalian opsins. Exp. Eye Res. 2005, 81, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Terakita, A. The opsins. Genome Biol. 2005, 6, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonmati-Carrion, M.A.; Arguelles-Prieto, R.; Martinez-Madrid, M.J.; Reiter, R.; Hardeland, R.; Rol, M.A.; Madrid, J.A. Protecting the Melatonin Rhythm through Circadian Healthy Light Exposure. Int. J. Mol. Sci. 2014, 15, 23448–23500. [Google Scholar] [CrossRef]
- Kim, H.B.; Baik, K.Y.; Choung, P.-H.; Chung, J.H. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci. Rep. 2017, 7, 15927. [Google Scholar] [CrossRef] [Green Version]
- Zomorrodi, R.; Loheswaran, G.; Pushparaj, A.; Lim, L. Pulsed Near Infrared Transcranial and Intranasal Photobiomodulation Significantly Modulates Neural Oscillations: A pilot exploratory study. Sci. Rep. 2019, 9, 6309. [Google Scholar] [CrossRef] [Green Version]
- Iaccarino, H.F.; Singer, A.C.; Martorell, A.J.; Rudenko, A.; Gao, F.; Gillingham, T.Z.; Mathys, H.; Seo, J.; Kritskiy, O.; Abdurrob, F.; et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016, 540, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Martorell, A.J.; Paulson, A.; Suk, H.-J.; Abdurrob, F.; Drummond, G.T.; Guan, W.; Young, J.Z.; Kim, D.N.-W.; Kritskiy, O.; Barker, S.J.; et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell 2019, 177, 256–271.e22. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Yu, M.; Lin, R.; Wang, Y.; Zhuo, Z.; Cheng, N.; Wang, M.; Tang, Y.; Wang, L.; Hou, S.-T. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat. Commun. 2020, 11, 3012. [Google Scholar] [CrossRef] [PubMed]
- Cosic, I.; Cosic, D.; Lazar, K. Is it possible to predict electromagnetic resonances in proteins, DNA and RNA? EPJ Nonlinear Biomed. Phys. 2015, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Cosic, I. Macromolecular bioactivity: Is it resonant interaction between macromolecules?-theory and applications. IEEE Trans. Biomed. Eng. 1994, 41, 1101–1114. [Google Scholar] [CrossRef] [PubMed]
- Cosic, I.; Cosic, D.; Lazar, K. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model. Int. J. Environ. Res. Public Health 2016, 13, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosic, I.; Lazar, K.; Cosic, D. Prediction of Tubulin Resonant Frequencies Using the Resonant Recognition Model (RRM). IEEE Trans. Nanobiosci. 2014, 14, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Cosic, I.; Pirogova, E. Bioactive peptide design using the Resonant Recognition Model. EPJ Nonlinear Biomed. Phys. 2007, 1, 7. [Google Scholar] [CrossRef]
- Koch, M.; Schneider, N.; Nick, P.; Rohrbach, A. Single microtubules and small networks become significantly stiffer on short time-scales upon mechanical stimulation. Sci. Rep. 2017, 7, 4229. [Google Scholar] [CrossRef]
- Havelka, D.; Cifra, M.; Kučera, O.; Pokorný, J.; Vrba, J. High-frequency electric field and radiation characteristics of cellular microtubule network. J. Theor. Biol. 2011, 286, 31–40. [Google Scholar] [CrossRef]
- Santelices, I.B.; Friesen, D.E.; Bell, C.; Hough, C.M.; Xiao, J.; Kalra, A.; Karthik, S.; Freedman, H.; Rezania, V.; Lewis, J.D.; et al. Response to Alternating Electric Fields of Tubulin Dimers and Microtubule Ensembles in Electrolytic Solutions. Sci. Rep. 2017, 7, 9594. [Google Scholar] [CrossRef] [Green Version]
- del Rocío Cantero, M.; Perez, P.L.; Smoler, M.; Etchegoyen, C.V.; Cantiello, H.F. Electrical Oscillations in Two-Dimensional Microtubular Structures. Sci. Rep. 2016, 6, 27143. [Google Scholar] [CrossRef]
