SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale
Abstract
:1. Introduction
2. SARS-CoV-2 and the Immune System
3. Aspergillus in Health and SARS-CoV-2
4. Challenges in Diagnosing CAPA
5. Therapeutics in CAPA
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwartz, D.A.; Graham, A.L. Potential Maternal and Infant Outcomes from (Wuhan) Coronavirus 2019-nCoV Infecting Pregnant Women: Lessions from SARS, MERS and Other Human Coronavirus Infection. Viruses 2020, 2, 194. [Google Scholar] [CrossRef] [Green Version]
- Weekly Epidemiological Update on COVID-19- 15 February 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---15-february-2022 (accessed on 19 February 2022).
- Block, H.; Zarbock, A. A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? Cells 2021, 10, 1932. [Google Scholar] [CrossRef] [PubMed]
- Aan, F.J.; Glibetic, N.; Montoya-Uribe, V.; Matter, M.L. COVID-19 and the Microbiome: The Gut-Lung Connection. Ref. Modul. Food Sci. 2021. [Google Scholar] [CrossRef]
- Attiq, A.; Yao, L.J.; Afzal, S.; Khan, M.A. The triumvirate of NF-κB, inflammation and cytokine storm in COVID-19. Int. Immunopharmacol. 2021, 101, 108255. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.J.; Bradbury, C.; Abrams, S.T.; Wang, G.; Toh, C. COVID-19 and immunothrombosis: Emerging understanding and clinical management. Br. J. Haematol. 2021, 194, 518–529. [Google Scholar] [CrossRef]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef] [PubMed]
- Segrelles-Calvo, G.; Araújo, G.R.; Llopis-Pastor, E.; Carrillo, J.; Hernández-Hernández, M.; Rey, L.; Rodriguez Melean, N.; Escribano, I.; Antón, E.; Zamarro, C.; et al. Prevalence of opportunistic invasive aspergillosis in COVID-19 patients with severe pneumonia. Mycoses 2020, 64, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Roudbary, M.; Kumar, S.; Kumar, A.; Černáková, L.; Nikoomanesh, F.; Rodrigues, C.F. Overview on the Prevalence of Fungal Infections, Immune Response, and Microbiome Role in COVID-19 Patients. J. Fungi 2021, 7, 720. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulou, A.; Garrigos, Z.E.; Vijayvargiya, P.; Lerner, A.H.; Farmakiotis, D. Invasive Pulmonary Aspergillosis in Patients with SARS-CoV-2 Infection: A Systematic Review of the Literature. Diagnostics 2020, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Farooq, F.; Jain, S.K.; Golinska, P.; Rai, M. Comparative Host–Pathogen Interaction Analyses of SARS-CoV-2 and Aspergillus fumigatus, and Pathogenesis of COVID-19-Associated Aspergillosis. Microb. Ecol. 2021, 1–9. [Google Scholar] [CrossRef]
- Feys, S.; Almyroudi, M.P.; Braspenning, R.; Lagrou, K.; Spriet, I.; Dimopoulos, G.; Wauters, J. A Visual and Comprehensive Review on COVID-19-Associated Pulmonary Aspergillosis (CAPA). J. Fungi 2021, 7, 1067. [Google Scholar] [CrossRef] [PubMed]
- Salazar, F.; Bignell, E.; Brown, G.D.; Cook, P.C.; Warris, A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin. Microbiol. Rev. 2022, 35. [Google Scholar] [CrossRef] [PubMed]
- Reizine, F.; Pinceaux, K.; Lederlin, M.; Autier, B.; Guegan, H.; Gacouin, A.; Luque-Paz, D.; Boglione-Kerrien, C.; Bacle, A.; Le Daré, B.; et al. Influenza- and COVID-19-Associated Pulmonary Aspergillosis: Are the Pictures Different? J. Fungi 2021, 7, 388. [Google Scholar] [CrossRef] [PubMed]
