Decoding the Bell-Shaped Calcium Spikes in Phosphorylation Cycles of Flagella
Abstract
:1. Introduction
1.1. Microtubules
1.2. Dyneins
1.3. Radial Spokes
1.4. Bending of Axoneme
2. Principles of Calcium Signaling
3. Calcium Signaling in Flagella
- In the case of the human sperm, the signaling is triggered by a stimulus (progesterone or nitrogen monoxide -NO) that generates Ca2+ signal through Cat-sper channels;
- It activates the ON mechanism that feeds Ca2+ into flagellum and sperm head. Since flagella are thin cylinders with a very large surface-to-volume ratio [16], these Ca2+ fluxes are efficiently injected into the cytosol.
- The pulses of Ca2+ ions function as messengers, which stimulate several axonemal proteins, primarily CaM, calaxin and IC138 of IDA-I1, to perform the control of dyneins and to modulate flagellary beats [17].
- Eventually the OFF mechanism, composed of pumps and ionic exchangers, removes Ca2+ from the cytoplasm to internal Ca2+ stores and buffers, as well as out of flagella, in order to restore the resting state [18].
4. The Principal Sensors for Ca2+ Signals in Flagella
5. Mechanism for Propagation of Intracellular Calcium Waves—The Particular Aspect of Flagellar Waves
6. Decoding of Axonemal “Ca2+ Clouds” by Phosphorylation Cycles
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MT | microtubule |
MTD | microtubule doublet |
CP | central pair |
RS | radial spoke |
ATP | adenosine triphosphate |
IDA | inner dynein arm |
ODA | outer dynein arm |
DHC | dynein heavy chain |
LC | light chain |
IC | intermediate chain |
CaM | calmodulin |
MIA | modifier of IDA |
CSC | spoke-associated complex |
N-DRC | nexin-dynein regulatory complex |
ER | endoplasmic reticulum |
SR | sarcoplasmic reticulum |
CICR | calcium induced calcium release |
PKC | protein kinase C |
IP3 | inositol triphosphate |
IP3R | inositol triphosphate receptor |
CICI | calcium induced calcium influx |
CTT | carboxyl terminal tail |
References
- Satir, P.; Christiansen, S.T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 2007, 69, 377–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satarić, M.V.; Zdravković, S.; Nemeš, T.; Satarić, B.M. Calcium signaling modulates the dynaimcs of cilia and flagella. Eur. Biophys. J. 2020, 49, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T. Axoneme structure from motile cilia. Cold Spring Harb. Perspect. Biol. 2017, 9, a028076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepanek, L.; Pigino, G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 2016, 352, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, R.; Yagi, T. Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zool. Sci. 2014, 31, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Viswanadha, R.; Sale, W.S.; Porter, M.E. Ciliar Motility: Regulation of axonemal dynein motors. Cold Spring Harb. Perspect. Biol. 2017, 9, a018325. [Google Scholar] [CrossRef]
- Lindemann, C.B.; Leich, K.A. Flagellar and ciliary beating: The proven and the possible. J. Cell Sci. 2010, 123, 519–528. [Google Scholar] [CrossRef] [Green Version]
- King, S.M.; Sale, W.S. Fifty years of microtubule sliding in cilia. Mol. Biol. Cell 2018, 29, 698–701. [Google Scholar] [CrossRef]
- Bootman, M.D.; Collins, T.J.; Peppiatt, C.M.; Prothero, L.S.; MacKenzie, L.; De Smet, P.; Travers, M.; Tovey, S.C.; Seo, J.T.; Berridge, M.J.; et al. Calcium signaling—An overview. Semin. Cell. Dev. Biol. 2001, 12, 3–10. [Google Scholar] [CrossRef]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versality and universality of calcium signalling. Net. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef]
- Burgoyne, R.D. Neuronal calcium sensor proteins: Generating diversity in neuronal Ca2+ signaling. Nat. Rev. Neurosci. 2007, 8, 182–193. [Google Scholar]
- Srivastava, N.; Pande, M. Mitochondrion: Features, functions and comparative analysis of specific probes in detecting sperm cell damages. Asian. Pac. J. Rep. 2016, 5, 445–452. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.; Ping, P.; Wang, G.; Yuan, X.; Sun, F. Outer dense fibers stabilize the axoneme to maintain sperm motility. J. Cell Mol. Med. 2018, 22, 1755–1768. [Google Scholar] [CrossRef]