- Kirson, E.D.; Gurvich, Z.; Schneiderman, R.; Dekel, E.; Itzhaki, A.; Wasserman, Y.; Schatzberger, R.; Palti, Y. Disruption of Cancer Cell Replication by Alternating Electric Fields. Cancer Res. 2004, 64, 3288–3295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirson, E.D.; Dbalý, V.; Tovaryš, F.; Vymazal, J.; Soustiel, J.F.; Itzhaki, A.; Mordechovich, D.; Steinberg-Shapira, S.; Gurvich, Z.; Schneiderman, R.; et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 10152–10157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupp, R.; Taillibert, S.; Kanner, A.A.; Kesari, S.; Steinberg, D.M.; Toms, S.A.; Taylor, L.P.; Lieberman, F.; Silvani, A.; Fink, K.L.; et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. JAMA 2015, 314, 2535–2543. [Google Scholar] [CrossRef]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of tumor-treating fields plus maintenance temozolomide vs. maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havelka, D.; Zhernov, I.; Teplan, M.; Lánský, Z.; Chafai, D.E.; Cifra, M. Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network. Sci. Rep. 2022, 12, 2462. [Google Scholar] [CrossRef]
- Sahu, S.; Ghosh, S.; Hirata, K.; Fujita, D.; Bandyopadhyay, A. Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 2013, 102, 123701. [Google Scholar] [CrossRef]
- Celardo, G.L.; Angeli, M.; Craddock, T.J.A.; Kurian, P. On the existence of superradiant excitonic states in microtubules. New J. Phys. 2018, 21, 023005. [Google Scholar] [CrossRef]
- Sanchez, T.; Dogic, Z. Engineering Oscillating Microtubule Bundles. Methods Enzymol. 2013, 524, 205–224. [Google Scholar] [CrossRef]
- O’Keeffe, K.P.; Hong, H.; Strogatz, S.H. Oscillators that sync and swarm. Nat. Commun. 2017, 8, 1504. [Google Scholar] [CrossRef]
- Sumino, Y.; Nagai, K.H.; Shitaka, Y.; Tanaka, D.; Yoshikawa, K.; Chaté, H.; Oiwa, K. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 2012, 483, 448–452. [Google Scholar] [CrossRef]
- Niessen, K.A.; Xu, M.; George, D.K.; Chen, M.C.; Ferré-D’Amaré, A.R.; Snell, E.; Cody, V.; Pace, J.; Schmidt, M.; Markelz, A.G. Protein and RNA dynamical fingerprinting. Nat. Commun. 2019, 10, 1026. [Google Scholar] [CrossRef] [PubMed]
- Niessen, K.A.; Xu, M.; Paciaroni, A.; Orecchini, A.; Snell, E.; Markelz, A.G. Moving in the Right Direction: Protein Vibrations Steering Function. Biophys. J. 2017, 112, 933–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romo, T.D.; Grossfield, A.; Markelz, A.G. Persistent Protein Motions in a Rugged Energy Landscape Revealed by Normal Mode Ensemble Analysis. J. Chem. Inf. Model. 2020, 60, 6419–6426. [Google Scholar] [CrossRef] [PubMed]
- George, D.K.; Chen, J.Y.; He, Y.; Knab, J.R.; Markelz, A.G. Functional-State Dependence of Picosecond Protein Dynamics. J. Phys. Chem. B 2021, 125, 11134–11140. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, J.-Y.; Knab, J.; Zheng, W.; Markelz, A. Evidence of Protein Collective Motions on the Picosecond Timescale. Biophys. J. 2011, 100, 1058–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Jiménez, M.; Ramakrishnan, G.; Tukachev, N.V.; Senn, H.M.; Wynne, K. Low-frequency vibrational modes in G-quadruplexes reveal the mechanical properties of nucleic acids. Phys. Chem. Chem. Phys. 2021, 23, 13250–13260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Tang, C.; Pan, L.; Lü, J. Low-frequency collective motion of DNA-binding domain defines p53 function. Proteins 2022, 90, 881–888. [Google Scholar] [CrossRef]
- Martens, E.A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O. Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA 2013, 110, 10563–10567. [Google Scholar] [CrossRef] [Green Version]
- Goychuk, I.; Kharchenko, V.O.; Metzler, R. How Molecular Motors Work in the Crowded Environment of Living Cells: Coexistence and Efficiency of Normal and Anomalous Transport. PLoS ONE 2014, 9, e91700. [Google Scholar] [CrossRef] [Green Version]