- Ezeokoli, O.; Gcilitshana, O.; Pohl, C. Risk Factors for Fungal Co-Infections in Critically Ill COVID-19 Patients, with a Focus on Immunosuppressants. J. Fungi 2021, 7, 545. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mishra, T.; Kumar, N.; Soubani, A.O. Influenza Associated Aspergillosis Nationwide Trends, Predictors and Outcomes from 2005 to 2014. Chest 2020, 5, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Sugui, J.A. Aspergillus fumigatus—What Makes the Species a Ubiquitous Human Fungal Pathogen? PLoS Pathog. 2013, 9, e1003743. [Google Scholar] [CrossRef] [PubMed]
- Von Lilienfeld-Toal, M.; Wagener, J.; Einsele, H.; Cornely, O.A.; Kurzai, O. Invasive Fungal Infection New Treatments to Meet New Challenges. Dtsch. Arztebl. Int. 2019, 116, 271–278. [Google Scholar] [PubMed]
- Casalini, G.; Giacomelli, A.; Ridolfo, A.; Gervasoni, C.; Antinori, S. Invasive Fungal Infections Complicating COVID-19: A Narrative Review. J. Fungi 2021, 7, 921. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Napoli, R.D. Features, Evaluation, and Treatment of Coronavirus (COVID-19). 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554776/ (accessed on 21 February 2022).
- Wong, L.Y.R.; Perlman, S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses–are we our own worst enemy? Nat. Rev. Immunol. 2022, 22, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, M. Immunological response to COVID-19 and its role as a predisposing factor in invasive aspergillosis. Curr. Med. Mycol. 2020, 6, 75–79. [Google Scholar] [PubMed]
- Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVI-19: Serendipity or opportunity for intervention? Cancer Discov. 2020, 10, 779–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perico, L. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat. Rev. Nephrol. 2021, 17, 46–64. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, Y.; Zhu, B.; Jang, K.-J.; Yoo, J.-S. Innate immune sensing of coronavirus and viral evasion strategies. Exp. Mol. Med. 2021, 53, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Su, G.; Sun, J.; Zhang, Y. Activation of the TLR4/MyD88 signaling pathway contributes to the development of human hepatocellular carcinoma via upregulation of IL-23 and IL-17A. Oncol Lett. 2018, 15, 9647–9654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboudounya, M.M.; Heads, R.J. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediat. Inflamm. 2021, 2021, 8874339. [Google Scholar] [CrossRef] [PubMed]
- Seth, R.B.; Sun, L.; Ea, C.K.; Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signalling protein that activates NF-kappaB and IRF3. Cell 2005, 122, 669–682. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A.; Jha, B.K.; Silverman, R.H. New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 2011, 37, 49–57. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21190483 (accessed on 27 March 2020). [CrossRef] [PubMed] [Green Version]
- Hasselbalch, H.C. COVID-19 as a mediator of interferon deficiency and hyperinflammation: Rationale for the use of JAK1/2 inhibitors in combination with interferon. Cytokine Growth Factor Rev. 2021, 60, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, S. Interferon antagonism by SARS-CoV-2: A functional study using reverse genetics. Lancet Microbe 2021, 2, 210–218. [Google Scholar] [CrossRef]
- Li, J.Y. The ORF6, ORF8 and Nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon-signalling pathway. Virus Res. 2020, 286, 198074. [Google Scholar] [CrossRef]
- Van Eijk, L.E.; Binkhorst, M.; Bourgonje, A.R.; Offringa, A.K.; Mulder, D.J.; Bos, E.M.; Kolundzic, N.; Abdulle, A.E.; van der Voort, P.H.; Olde Rikkert, M.G.; et al. COVID-19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol. 2021, 254, 307–311. [Google Scholar]
