Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale
Abstract
:1. Introduction
2. Results
2.1. Combinatorial Diversity versus Human Peptidome
2.2. Design and Properties of the Resemblance-Ranking Peptide Library
2.3. Interaction of the Resemblance-Ranking Peptide Library with RTX
2.4. Validation of the Resemblance-Ranking Library Hits via Substitutional Microarrays and KD Measurements in Array Format
3. Discussion
4. Materials and Methods
4.1. Design of the Resemblance-Ranking Peptide Library
4.2. Staining of the Resemblance-Ranking Peptide Library with RTX
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leach, M.W.; Halpern, W.G.; Johnson, C.W.; Rojko, J.L.; MacLachlan, T.K.; Chan, C.M.; Galbreath, E.; Ndifor, A.M.; Blanset, D.L.; Polack, E.; et al. Use of Tissue Cross-reactivity Studies in the Development of Antibody-based Biopharmaceuticals: History, Experience, Methodology, and Future Directions. Toxicol. Pathol. 2010, 38, 1138–1166. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.; Sun, Z.; Al Safran, Z.; Poovathumkadavi, A.; Albader, S.; Ifdailat, H. Optimal Scanning Protocols for Dual-Energy CT Angiography in Peripheral Arterial Stents: An in Vitro Phantom Study. Int. J. Mol. Sci. 2015, 16, 11531–11549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Guidances (Drugs). 2021. Available online: https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs (accessed on 15 February 2022).
- Michaud, G.A.; Salcius, M.; Zhou, F.; Bangham, R.; Bonin, J.; Guo, H.; Snyder, M.; Predki, P.F.; Schweitzer, B.I. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol. 2003, 21, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Stoevesandt, O.; Palmer, E.A.; Khan, F.; Ericsson, O.; Taussig, M.J. Printing protein arrays from DNA arrays. Nat. Methods 2008, 5, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, N.; Hainsworth, E.; Bhullar, B.; Eisenstein, S.; Rosen, B.; Lau, A.Y.; Walter, J.C.; LaBaer, J. Self-Assembling Protein Microarrays. Science 2004, 305, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angenendt, P.; Kreutzberger, J.; Glökler, J.; Hoheisel, J.D. Generation of High Density Protein Microarrays by Cell-free in Situ Expression of Unpurified PCR Products. Mol. Cell. Proteom. 2006, 5, 1658–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deribe, Y.L.; Pawson, T.; Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 2010, 17, 666–672. [Google Scholar] [CrossRef]
- Biggar, K.K.; Dawson, N.J.; Storey, K.B. Real-time protein unfolding: A method for determining the kinetics of native protein denaturation using a quantitative real-time thermocycler. BioTechniques 2012, 53, 231. [Google Scholar] [CrossRef] [Green Version]
- Larman, H.B.; Zhao, Z.; Laserson, U.; Li, M.Z.; Ciccia, A.; Gakidis, M.A.M.; Church, G.; Kesari, S.; LeProust, E.M.; Solimini, N.L.; et al. Autoantigen discovery with a synthetic human peptidome. Nat. Biotechnol. 2011, 29, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Hoen, P.A.; Jirka, S.M.; Broeke, B.R.T.; Schultes, E.A.; Aguilera, B.; Pang, K.H.; Heemskerk, H.; Aartsma-Rus, A.; van Ommen, G.J.; Dunnen, J.T.D. Phage display screening without repetitious selection rounds. Anal. Biochem. 2012, 421, 622–631. [Google Scholar] [CrossRef] [Green Version]