- Goychuk, I. Perfect anomalous transport of subdiffusive cargos by molecular motors in viscoelastic cytosol. Biosystems 2019, 177, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Efremov, A.K.; Radhakrishnan, A.; Tsao, D.S.; Bookwalter, C.S.; Trybus, K.M.; Diehl, M.R. Delineating cooperative responses of processive motors in living cells. Proc. Natl. Acad. Sci. USA 2014, 111, E334–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manchein, C.; de Oliveira, T.M.; da Silva, R.M.; Beims, M.W. Collective transient ratchet transport induced by many elastically interacting particles. Sci. Rep. 2021, 11, 16178. [Google Scholar] [CrossRef]
- Sabharwal, V.; Koushika, S.P. Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Front. Cell. Neurosci. 2019, 13, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, W.; Kang, W.; Li, Y.; Shan, Y.; Wang, S.; Liu, F. Dynamic Dissection of Dynein and Kinesin-1 Cooperatively Mediated Intercellular Transport of Porcine Epidemic Diarrhea Coronavirus along Microtubule Using Single Virus Tracking. Virulence 2021, 12, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Levin, M. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021, 184, 1971–1989. [Google Scholar] [CrossRef]
- Ventura, C.; Maioli, M.; Pintus, G.; Gottardi, G.; Bersani, F. Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells. Cardiovasc. Res. 2000, 45, 1054–1064. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.; Maioli, M.; Asara, Y.; Santoni, D.; Mesirca, P.; Remondini, D.; Bersani, F. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J. 2004, 19, 155–157. [Google Scholar] [CrossRef]
- Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Gualini, S.; Fontani, V.; Ventura, C. Radiofrequency Energy Loop Primes Cardiac, Neuronal, and Skeletal Muscle Differentiation in Mouse Embryonic Stem Cells: A New Tool for Improving Tissue Regeneration. Cell Transplant. 2012, 21, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Delitala, A.; Bianchi, F.; Tremolada, C.; Fontani, V.; Ventura, C. Radio electric asymmetric conveyed fields and human adipose-derived stem cells obtained with a non-enzymatic method and device: A novel approach to multipotency. Cell Transplant. 2014, 23, 1489–1500. [Google Scholar] [CrossRef]
- Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Gualini, S.; Cavallini, C.; Fontani, V.; Ventura, C. Radio Electric Conveyed Fields Directly Reprogram Human Dermal Skin Fibroblasts toward Cardiac, Neuronal, and Skeletal Muscle-Like Lineages. Cell Transplant. 2013, 22, 1227–1235. [Google Scholar] [CrossRef] [Green Version]
- Basoli, V.; Santaniello, S.; Rinaldi, S.; Fontani, V.; Pigliaru, G.; Wieser, M.; Strajeriu, A.; Castagna, A.; Redl, H.; Ventura, C.; et al. Physical stimulation by REAC and BMP4/WNT-1 inhibitor synergistically enhance cardiogenic commitment in iPSCs. PLoS ONE 2019, 14, e0211188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maioli, M.; Rinaldi, S.; Migheli, R.; Pigliaru, G.; Rocchitta, G.; Santaniello, S.; Basoli, V.; Castagna, A.; Fontani, V.; Ventura, C.; et al. Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson’s disease. Sci. Rep. 2015, 5, 10439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi, S.; Maioli, M.; Pigliaru, G.; Castagna, A.; Santaniello, S.; Basoli, V.; Fontani, V.; Ventura, C. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci. Rep. 2014, 4, 6373. [Google Scholar] [CrossRef] [Green Version]
- Maioli, M.; Rinaldi, S.; Pigliaru, G.; Santaniello, S.; Basoli, V.; Castagna, A.; Fontani, V.; Ventura, C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci. Rep. 2016, 6, 28682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basoli, V.; Chaudary, S.; Cruciani, S.; Santaniello, S.; Balzano, F.; Ventura, C.; Redl, H.; Dungel, P.; Maioli, M. Mechanical Stimulation of Fibroblasts by Extracorporeal Shock Waves: Modulation of Cell Activation and Proliferation Through a Transient Proinflammatory Milieu. Cell Transplant. 2020, 29, 963689720916175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimzewski, J.K.; Pelling, A.; Ventura, C. Nanomechanical Characterization of Cellular Activity. International Patent WO 2008/105919 A2, 4 September 2008. [Google Scholar]