- Calabrese, L.H.; Winthrop, K.; Strand, V.; Yazdany, J.; Walter, J.E. Type I interferon, anti-interferon antibodies, and COVID-19. Lancet Rheumatol. 2021, 3, 246–247. [Google Scholar] [CrossRef]
- Kalil, A.C. Efficacy of interferon beta-1a plus Remdesevir compared with Remdesevir alone in hospitalised adults with COVID-19: A double bind, randomised, placebo-controlled, phase 3 trial. Lancet Respir Med. 2021, 9, 1365–1376. [Google Scholar] [CrossRef]
- Asif, A.A. Efficacy of subcutaneous interferon-beta in COVID-19: A meta-analysis and systematic review. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Investig. 2020, 130, 4694–4703. [Google Scholar] [CrossRef] [PubMed]
- Ragab, D.; Eldin, H.S.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Noris, M.; Benigni, A.; Remuzzi, G. The case of complement activation in COVID-19 multiogan impact. Kidney Int. 2020, 98, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Janiuk, K.; Jabłońska, E.; Garley, M. Significance of NETs Formation in COVID-19. Cells 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.A. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 10, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Gillot, C.; Favresse, J.; Mullier, F.; Lecompte, T.; Dogné, J.-M.; Douxfils, J. NETosis and the Immune System in COVID-19: Mechanisms and Potential Treatments. Front. Pharmacol. 2021, 12, 708302. [Google Scholar] [CrossRef] [PubMed]
- Schönrich, G.; Raftery, M.J.; Samstag, Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv. Biol. Regul. 2020, 77, 100741. [Google Scholar] [CrossRef] [PubMed]
- Parente, R.; Doni, A.; Bottazzi, B.; Garlanda, C.; Inforzato, A. The complement system in Aspergillus fumigatus infections and its crosstalk with pentraxins. FEBS Lett. 2020, 594, 2480–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margalit, A.; Kavanagh, K. The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol. Rev. 2015, 39, 670–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protti, A.; Meessen, J.; Bottazzi, B.; Garlanda, C.; Milani, A.; Bacci, M.; Mantovani, A.; Cecconi, M.; Latini, R.; Caironi, P. Circulating pentraxin 3 in severe COVID-19 or other pulmonary sepsis. Eur. J. Clin. Investig. 2021, 51, e13530. [Google Scholar] [CrossRef]
- Costantini, C.; Van De Veerdonk, F.L.; Romani, L. Covid-19-Associated Pulmonary Aspergillosis: The Other Side of the Coin. Vaccines 2020, 8, 713. [Google Scholar] [CrossRef] [PubMed]
- Cramer, R.A.; Rivera, A.; Hohl, T.M. Immune responses against Aspergillus Fumigatus: What have we learned? Curr. Opin. Infect. Dis. 2011, 24, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Dewi, I.M.W. Invasive pulmonary aspergillosis associated with viral pneumonitis. Curr. Opin. Microbiol. 2021, 62, 21–27. [Google Scholar] [CrossRef]
- Gangneux, J.-P.; Dannaoui, E.; Fekkar, A.; Luyt, C.-E.; Botterel, F.; De Prost, N.; Tadié, J.-M.; Reizine, F.; Houzé, S.; Timsit, J.-F.; et al. Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: The French multicentre MYCOVID study. Lancet Respir. Med. 2021, 10, 180–190. [Google Scholar] [CrossRef]
- Bartoletti, M.; Pascale, R.; Cricca, M.; Rinaldi, M.; Maccaro, A.; Bussini, L.; Fornaro, G.; Tonetti, T.; Pizzilli, G.; Francalanci, E.; et al. Epidemiology of Invasive Pulmonary Aspergillosis Among Intubated Patients With COVID-19: A Prospective Study. Clin. Infect. Dis. 2020, 73, e3606–e3614. [Google Scholar] [CrossRef]
- Xu, J.; Yang, X.; Lv, Z.; Zhou, T.; Liu, H.; Zou, X.; Cao, F.; Zhang, L.; Liu, B.; Chen, W.; et al. Risk Factors for Invasive Aspergillosis in Patients Admitted to the Intensive Care Unit with Coronavirus Disease 2019: A Multicenter Retrospective Study. Front. Med. 2021, 8, 753659. [Google Scholar] [CrossRef]