- Vodnik, M.; Zager, U.; Strukelj, B.; Lunder, M. Phage Display: Selecting Straws Instead of a Needle from a Haystack. Molecules 2011, 16, 790–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, L.K.; Palermo, A.; Kügler, J.; Armant, O.; Isse, A.; Rentschler, S.; Jaenisch, T.; Hubbuch, J.; Dübel, S.; Nesterov-Mueller, A.; et al. Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays. J. Immunol. Methods 2017, 443, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.K.; Isse, A.; Rentschler, S.; Kneusel, R.E.; Palermo, A.; Hubbuch, J.; Nesterov-Mueller, A.; Breitling, F.; Loeffler, F.F. Antibody fingerprints in lyme disease deciphered with high density peptide arrays. Eng. Life Sci. 2017, 17, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Palermo, A.; Nesterov-Mueller, A. Serological Number for Characterization of Circulating Antibodies. Int. J. Mol. Sci. 2019, 20, 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.-S.; Lee, K.-N.; Yoo, B.-W.; Kim, J.; Kim, M.; Kim, Y.-K.; Lee, Y.-S. Automated Maskless Photolithography System for Peptide Microarray Synthesis on a Chip. J. Comb. Chem. 2010, 12, 463–471. [Google Scholar] [CrossRef]
- Buus, S.; Rockberg, J.; Forsström, B.; Nilsson, P.; Uhlen, M.; Schafer-Nielsen, C. High-resolution Mapping of Linear Antibody Epitopes Using Ultrahigh-density Peptide Microarrays. Mol. Cell. Proteom. 2012, 11, 1790–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fodor, S.P.A.; Read, J.L.; Pirrung, M.C.; Stryer, L.; Lu, A.T.; Solas, D. Light-Directed, Spatially Addressable Parallel Chemical Synthesis. Science 1991, 251, 767–773. [Google Scholar] [CrossRef] [Green Version]
- Legutki, J.B.; Zhao, Z.-G.; Greving, M.; Woodbury, N.; Johnston, S.A.; Stafford, P. Scalable high-density peptide arrays for comprehensive health monitoring. Nat. Commun. 2014, 5, 4785. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R. Rituximab (monoclonal anti-CD20 antibody): Mechanisms of action and resistance. Oncogene 2003, 22, 7359–7368. [Google Scholar] [CrossRef] [Green Version]
- Gimpelev, M.; Forrest, L.; Murray, D.; Honig, B. Helical Packing Patterns in Membrane and Soluble Proteins. Biophys. J. 2004, 87, 4075–4086. [Google Scholar] [CrossRef] [Green Version]
- Person, F.; Petschull, T.; Wulf, S.; Buescheck, F.; Biniaminov, S.; Fehrle, W.; Oh, J.; Skerka, C.; Zipfel, P.F.; Wiech, T. In situ Visualization of C3/C5 Convertases to Differentiate Complement Activation. Kidney Int. Rep. 2020, 5, 927–930. [Google Scholar] [CrossRef] [PubMed]
- UniPro. Available online: http://www.uniprot.org (accessed on 15 February 2022).
- Okada, S.; Ohzeki, M.; Taguchi, S. Efficient partition of integer optimization problems with one-hot encoding. Sci. Rep. 2019, 9, 13036. [Google Scholar] [CrossRef] [PubMed]
- Cartron, G.; Blasco, H.; Paintaud, G.; Watier, H.; Le Guellec, C. Pharmacokinetics of rituximab and its clinical use: Thought for the best use? Crit. Rev. Oncol. 2007, 62, 43–52. [Google Scholar] [CrossRef]
- Rodriguez, J.; Gutierrez, A. Pharmacokinetic properties of rituximab. Rev. Recent Clin. Trials 2008, 3, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Berinstein, N.L.; Grillo-Lopez, A.J.; White, C.A.; Bence-Bruckler, I.; Maloney, D.; Czuczman, M.; Green, D.; Rosenberg, J.; McLaughlin, P.; Shen, D. Association of serum Rituximab (IDEC–C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann. Oncol. 1998, 9, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Fauchere, J.L.; Pliska, V. Hydrophobic Parameters-Pi of Amino-Acid Side-Chains from the Partitioning of N-Acetyl-Amino-Acid Amides. Eur. J. Med. Chem. 1983, 18, 369–375. [Google Scholar]
- White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 2011, 3, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Streefkerk, D.E.; Schmidt, M.; Ippel, J.H.; Hackeng, T.M.; Nuijens, T.; Timmerman, P.; van Maarseveen, J.H. Synthesis of Constrained Tetracyclic Peptides by Consecutive CEPS, CLIPS, and Oxime Ligation. Org. Lett. 2019, 21, 2095–2100. [Google Scholar] [CrossRef] [Green Version]
- Pace, C.N.; Scholtz, J.M. A Helix Propensity Scale Based on Experimental Studies of Peptides and Proteins. Biophys. J. 1998, 75, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.B.; Gordus, A.; Krall, J.A.; MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006, 439, 168–174. [Google Scholar] [CrossRef]