- Jouaville, L.S.; Ichas, F.; Holmuhamedov, E.L.; Camacho, P.; Lechleiter, J.D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 1995, 377, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Inaba, K. Calcium sensors of ciliary outer arm dynein; functions and phylogenic considerations for eukaryotic evolution. Cilia 2015, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satarić, M.V.; Nemeš, T.; Sekulić, D.; Tuszynski, J.A. How signals of calcium ions initiate the beats of cilia and flagella. BioSystems 2019, 182, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Shiba, K.; Okai, M.; Takahashi, Y.; Shitaka, Y.; Oiwa, K.; Tanokura, M.; Inaba, K. Calaxin drives sperm chemotaxis by Ca2+ medicated direct modulation of a dynein motor. Proc. Natl. Acad. Sci. USA 2012, 109, 20497–20502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lishko, P.V.; Botchkina, I.L.; Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 2011, 471, 387–391. [Google Scholar] [CrossRef]
- Publicover, S.; Harper, C.V.; Barratt, C. Ca2+ signaling in sperm--making the most of what you’ve got. Nat. Cell Biol. 2007, 9, 235–242. [Google Scholar] [CrossRef]
- Darszon, A.; Nishikagi, T.; Beltran, C.; Treviño, C.L. Calcium channels in the development, maturation and function of spermatozoa. Physiol. Rev. 2011, 91, 1305–1355. [Google Scholar]
- Satarić, M.V.; Sekulić, D.; Živanov, M. Solitonic ionic currents along microtubules. J. Comput. Theor. Nanosci. 2010, 7, 1–10. [Google Scholar] [CrossRef]
- White, D.; de Lamirande, E.; Gagnon, C. Protein kinase C is an important signaling mediator associated with motility of intact sea urchin spermatozoa. J. Exp. Biol. 2007, 210, 4053–4064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wargo, M.J.; Dymek, E.E.; Smith, E.F. Calmodulin and PF6 are components of a complex that localizes to the C1 microtubule of the flagellar central apparatus. J. Cell Sci. 2005, 118, 4655–4665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, M.; Igushi, A.; Takemura, A. Roles of calmodulin and calcium/calmodulin-dependent protein kinase in flagellar motility regulation in the coral Acropora digitifera. Mar. Biotechnol. 2009, 11, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Shiba, K.; Baba, S.A.; Fujiwara, E.; Inaba, K. Calaxin is essential for the transmission of Ca2+ dependent asymmetric waves in sperm flagella. bioRxiv 2020, 109, 50. [Google Scholar] [CrossRef]
- Gilkey, J.C.; Jaffe, L.F.; Ridgway, E.B.; Reynolds, G.T. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J. Cell Biol. 1978, 76, 448–466. [Google Scholar] [CrossRef]
- Jaffe, L.F. Fast calcium waves. Cell Calcium 2010, 48, 102–113. [Google Scholar] [CrossRef]
- Atri, A.; Amundson, J.; Clapham, D.; Sneyd, J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 1993, 65, 1727–1739. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Kao, J.P.Y.; Egger, M.; Niggli, E. Calcium waves driven by “sensitization” wave-fronts. Cardiovasc. Res. 2007, 74, 39–45. [Google Scholar] [CrossRef]
- Jaffe, L.F. Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx. Biol. Cell 2007, 99, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.B.; Kindzelskii, A.L.; Clark, A.J.; Petty, H.R. Identification of calcium channels promoting calcium spikes and waves in HT1080 tumor cells: Their apparent roles in cell motility and invasion. Cancer Res. 2004, 64, 2482–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimer, S.T.; Schëväert, D.; Swan, M.A.; Mortimer, D. Quantitative observations of flagellar motility of capacitating human spermatozoa. Hum. Reprod. 1997, 12, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Ishijima, S.; Baba, S.A.; Mohri, H.; Suarez, S.S. Quantitative analysis of flagellar movement in hyperactivated and acrosome-reacted golden hamster spermatozoa. Mol. Reprod. Dev. 2002, 61, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Satarić, M.V.; Ilić, D.I.; Ralević, N.; Tuszynski, J.A. A nonlinear model of ionic wave propagation along microtubules. Eur. Biophys. J. 2009, 38, 637–647. [Google Scholar] [CrossRef]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.D.; Darszon, A.; Whitaker, M. Speract induces calcium oscillations in the sperm tail. J. Cell Biol. 2003, 161, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Dolmetsch, R.E.; Lewis, R.S.; Goodnow, C.C.; Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997, 386, 855–858. [Google Scholar] [CrossRef]