- Montrucchio, G.; Lupia, T.; Lombardo, D.; Stroffolini, G.; Corcione, S.; De Rosa, F.G.; Brazzi, L. Risk factors for invasive aspergillosis in ICU patients with COVID-19: Current insights and new key elements. Ann. Intensiv. Care 2021, 11, 136. [Google Scholar] [CrossRef]
- Lai, C.-C.; Yu, W.-L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 2020, 54, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Prattes, J.; Wauters, J.; Giacobbe, D.R.; Salmanton-García, J.; Maertens, J.; Bourgeois, M.; Reynders, M.; Rutsaert, L.; Van Regenmortel, N.; Lormans, P.; et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—A multinational observational study by the European Confederation of Medical Mycology. Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- White, P.L. A national Strategy to Diagnose Coronavirus Disease 2019-Associated Invasive Fungal Disease in the Intensive Care Unit. Clin. Infect. Dis. 2021, 73, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Spikes, S. Gliotoxin Production in Aspergillus fumigatus Contributes to Host-Specific Differences in Virulence. J. Infect. Dis. 2008, 197, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupfahl, C. Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int. J. Med. Microbiol. 2008, 298, 319–327. [Google Scholar] [CrossRef] [PubMed]
- The Recovery Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. NEJM 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Lionakis, M.S.; Kontoyiannis, D.P. Glucocorticoids and invasive fungal infections. Lancet 2003, 362, 1828–1838. [Google Scholar] [CrossRef]
- Ng, T.T.; Robson, G.D.; Denning, D.W. Hydrocortisone-enhanced growth of Aspergillus simplications for pathogenesis. Microbiology 1994, 140, 2475–2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutulo, M. Use of glucocorticoids and risk of infections. Autoimmun. Rev. 2008, 8, 153–155. [Google Scholar] [CrossRef]
- Chen, W.; Yin, C.; Zhong, M.; Hu, B.; Gao, X.; Zhang, K.; Liu, Y.; Zhuang, G. Incidence, Risk Factors and Outcomes of Patients with COVID-19-Associated Pulmonary Aspergillosis (CAPA) in Intensive Care Units: A systematic Review and Meta-analysis of 29 Cohort Studies. Res. Sq. 2021; submitted. [Google Scholar]
- Wei, Q.; Lin, H.; Wei, R.-G.; Chen, N.; He, F.; Zou, D.-H.; Wei, J.-R. Tocilizumab treatment for COVID-19 patients: A systematic review and meta-analysis. Infect. Dis. Poverty 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.J. IL-6 inhibition and infection: Treating patients with tocilizumab. Rheumatology 2011, 51, 769–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, C.A.; DeRonde, K.J.; Vega, A.D.; Maxam, M.; Holt, G.; Natori, Y.; Zamora, J.G.; Salazar, V.; Boatwright, R.; Morris, S.R.; et al. Effects of Tocilizumab in COVID-19 patients: A cohort study. BMC Infect. Dis. 2020, 20, 964. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Almyroudi, M.P.; Myrianthefs, R.J. COVID-19-Associated Pulmonary Aspergillosis. J. Intensive Med. 2021, 1, 71–80. [Google Scholar] [CrossRef]
- Dagenais, T.R.T.; Keller, N.P. Pathogenesis of Apsergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franquet, T. Spectrum of Pulmonary Aspergillosis: Histologic, Clinical and Radiologic Findings. Radi-Ographics 2001, 21, 825–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong, F.; Waymack, J.R. Aspergillosis. StatPearls. Aspergillosis–StatPearls–NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482241/ (accessed on 12 March 2022).