- Bar, L.; Nguyen, C.; Galibert, M.; Santos-Schneider, F.; Aldrian, G.; Dejeu, J.; Lartia, R.; Coche-Guérente, L.; Molina, F.; Boturyn, D. Determination of the Rituximab Binding Site to the CD20 Epitope Using SPOT Synthesis and Surface Plasmon Resonance Analyses. Anal. Chem. 2021, 93, 6865–6872. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, S.; Ren, P.; Gruebele, M. Weak protein-protein interactions in live cells are quantified by cell-volume modulation. Proc. Natl. Acad. Sci. USA 2017, 114, 6776–6781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, M.-H.; Park, J.; Kim, E.; Hohng, S.; Kim, H.-S. Protein conformational dynamics dictate the binding affinity for a ligand. Nat. Commun. 2014, 5, 3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popov, R.; Shankara, G.K.; von Bojničić-Kninski, C.; Nesterov-Mueller, A. Renaissance Distribution for Statistically Failed Experiments. Int. J. Mol. Sci. 2019, 20, 3250. [Google Scholar] [CrossRef] [Green Version]
- Binder, M.; Otto, F.; Mertelsmann, R.; Veelken, H.; Trepel, M. The epitope recognized by rituximab. Blood 2006, 108, 1975–1978. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Wang, H.; Zhong, C.; Peng, B.; Zhang, M.; Li, B.; Huo, S.; Guo, Y.; Ding, J. Structural Basis for Recognition of CD20 by Therapeutic Antibody Rituximab. J. Biol. Chem. 2007, 282, 15073–15080. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.D.; Lambert, J.N.; Ede, N.J.; Bray, A.M. Efficient synthesis of thioether-based cyclic peptide libraries. Tetrahedron Lett. 1998, 39, 8357–8360. [Google Scholar] [CrossRef]
- Polyak, M.J.; Deans, J.P. Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood 2002, 99, 3256–3262. [Google Scholar] [CrossRef]
- Perosa, F.; Favoino, E.; Caragnano, M.A.; Dammacco, F. Generation of biologically active linear and cyclic peptides has revealed a unique fine specificity of rituximab and its possible cross-reactivity with acid sphingomyelinase-like phosphodiesterase 3b precursor. Blood 2006, 107, 1070–1077. [Google Scholar] [CrossRef]
- Chan, A.C. Rituximab’s New Therapeutic Target: The Podocyte Actin Cytoskeleton. Sci. Transl. Med. 2011, 3, 85ps21. [Google Scholar] [CrossRef]
- Fornoni, A.; Sageshima, J.; Wei, C.; Merscher-Gomez, S.; Aguillon-Prada, R.; Jauregui, A.N.; Li, J.; Mattiazzi, A.; Ciancio, G.; Chen, L.; et al. Rituximab Targets Podocytes in Recurrent Focal Segmental Glomerulosclerosis. Sci. Transl. Med. 2011, 3, 85ra46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homans, S.W. Water, water everywhere—Except where it matters? Drug Discov. Today 2007, 12, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Ladbury, J.E. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem. Biol. 1996, 3, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Schiebel, J.; Gaspari, R.; Wulsdorf, T.; Ngo, K.; Sohn, C.; Schrader, T.E.; Cavalli, A.; Ostermann, A.; Heine, A.; Klebe, G. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat. Commun. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantsar, T.; Kaiser, P.D.; Kudolo, M.; Forster, M.; Rothbauer, U.; Laufer, S.A. Decisive role of water and protein dynamics in residence time of p38α MAP kinase inhibitors. Nat. Commun. 2022, 13, 569. [Google Scholar] [CrossRef] [PubMed]
- Seckinger, A.; Delgado, J.A.; Moser, S.; Moreno, L.; Neuber, B.; Grab, A.; Lipp, S.; Merino, J.; Prosper, F.; Emde, M.; et al. Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment. Cancer Cell 2017, 31, 396–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AXXELERA UG. Available online: https://axxelera.com/ (accessed on 15 February 2022).
