Mitochondrial respiratory complex I catalyzes electron transfer from NADH to ubiquinone and pumps protons from the matrix into the intermembrane space. In particular, the complex I subunits Nad1, Nad2, Nad4, and Nad5, which are encoded by the
nad1,
nad2,
nad4,
[...] Read more.
Mitochondrial respiratory complex I catalyzes electron transfer from NADH to ubiquinone and pumps protons from the matrix into the intermembrane space. In particular, the complex I subunits Nad1, Nad2, Nad4, and Nad5, which are encoded by the
nad1,
nad2,
nad4, and
nad5 genes, reside at the mitochondrial inner membrane and possibly function as proton (H
+) and ion translocators. To understand the individual functional roles of the Nad1, Nad2, Nad4, and Nad5 subunits in bamboo, each cDNA of these four genes was cloned into the pYES2 vector and expressed in the mitochondria of the yeast
Saccharomyces cerevisiae. The mitochondrial targeting peptide
mt gene (encoding MT) and the
egfp marker gene (encoding enhanced green fluorescent protein, EGFP) were fused at the 5′-terminal and 3′-terminal ends, respectively. The constructed plasmids were then transformed into yeast. RNA transcripts and fusion protein expression were observed in the yeast transformants. Mitochondrial localizations of the MT-Nad1-EGFP, MT-Nad2-EGFP, MT-Nad4-EGFP, and MT-Nad5-EGFP fusion proteins were confirmed by fluorescence microscopy. The ectopically expressed bamboo subunits Nad1, Nad2, Nad4, and Nad5 may function in ion translocation, which was confirmed by growth phenotype assays with the addition of different concentrations of K
+, Na
+, or H
+.
Full article