- Arastehfar, A.; Carvalho, A.; Van De Veerdonk, F.L.; Jenks, J.D.; Koehler, P.; Krause, R.; Cornely, O.A.; Perlin, D.S.; Lass-Flörl, C.; Hoenigl, M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment. J. Fungi 2020, 6, 91. [Google Scholar] [CrossRef]
- Koehler, P. Defining and managing COVID-19 associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. 2021, 21, 149–162. [Google Scholar] [CrossRef]
- Fatima, S.; Ratnani, I.; Husain, M.; Surani, S. Radiological Findings in Patients with COVID-19. Cureus 2020, 12, e7651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bright, W.F.; Overman, S.B.; Ribes, J.A. (1-3)-β-D-Glucan Assay: A review of its Laboratory and Clinical Application. Lab. Med. 2011, 42, 679–685. [Google Scholar]
- Marty, F.M. Reactivity of (1-3)-β-D-Glucan Assay with Commonly Used Intravenous Antimicrobials. Antimicrob Agents Chemother. 2006, 50, 3450–3453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liss, B.; Cornely, O.A.; Hoffman, D.; Dimitriou, V.; Wisplinghoff, H. 1, 3-β-d-Glucan contamination of common antimicrobials. J. Antimicrob. Chemother. 2016, 71, 913–915. [Google Scholar] [CrossRef] [PubMed]
- Demiraslan, H. Assessing the risk of false positive serum galactomannan among patients receiving piperacil-lin/tazobactam for febrile neutropenia. Med. Mycol. 2017, 55, 535–540. [Google Scholar] [PubMed] [Green Version]
- Boonsarngsuk, V.; Niyompattama, A.; Teosirimongkol, C.; Sriwanichrak, K. False-positive serum and bronchoalveolar lavage Aspergillus galactomannan assays caused by different antibiotics. Scand. J. Infect. Dis. 2010, 42, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.D. False positive Aspergillus galactomannan immunoassays associated with intravenous human immunoglobulin administration. Clin. Microbiol. Infect. 2020, 26, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-H.; Lai, H.-H.; Lin, H.-C.; Sun, K.-S.; Chen, C.-Y. Investigating Factors of False-Positive Results of Aspergillus Galactomannan Assay: A Case–Control Study in Intensive Care Units. Front. Pharmacol. 2021, 12, 747280. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Mennink-Kersten, M.A.S.H. Issues with galactomannan testing. Med. Mycol. 2006, 44, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, C.R. Development of an Immunochromatographic Lateral-flow device for Rapid Serodiagnosis of Invasive As-pergillosis. Clin. Vaccine Immunol. 2008, 15, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Neofytos, D.; Railkar, R.; Mullane, K.M.; Fredricks, D.N.; Granwehr, B.; Marr, K.A.; Almyroudis, N.G.; Kontoyiannis, D.P.; Maertens, J.; Fox, R.; et al. Correlation between Circulating Fungal Biomarkers and Clinical Outcome in Invasive Aspergillosis. PLoS ONE 2015, 10, e0129022. [Google Scholar] [CrossRef] [PubMed]
- White, S.K.; Schmidt, R.L.; Walker, B.S.; E Hanson, K. (1→3)-β-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst. Rev. 2020, 2020. [Google Scholar] [CrossRef]
- Mercier, T. Defining Galactomannan Positivity in the Updated EORTC/MSGERC Consensus Definitions of Invasive Fungal Diseases. Clin. Infect. Dis. 2021, 72, S89–S94. [Google Scholar] [CrossRef]
- White, P.L.; Price, J.S.; Posso, R.; Cutlan-Vaughan, M.; Vale, L.; Backx, M. Evaluation of the Performance of the IMMY sona Aspergillus Galactomannan Lateral Flow Assay When Testing Serum to Aid in Diagnosis of Invasive Aspergillosis. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [PubMed]
- Hoenigi, M. Serum lateral flow assay with digital reader for the diagnosis of invasive pulmonary aspergillosis: A two centre mixed cohort study. Mycoses 2021, 64, 1197–1202. [Google Scholar] [CrossRef]