- Facchin, F.; Canaider, S.; Tassinari, R.; Zannini, C.; Bianconi, E.; Taglioli, V.; Olivi, E.; Cavallini, C.; Tausel, M.; Ventura, C. Physical energies to the rescue of damaged tissues. World J. Stem Cells 2019, 11, 297–321. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, S.; Santaniello, S.; Montella, A.; Ventura, C.; Maioli, M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J. Stem Cells 2019, 11, 464–475. [Google Scholar] [CrossRef]
- Cruciani, S.; Garroni, G.; Ventura, C.; Danani, A.; Nečas, A.; Maioli, M. Stem cells and physical energies: Can we really drive stem cell fate? Physiol. Res. 2019, 68, S375–S384. [Google Scholar] [CrossRef]
- Wakao, S.; Kitada, M.; Kuroda, Y.; Shigemoto, T.; Matsuse, D.; Akashi, H.; Tanimura, Y.; Tsuchiyama, K.; Kikuchi, T.; Goda, M.; et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc. Natl. Acad. Sci. USA 2011, 108, 9875–9880. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, Y.; Wakao, S.; Kitada, M.; Murakami, T.; Nojima, M.; Dezawa, M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat. Protoc. 2013, 8, 1391–1415. [Google Scholar] [CrossRef]
- Kushida, Y.; Wakao, S.; Dezawa, M. Muse Cells Are Endogenous Reparative Stem Cells. Adv. Exp. Med. Biol. 2018, 1103, 43–68. [Google Scholar] [CrossRef]
- Yamada, Y.; Wakao, S.; Kushida, Y.; Minatoguchi, S.; Mikami, A.; Higashi, K.; Baba, S.; Shigemoto, T.; Kuroda, Y.; Kanamori, H.; et al. S1P–S1PR2 Axis Mediates Homing of Muse Cells Into Damaged Heart for Long-Lasting Tissue Repair and Functional Recovery After Acute Myocardial Infarction. Circ. Res. 2018, 122, 1069–1083. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Nishigaki, K.; Minatoguchi, S.; Nawa, T.; Yamada, Y.; Kanamori, H.; Mikami, A.; Ushikoshi, H.; Kawasaki, M.; Dezawa, M.; et al. Mobilized Muse Cells After Acute Myocardial Infarction Predict Cardiac Function and Remodeling in the Chronic Phase. Circ. J. 2018, 82, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, T.; Nishigaki, K.; Minatoguchi, S. Safety and Efficacy of Human Muse Cell-Based Product for Acute Myocardial Infarction in a First-in-Human Trial. Circ. J. 2020, 84, 1189–1192. [Google Scholar] [CrossRef]
- Uchida, H.; Morita, T.; Niizuma, K.; Kushida, Y.; Kuroda, Y.; Wakao, S.; Sakata, H.; Matsuzaka, Y.; Mushiake, H.; Tominaga, T.; et al. Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation. Stem Cells 2015, 34, 160–173. [Google Scholar] [CrossRef]
- Park, Y.J.; Niizuma, K.; Mokin, M.; Dezawa, M.; Borlongan, C.V. Cell-Based Therapy for Stroke: Musing with Muse Cells. Stroke 2020, 51, 2854–2862. [Google Scholar] [CrossRef]
- Goldman, J.A.; Poss, K.D. Gene regulatory programmes of tissue regeneration. Nat. Rev. Genet. 2020, 21, 511–525. [Google Scholar] [CrossRef]
- Manicka, S.; Levin, M. Minimal Developmental Computation: A Causal Network Approach to Understand Morphogenetic Pattern Formation. Entropy 2022, 24, 107. [Google Scholar] [CrossRef] [PubMed]
- Riol, A.; Cervera, J.; Levin, M.; Mafe, S. Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate. Cancers 2021, 13, 5300. [Google Scholar] [CrossRef]
- Singh, P.; Doti, R.; Lugo, J.E.; Faubert, J.; Rawat, S.; Ghosh, S.; Ray, K.; Bandyopadhyay, A. DNA as an Electromagnetic Fractal Cavity Resonator: Its Universal Sensing and Fractal Antenna Behavior. In Advances in Intelligent Systems and Computing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 213–223. [Google Scholar]