- Reither, G.; Schaefer, M.; Lipp, P. PKCα: A versatile key for decoding the cellular calcium toolkit. J. Cell Biol. 2006, 174, 521–533. [Google Scholar] [CrossRef]
- Dupont, G.; Houart, G.; De Konick, P. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: A simple model. Cell Calcium 2003, 34, 485–497. [Google Scholar] [CrossRef]
- Schingmann, K.; Michaut, M.A.; McElwee, J.L.; Wolf, C.; Travis, A.J.; Turner, R.M. Calmodulin and CaMKII in the sperm Principal Piece: Evidence for a Motility-Related Calcium/Calmodulin Pathway. J. Androl. 2007, 28, 706–716. [Google Scholar] [CrossRef]
- Hunley, C.; Marucho, M. Electrical propagation of condensed and diffuse ions along actin filaments. bioRxiv 2021, 50, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Zahran, E.H.M. Exact travelling wave solutions of nano-ionic solitons and nano-ionic current of microtubules using the -expansion method. Adv. Nanoparticles 2015, 4, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Sirisubtawee, S.; Koonprasert, S. Exact traveling wave solutions of certain nonlinear partial differential equations using the -expansion method, Hindawi. Adv. Theor. Math. Phys. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Kayum, M.A.; Seadawy, A.R.; Akbar, A.M.; Sugati, T.G. Stable solutions to the nonlinear RLC transmission line equation and the Sinh-Poisson equation arising in Mathematical Physics. Open Phys. 2020, 18, 710–725. [Google Scholar] [CrossRef]
- Koldenkova, V.P.; Nagai, T. Genetically encoded Ca2+ indicators; Properties and evaluation. Biochem. Biophys. Acta 2013, 1833, 1787–1797. [Google Scholar] [CrossRef] [Green Version]
- Salazar, C.; Politi, A.Z.; Höfer, T. Decoding of calcium oscillations by phosphorylation cycles: Analytic results. Biophys. J. 2008, 94, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Böhmer, M.; Van, Q.; Weyand, I.; Hagen, V.; Beyermann, M.; Matsumoto, M.; Hoshi, M.; Hildebrand, E.; Kaupp, U.B. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J. 2005, 24, 2741–2752. [Google Scholar] [CrossRef] [Green Version]
- Priego-Espinosa, D.A.; Darszon, A.; Guerrero, A.; González-Cota, A.L.; Nishikagi, T.; Martinez-Mekler, G.; Carneiro, J. Modular analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm. PLoS Comput. Biol. 2020. [Google Scholar] [CrossRef]
Our Model (Satarić et al.) | Estimated Speeds [μm/s] | Experimental Evidence | Experimental Speed [μm/s] |
---|---|---|---|
2009 [34] | 6000-overestimated | / | / |
2010 [21] | 160–240 | Huang et al. [31] | 100 |
2019 [16] | 530 | Mortimer et al. [32] | 500 |
2020 [2] | 620 | Ishijima et al. [33] | 700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satarić, M.; Nemeš, T.; Tuszynski, J. Decoding the Bell-Shaped Calcium Spikes in Phosphorylation Cycles of Flagella. Int. J. Mol. Sci. 2022, 23, 3760. https://doi.org/10.3390/ijms23073760
Satarić M, Nemeš T, Tuszynski J. Decoding the Bell-Shaped Calcium Spikes in Phosphorylation Cycles of Flagella. International Journal of Molecular Sciences. 2022; 23(7):3760. https://doi.org/10.3390/ijms23073760
Chicago/Turabian StyleSatarić, Miljko, Tomas Nemeš, and Jack Tuszynski. 2022. "Decoding the Bell-Shaped Calcium Spikes in Phosphorylation Cycles of Flagella" International Journal of Molecular Sciences 23, no. 7: 3760. https://doi.org/10.3390/ijms23073760
APA StyleSatarić, M., Nemeš, T., & Tuszynski, J. (2022). Decoding the Bell-Shaped Calcium Spikes in Phosphorylation Cycles of Flagella. International Journal of Molecular Sciences, 23(7), 3760. https://doi.org/10.3390/ijms23073760