Peptide Sequence | Scores |
---|---|
IHTGEKPYKC | 4726 |
KCEECGKAFS | 2006 |
HQRIHTGERP | 1493 |
THTGEKPYEC | 1404 |
EDEEEEEEED | 1299 |
LPPPPPPPLP | 1123 |
PAAAAAAAGG | 1059 |
EKPYKCEECG | 959 |
PYECKECGKA | 956 |
KPYKCNECGK | 906 |
Off-Target Peptide | KD, nM | Protein, Submitted Names | ID |
---|---|---|---|
WFAEFWEENF | 243 | Single-stranded DNA-binding protein 3 | Q9BWW4 |
Metabotropic glutamate receptor 6 | O15303 | ||
Metabotropic glutamate receptor 8 | O00222 | ||
Seven transmembrane helix receptor | Q8NHA9 | ||
cDNA FLJ75348, highly similar to Homo sapiens metabotropic glutamate receptor 8b | A8K2D2 | ||
RDGDRFWWEN | 577 | Myeloperoxidase | P05164 |
Lactoperoxidase | P22079 | ||
LHSWWCVFWD | 655 | Single-stranded DNA-binding protein 2 | P81877 |
Single-stranded DNA-binding protein 3 | Q9BWW4 | ||
Single-stranded DNA-binding protein 4 | Q9BWG4 | ||
HSPC116 | Q9P038 | ||
Single-stranded DNA binding protein 4, isoform CRA_d | A0A024R7K9 | ||
LisH domain-containing protein | A1L192 | ||
SYSLEIQWWY | 676 | V-set and transmembrane domain-containing protein 2-like protein | Q96N03 |
V-set and transmembrane domain-containing protein 2B | A6NLU5 | ||
FTGWFLAWDP | 853 | Villin-1 | P09327 |
Advillin | O75366 | ||
YFPRARWYDY | 1110 | Probable maltase-glucoamylase 2 | Q2M2H8 |
Maltase-glucoamylase | Q8TE24 | ||
Maltase-glucoamylase, intestinal | E7ER45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenne, F.; Biniaminov, S.; Biniaminov, N.; Marquardt, P.; von Bojničić-Kninski, C.; Popov, R.; Seckinger, A.; Hose, D.; Nesterov-Mueller, A. Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale. Int. J. Mol. Sci. 2022, 23, 3515. https://doi.org/10.3390/ijms23073515
Jenne F, Biniaminov S, Biniaminov N, Marquardt P, von Bojničić-Kninski C, Popov R, Seckinger A, Hose D, Nesterov-Mueller A. Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale. International Journal of Molecular Sciences. 2022; 23(7):3515. https://doi.org/10.3390/ijms23073515
Chicago/Turabian StyleJenne, Felix, Sergey Biniaminov, Nathalie Biniaminov, Philipp Marquardt, Clemens von Bojničić-Kninski, Roman Popov, Anja Seckinger, Dirk Hose, and Alexander Nesterov-Mueller. 2022. "Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale" International Journal of Molecular Sciences 23, no. 7: 3515. https://doi.org/10.3390/ijms23073515
APA StyleJenne, F., Biniaminov, S., Biniaminov, N., Marquardt, P., von Bojničić-Kninski, C., Popov, R., Seckinger, A., Hose, D., & Nesterov-Mueller, A. (2022). Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale. International Journal of Molecular Sciences, 23(7), 3515. https://doi.org/10.3390/ijms23073515