- Zhao, Y.; Zhan, Q. Electric oscillation and coupling of chromatin regulate chromosome packaging and transcription in eukaryotic cells. Theor. Biol. Med. Model. 2012, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Sen, B.; Styner, M.; Xie, Z.; Case, N.; Rubin, C.T.; Rubin, J. Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J. Biol. Chem. 2009, 284, 34607–34617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzer, G.; Pongkitwitoon, S.; Chan, M.E.; Judex, S. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J. Biomech. 2013, 46, 2296–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzer, G.; Thompson, W.R.; Sen, B.; Xie, Z.; Yen, S.S.; Miller, S.; Bas, G.; Styner, M.; Rubin, C.T.; Judex, S.; et al. Cell Mechanosensitivity to Extremely Low-Magnitude Signals Is Enabled by a LINCed Nucleus. Stem Cells 2015, 33, 2063–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, E.; Novoderezhkin, V.I.; Van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017, 543, 355–365. [Google Scholar] [CrossRef]
- Melkikh, A.V.; Khrennikov, A. Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes. Prog. Biophys. Mol. Biol. 2015, 119, 137–161. [Google Scholar] [CrossRef]
- Romero, E.; Augulis, R.; Novoderezhkin, V.I.; Ferretti, M.; Thieme, J.; Zigmantas, D.; Van Grondelle, R. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 2014, 10, 676–682. [Google Scholar] [CrossRef]
- Bohr, N. Light and life. In Proceedings of the Opening Meeting of the Second International Congress on Light Therapy, Copenhagen, Denmark, 15 August 1932. [Google Scholar]
- McKaughan, D.J. The influence of Niels Bohr on Max Delbrück: Revisiting the hopes inspired by "light and life". Isis 2005, 96, 507–529. [Google Scholar] [CrossRef]
- Schrödinger, E. “What Is Life?: The Physical Aspect of the Living Cell”. In Proceedings of the Lectures Delivered under the Auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin, Ireland, February 1943. [Google Scholar]
- Laager, F. Light based cellular interactions: Hypotheses and perspectives. Front. Phys. 2015, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Gegear, R.J.; Casselman, A.; Waddell, S.; Reppert, S.M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 2008, 454, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Gegear, R.J.; Foley, L.E.; Casselman, A.; Reppert, S.M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 2010, 463, 804–807. [Google Scholar] [CrossRef]
- Kumar, S.; Boone, K.; Tuszyński, J.; Barclay, P.; Simon, C. Possible existence of optical communication channels in the brain. Sci. Rep. 2016, 6, 36508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, L.E.; Gegear, R.J.; Reppert, S.M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2011, 2, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sia, P.I.; Luiten, A.; Stace, T.M.; Wood, J.P.; Casson, R.J. Quantum biology of the retina. Clin. Exp. Ophthalmol. 2014, 42, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Palczewska, G.; Vinberg, F.; Stremplewski, P.; Bircher, M.P.; Salom, D.; Komar, K.; Zhang, J.; Cascella, M.; Wojtkowski, M.; Kefalov, V.J.; et al. Human infrared vision is triggered by two-photon chromophore isomerization. Proc. Natl. Acad. Sci. USA 2014, 111, E5445–E5454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeGates, T.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 2012, 491, 594–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikka, G.; Hussmann, G.P.; Pandey, D.; Cao, S.; Hori, D.; Park, J.T.; Steppan, J.; Kim, J.H.; Barodka, V.; Myers, A.C.; et al. Melanopsin mediates light-dependent relaxation in blood vessels. Proc. Natl. Acad. Sci. USA 2014, 111, 17977–17982. [Google Scholar] [CrossRef] [Green Version]
- Clarke, E.; Jacyna, L.S. Nineteenth-Century Origins of Neuroscientific Concepts; University of California Press: Berkeley, CA, USA, 1987. [Google Scholar]
- Caneva, K.L.; Pera, M.; Mandelbaum, J. The Ambiguous Frog: The Galvani-Volta Controversy on Animal Electricity. J. Interdiscip. Hist. 1993, 23, 796. [Google Scholar] [CrossRef]