- Held, J.; Schmidt, T.; Thornton, C.R.; Kotter, E.; Bertz, H. Comparison of a novel Aspergillus lateral-flow device and the Platelia® galactomannan assay for the diagnosis of invasive aspergillosis following haematopoietic stem cell transplantation. Infection 2013, 41, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W. Chronic pulmonary aspergillosis: Rationale and clinical guidelines for diagnosis and management. Eur. Respir. J. 2016, 47, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Takazono, T.; Ito, Y.; Tashiro, M.; Nishimura, K.; Saijo, T.; Yamamoto, K.; Imamura, Y.; Miyazaki, T.; Yanagihara, K.; Mukae, H.; et al. Evaluation of Aspergillus -Specific Lateral-Flow Device Test Using Serum and Bronchoalveolar Lavage Fluid for Diagnosis of Chronic Pulmonary Aspergillosis. J. Clin. Microbiol. 2019, 57, e00095-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Autier, B.; Prattes, J.; White, P.L.; Valerio, M.; Machado, M.; Price, J.; Egger, M.; Gangneux, J.-P.; Hoenigl, M. Aspergillus Lateral Flow Assay with Digital Reader for the Diagnosis of COVID-19-Associated Pulmonary Aspergillosis (CAPA): A Multicenter Study. J. Clin. Microbiol. 2022, 60. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E. Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergil-losis. Intensive Care Med. 2021, 47, 819–834. [Google Scholar] [CrossRef] [PubMed]
- Herbrecht, R. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neofytos, D. Administration of Voriconazole in patients with Renal Dysfunction. Clin. Infect. Dis. 2012, 54, 913–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute for Health and Care Excellence. Voriconazole. VORICONAZOLE | Drug | BNF content published by NICE. Available online: https://www.nice.org.uk/bnf-uk-only (accessed on 14 March 2022).
- Prattes, J. Diagnosis and treatment of COVID-19 associated pulmonary aspergillosis in critically ill patients: Results from a European confederation of medical mycology registry. Intensive Care Med. 2021, 47, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Meijer, E.F.J.; Dofferhoff, A.S.M.; Hoiting, O.; Buil, J.B.; Meis, J.F. Azole-Resistant COVID-19-Associated Pulmonary Aspergillosis in an Immunocompetent Host: A Case Report. J. Fungi 2020, 6, 79. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, L. COVID-19 associated pulmonary aspergillosis in ICU patients in a German Reference Centre: Phenotypic and Molecular Characterisation of Aspergillus fumigatus isolates. Mycoses, 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Hatzl, S.; Reisinger, A.C.; Posch, F.; Prattes, J.; Stradner, M.; Pilz, S.; Eller, P.; Schoerghuber, M.; Toller, W.; Gorkiewicz, G.; et al. Antifungal prophylaxis for prevention of COVID-19-associated pulmonary aspergillosis in critically ill patients: An observational study. Crit. Care 2021, 25, 101. [Google Scholar] [CrossRef] [PubMed]
- Van Ackerbroeck, S.; Rutsaert, L.; Roelant, E.; Dillen, K.; Wauters, J.; Van Regenmortel, N. Inhaled liposomal amphotericin-B as a prophylactic treatment for COVID-19-associated pulmonary aspergillosis/aspergillus tracheobronchitis. Crit. Care 2021, 25, 298. [Google Scholar] [CrossRef] [PubMed]
|
Biomarker | False Positive | False Negative |
---|---|---|
β-D-Glucan (BDG) |
|
|
Galactomannan (GAL) |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worku, D.A. SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale. Int. J. Mol. Sci. 2022, 23, 3228. https://doi.org/10.3390/ijms23063228
Worku DA. SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale. International Journal of Molecular Sciences. 2022; 23(6):3228. https://doi.org/10.3390/ijms23063228
Chicago/Turabian StyleWorku, Dominic Adam. 2022. "SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale" International Journal of Molecular Sciences 23, no. 6: 3228. https://doi.org/10.3390/ijms23063228
APA StyleWorku, D. A. (2022). SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale. International Journal of Molecular Sciences, 23(6), 3228. https://doi.org/10.3390/ijms23063228