Two Triacylglycerol Lipases Are Negative Regulators of Chilling Stress Tolerance in Arabidopsis
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analysis of MPL1 and LIP1, Expression Profiles of MPL1 and LIP1, and Generation of mpl1lip1 Double Mutant
2.2. The mpl1, lip1, and mpl1lip1 Plants Display Increased Chilling Stress Tolerance at Seed Germination and Post-Germination Seedling Development Stages
2.3. The mpl1, lip1 and mpl1lip1 Plants Are Chilling Tolerant When Grown in the Dark
2.4. The mpl1, lip1, and mpl1lip1 Mutations Do Not Alter the Responses to Freezing Temperatures or Heat Stress
2.5. The mpl1, lip1, and mpl1lip1 Mutations Alter Gene Expression under Chilling Stress
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Chilling and Freezing Tolerance Assays
4.3. Determination of Chlorophyll Content
4.4. RNA-seq Analysis and qRT-PCR Analysis
4.5. Phylogenetic Tree Construction
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 1994, 6, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Stockinger, E.J.; Gilmour, S.J.; Thomashow, M.F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 1997, 94, 1035–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Kasuga, M.; Sakuma, Y.; Abe, H.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998, 10, 1391–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnusamy, V.; Ohta, M.; Kanrar, S.; Lee, B.-H.; Hong, X.; Agarwal, M.; Zhu, J.-K. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003, 17, 1043–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Li, H.; Zhang, X.; Xie, Q.; Gong, Z.; Yang, S. OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis. Dev. Cell 2015, 32, 278–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Wang, P.; Si, T.; Hsu, C.-C.; Wang, L.; Zayed, O.; Yu, Z.; Zhu, Y.; Dong, J.; Tao, W.A.; et al. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability. Dev. Cell 2017, 43, 618–629.e5. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Jin, J.-B.; Lee, J.; Yoo, C.Y.; Stirm, V.; Miura, T.; Ashworth, E.N.; Bressan, R.A.; Yun, D.-J.; Hasegawa, P.M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 2007, 19, 1403–1414. [Google Scholar] [CrossRef] [Green Version]
- Ameis, D.; Merkel, M.; Eckerskorn, C.; Greten, H. Purification, characterization and molecular cloning of human hepatic lysosomal acid lipase. Eur. J. Biochem. 1994, 219, 905–914. [Google Scholar] [CrossRef]
- Sias, B.; Ferrato, F.; Grandval, P.; Lafont, D.; Boullanger, P.; De Caro, A.; Leboeuf, B.; Verger, R.; Carriere, F. Human pancreatic lipase-related protein 2 is a galactolipase. Biochemistry 2004, 43, 10138–10148. [Google Scholar] [CrossRef]
- Simons, J.W.; Gotz, F.; Egmond, M.R.; Verheij, H.M. Biochemical properties of staphylococcal (phospho)lipases. Chem. Phys. Lipids 1998, 93, 27–37. [Google Scholar] [CrossRef]
- Hernández, M.L.; Whitehead, L.; He, Z.; Gazda, V.; Gilday, A.; Kozhevnikova, E.; Vaistij, F.E.; Larson, T.R.; Graham, I.A. A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants. Plant Physiol. 2012, 160, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Yu, K.; Hildebrand, D.F. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 2010, 45, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Padham, A.K.; Hopkins, M.T.; Wang, T.W.; McNamara, L.M.; Lo, M.; Richardson, L.G.; Smith, M.D.; Taylor, C.A.; Thompson, J.E. Characterization of a plastid triacylglycerol lipase from Arabidopsis. Plant Physiol. 2007, 143, 1372–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, J.; Lorenc-Kukula, K.; Singh, V.; Reese, J.; Jander, G.; Shah, J. Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. Plant J. 2010, 64, 800–811. [Google Scholar] [CrossRef]
- El-Kouhen, K.; Blangy, S.; Ortiz, E.; Gardies, A.M.; Ferté, N.; Arondel, V. Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett. 2005, 579, 6067–6073. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Davison, T.S.; Henz, S.R.; Pape, U.J.; Demar, M.; Vingron, M.; Schölkopf, B.; Weigel, D.; Lohmann, J.U. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005, 37, 501–506. [Google Scholar] [CrossRef]
- Zeller, G.; Henz, S.R.; Widmer, C.K.; Sachsenberg, T.; Rätsch, G.; Weigel, D.; Laubinger, S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole genome tiling arrays. Plant J. 2009, 58, 1068–1082. [Google Scholar] [CrossRef]
- Cai, G.; Kim, S.C.; Li, J.; Zhou, Y.; Wang, X. Transcriptional regulation of lipid catabolism during seedling establishment. Mol. Plant 2020, 13, 984–1000. [Google Scholar] [CrossRef]
- Fan, J.; Yu, L.; Xu, C. A central role for triacylglycerol in membrane lipid breakdown, fatty acid beta-oxidation, and plant survival under extended darkness. Plant Physiol. 2017, 174, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Yan, C.; Xu, C. Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis. Plant J. 2013, 76, 930–942. [Google Scholar] [CrossRef]
- Balogh, G.; Péter, M.; Glatz, A.; Gombos, I.; Török, Z.; Horváth, I.; Harwood, J.L.; Vígh, L. Key role of lipids in heat stress management. FEBS Lett. 2013, 587, 1970–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrero-Sicilia, C.; Silvestre, S.; Haslam, R.P.; Michaelson, L.V. Lipid remodeling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci. 2017, 263, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Hölzl, G.; Dörmann, P. Chloroplast lipids and their biosynthesis. Annu. Rev. Plant Biol. 2019, 70, 51–81. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, N.P.; Weiser, C.J. An excised leaflet test for evaluation potato frost tolerance. Hort. Science 1972, 7, 467–468. [Google Scholar]
- Ristic, Z.; Ashworth, E.N. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana (Heynh) cv. Columbia during rapid cold acclimation. Protoplasma 1993, 172, 111–123. [Google Scholar] [CrossRef]
- Guan, Q.; Wu, J.; Zhang, Y.; Jiang, C.; Liu, R.; Chai, C.; Zhu, J. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 2013, 25, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 2013, 31, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Wen, C.; Zeng, H.; Zhu, J. A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Mol. Plant 2013, 6, 386–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Qian, B.; Zhao, L.; Liang, M.-H.; Zhan, X.; Zhu, J. Two Triacylglycerol Lipases Are Negative Regulators of Chilling Stress Tolerance in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 3380. https://doi.org/10.3390/ijms23063380
Wang L, Qian B, Zhao L, Liang M-H, Zhan X, Zhu J. Two Triacylglycerol Lipases Are Negative Regulators of Chilling Stress Tolerance in Arabidopsis. International Journal of Molecular Sciences. 2022; 23(6):3380. https://doi.org/10.3390/ijms23063380
Chicago/Turabian StyleWang, Ling, Bilian Qian, Lei Zhao, Ming-Hua Liang, Xiangqiang Zhan, and Jianhua Zhu. 2022. "Two Triacylglycerol Lipases Are Negative Regulators of Chilling Stress Tolerance in Arabidopsis" International Journal of Molecular Sciences 23, no. 6: 3380. https://doi.org/10.3390/ijms23063380
APA StyleWang, L., Qian, B., Zhao, L., Liang, M.-H., Zhan, X., & Zhu, J. (2022). Two Triacylglycerol Lipases Are Negative Regulators of Chilling Stress Tolerance in Arabidopsis. International Journal of Molecular Sciences, 23(6), 3380. https://doi.org/10.3390/ijms23063380