- Piccolino, M.; Bresadola, M. Shocking Frogs: Galvani, Volta, and the Electric Origins of Neuroscience; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- McCaig, C.D.; Rajnicek, A.M.; Song, B.; Zhao, M. Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiol. Rev. 2005, 85, 943–978. [Google Scholar] [CrossRef] [Green Version]
- Du Bois-Reymond, E. Untersuchungen über thierische Elektricität [Investigations on animal electricity]. Ann. Phys. Chem. 1848, 151, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Schuetze, S.M. The discovery of the action potential. Trends Neurosci. 1983, 6, 164–168. [Google Scholar] [CrossRef]
- Finkelstein, G. Emil du Bois-Reymond: Neuroscience, Self, and Society in Nineteenth-Century Germany; The MIT Press: Cambridge, MA, USA; London, UK, 2013. [Google Scholar]
- Burr, H.S.; Mauro, A. Millivoltmeters. Yale J. Biol. Med. 1949, 21, 249–253. [Google Scholar]
- Burr, H.S. Field Properties of the Developing Frog’s Egg. Proc. Natl. Acad. Sci. USA 1941, 27, 276–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, O.E.; Burr, H.S. Growth Correlates of Electromotive Forces in Maize Seeds. Proc. Natl. Acad. Sci. USA 1946, 32, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, H.S. Effect of a Severe Storm on Electric Properties of a Tree and the Earth. Science 1956, 124, 1204–1205. [Google Scholar] [CrossRef] [PubMed]
- Burr, H.S.; Northrop, F.S.C. Evidence for the Existence of an Electro-Dynamic Field in Living Organisms. Proc. Natl. Acad. Sci. USA 1939, 25, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, H.S.; Seifriz, W. Response of the Slime Mold to Electric Stimulus. Science 1955, 122, 1020–1021. [Google Scholar] [CrossRef] [PubMed]
- Burr, H.S.; Musselman, L.K.; Barton, D.S.; Kelly, N.B. A bio-electric record of human ovulation. Science 1937, 86, 312. [Google Scholar] [CrossRef] [PubMed]
- Grenell, R.G.; Burr, H.S. Electrical Correlates of Peripheral Nerve Injury: A Preliminary Note. Science 1946, 103, 48–49. [Google Scholar] [CrossRef]
- Grenell, R.G.; Burr, H.S. Surface potentials and peripheral nerve regeneration. Fed. Proc. 1947, 6, 117. [Google Scholar]
- Burr, H.S.; Strong, L.C.; Smith, G.M. Bio-Electric Correlates of Methylcolanthrene-Induced Tumors in Mice. Yale J. Biol. Med. 1938, 10, 539–544. [Google Scholar]
- Burr, H.S. Changes in the Field Properties of Mice with Transplanted Tumors. Yale J. Biol. Med. 1941, 13, 783–788. [Google Scholar] [PubMed]
- Langman, L.; Burr, H.S. Electrometric Studies in Women with Malignancy of Cervix Uteri. Science 1947, 105, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Langman, L.; Burr, H. A technique to aid in the detection of malignancy of the female genital tract. Am. J. Obstet. Gynecol. 1949, 57, 274–281. [Google Scholar] [CrossRef]
- Burr, H.S. Blueprint for Immortality, the Electric Patterns of Life; Neville Spearman Limited: London, UK, 1972. [Google Scholar]
- Tyner, K.M.; Kopelman, R.; Philbert, M.A. “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 2007, 93, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-E.K.; Smith, R.; Kopelman, R. Nanoparticle PEBBLE Sensors in Live Cells and In Vivo. Annu. Rev. Anal. Chem. 2009, 2, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.S.; Levin, M. General Principles for Measuring Resting Membrane Potential and Ion Concentration Using Fluorescent Bioelectricity Reporters. Cold Spring Harb. Protoc. 2012, 2012, 385–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.S.; Levin, M. Measuring Resting Membrane Potential Using the Fluorescent Voltage Reporters DiBAC4(3) and CC2-DMPE. Cold Spring Harb. Protoc. 2012, 2012, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Sundelacruz, S.; Levin, M.; Kaplan, D.L. Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE 2008, 3, e3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundelacruz, S.; Moody, A.T.; Levin, M.; Kaplan, D.L. Membrane Potential Depolarization Alters Calcium Flux and Phosphate Signaling During Osteogenic Differentiation of Human Mesenchymal Stem Cells. Bioelectricity 2019, 1, 56–66. [Google Scholar] [CrossRef]
- Wang, X.; Bukoreshtliev, N.V.; Gerdes, H.-H. Developing Neurons Form Transient Nanotubes Facilitating Electrical Coupling and Calcium Signaling with Distant Astrocytes. PLoS ONE 2012, 7, e47429. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gerdes, H.-H. Long-distance electrical coupling via tunneling nanotubes. Biochim. Biophys. Acta (BBA) Biomembr. 2012, 1818, 2082–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.; Uzel, S.G.M.; Akagi, J.; Wlodkowic, D.; Andreeva, V.; Yelick, P.C.; Devitt-Lee, A.; Pare, J.-F.; Levin, M. Bioelectric signalling via potassium channels: A mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J. Physiol. 2016, 594, 3245–3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leddy, H.A.; McNulty, A.L.; Lee, S.H.; Rothfusz, N.E.; Gloss, B.; Kirby, M.L.; Hutson, M.R.; Cohn, D.H.; Guilak, F.; Liedtke, W. Follistatin in chondrocytes: The link between TRPV4 channelopathies and skeletal malformations. FASEB J. 2014, 28, 2525–2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, M. The Biophysics of Regenerative Repair Suggests New Perspectives on Biological Causation. BioEssays 2020, 42, e1900146. [Google Scholar] [CrossRef] [PubMed]
- Law, R.; Levin, M. Bioelectric memory: Modeling resting potential bistability in amphibian embryos and mammalian cells. Theor. Biol. Med. Model. 2015, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Tseng, A.; Levin, M. Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation. Commun. Integr. Biol. 2013, 6, e22595. [Google Scholar] [CrossRef]
- Levin, M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J. Physiol. 2014, 592, 2295–2305. [Google Scholar] [CrossRef]
- Chernet, B.; Levin, M. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. J. Clin. Exp. Oncol. 2013, Suppl. 1, S1–002. [Google Scholar] [CrossRef]
- Levin, M. Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning. Biosystems 2012, 109, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Chernet, B.T.; Fields, C.; Levin, M. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos. Front. Physiol. 2015, 5, 519. [Google Scholar] [CrossRef] [Green Version]
- Tuszynski, J.; Tilli, T.M.; Levin, M. Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer. Curr. Pharm. Des. 2017, 23, 4827–4841. [Google Scholar] [CrossRef] [PubMed]
- Lobikin, M.; Chernet, B.; Lobo, D.; Levin, M. Resting potential, oncogene-induced tumorigenesis, and metastasis: The bioelectric basis of cancer in vivo. Phys. Biol. 2012, 9, 065002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassinari, R.; Cavallini, C.; Olivi, E.; Facchin, F.; Taglioli, V.; Zannini, C.; Marcuzzi, M.; Ventura, C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int. J. Mol. Sci. 2022, 23, 3157. https://doi.org/10.3390/ijms23063157
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. International Journal of Molecular Sciences. 2022; 23(6):3157. https://doi.org/10.3390/ijms23063157
Chicago/Turabian StyleTassinari, Riccardo, Claudia Cavallini, Elena Olivi, Federica Facchin, Valentina Taglioli, Chiara Zannini, Martina Marcuzzi, and Carlo Ventura. 2022. "Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code" International Journal of Molecular Sciences 23, no. 6: 3157. https://doi.org/10.3390/ijms23063157
APA StyleTassinari, R., Cavallini, C., Olivi, E., Facchin, F., Taglioli, V., Zannini, C., Marcuzzi, M., & Ventura, C. (2022). Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. International Journal of Molecular Sciences, 23(6), 3157. https://doi.org/10.3390/ijms23063157