Photodegradation of Azathioprine in the Presence of Sodium Thiosulfate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bansal, S.B.; Saxena, V.; Pokhariyal, S.; Gupta, P.; Kher, V.; Ahlawat, R.; Singhal, M.; Gulati, S. Comparison of azathioprine with mycophenolate mofetil in a living donor kidney transplant programme. Indian J. Nephrol. 2011, 21, 258–263. [Google Scholar] [PubMed]
- Urowitz, M.B.; Smythe, H.A.; Able, T.; Norman, C.S.; Travis, C. Long-term effects of azathioprine in rheumatoid arthritis. Ann. Rheum. Dis. 1982, 41 (Suppl. S1), 18–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aberer, W.; Wolff-Schreiner, E.C.; Stingl, G.; Wolff, K. Azathioprine in the treatment of pemphigus vulgaris: A long-term follow-up. J. Am. Acad. Dermatol. 1987, 16, 527–533. [Google Scholar] [CrossRef]
- Tanis, A.A. Azathioprine in inflammatory bowel disease, a safe alternative? Mediat. Inflamm. 1998, 7, 141–144. [Google Scholar] [CrossRef]
- Poormoghim, H.; Rezaei, N.; Sheidaie, Z.; Almasi, A.R.; Moradi-Lakeh, M.; Almasi, S.; Andalib, E. Systemic sclerosis: Comparison of efficacy of oral cyclophosphamide and azathioprine on skin score and pulmonary involvement—A retrospective study. Rheumatol. Int. 2014, 34, 1691–1699. [Google Scholar] [CrossRef]
- McLeod, H.L.; Siva, C. The thiopurine S-methyltansferase gene locus—Implications for clinical pharmacogenomics. Pharmacogenomics 2002, 3, 89–98. [Google Scholar] [CrossRef]
- Molyneux, G.; Gibson, F.M.; Chen, C.M.; Marway, H.K.; McKeag, S.; Mifsud, C.V.J.; Pilling, A.M.; Whayman, M.H.; Turton, J.A. The haemotoxicity of azathioprine in repeat dose studies in the female CD-1 mouse. Int. J. Exp. Pathol. 2008, 89, 138–158. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Ghalkhani, M. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine. Electrochim. Acta 2010, 55, 3621–3627. [Google Scholar] [CrossRef]
- Binscheck, T.; Meyer, H.; Wellhöner, H.H. High-performance liquid chromatographic assay for the measurement of azathioprine in human serum samples. J. Chromatogr. B Biomed. Appl. 1996, 675, 287–294. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, P.; Han, S. Direct determination of azathioprine in human fluids and pharmaceutical formulation using flow injection chemiluminescence analysis. J. Chinese Chem. Soc. 2012, 59, 239–244. [Google Scholar] [CrossRef]
- Parlatan, H.K.; Basan, H.; Göger, N.G.; Özden, T. Quantitative determination of Azathioprine in tablets by1H NMR spectroscopy. J. Pharm. Belg. 1998, 53, 235. [Google Scholar]
- Covaci, O.I.; Samohvalov, D.; Manta, C.M.; Buhalteanu, L.; Barbatu, A.; Baibarac, M.; Daescu, M.; Matea, A.; Gherca, D. Novel anhydrous solid-state form of Azathioprine: The assessing of crystal structure by powder X-Ray diffraction, Infrared Absorption Spectroscopy and Raman scattering. J. Mol. Struct. 2019, 1178, 702–710. [Google Scholar] [CrossRef]
- Greene, B.H.C.; Alhatab, D.S.; Pye, C.C.; Brosseau, C.L. Electrochemical-Surface Enhanced Raman Spectroscopic (EC-SERS) Study of 6-Thiouric Acid: A Metabolite of the Chemotherapy Drug Azathioprine. J. Phys. Chem. C 2017, 121, 8084–8090. [Google Scholar] [CrossRef]
- Smaranda, I.; Nila, A.; Manta, C.M.; Samohvalov, D.; Gherca, D.; Baibarac, M. The influence of UV light on the azathioprine photodegradation: New evidences by photoluminescence. Results Phys. 2019, 14, 102443. [Google Scholar] [CrossRef]
- Shpigun, L.K.; Andryukhina, E.Y. A new electrochemical sensor for direct detection of purine antimetabolites and DNA degradation. J. Anal. Methods Chem. D 2019, 2019, 1572526. [Google Scholar] [CrossRef] [Green Version]
- Asadian, E.; Zad, A.I.; Shahrokhian, S. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles. J. Mater. Sci. Eng. C 2016, 58, 1098–1104. [Google Scholar] [CrossRef]
- Muthumariappan, A.; Govindasamy, M.; Chen, S.M.; Sakthivel, K.; Mani, V.; Chen, T.W.; Selvaraj, S. Determination of Non-Steroidal Anti-Inflammatory Drug (NSAID) azathioprine in human blood serum and tablet samples using Multi-Walled Carbon Nanotubes (MWCNTs) decorated manganese oxide microcubes composite film modified electrode. Int. J. Electrochem. Sci. 2017, 12, 7446–7456. [Google Scholar] [CrossRef]
- España, A.; Redondo, P.; Fernandez, A.L.; Zabala, M.; Herreros, J.; Llorens, R.; Quintanilla, E. Skin cancer in heart transplant recipients. J. Am. Acad. Dermatol. 1995, 32, 458–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Xiao, Y.; Chang, V.W.C.; Lim, T.T. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate. Chem. Eng. J. 2016, 302, 526–534. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Karran, P.; Attard, N. Thiopurines in current medical practice: Molecular mechanisms and contributions to therapy-related cancer. Nat. Rev. Cancer 2008, 8, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Barbatu, A.; Lungan, M.A.; Toulbe, N.; Smaranda, I.; Daescu, M.; Baibarac, M.; Manta, C.M. Physico-chemical properties of two anhydrous azathioprine forms and their interaction with typical pharmaceutical excipients: Highlighting new findings in drug formulation development. Drug Dev. Ind. Pharm. 2022. [Google Scholar] [CrossRef] [PubMed]
- Khairan, K.; Zahraturriaz, J.Z.; Jalil, Z. Green synthesis of sulphur nanoparticles using Aqueous garlic extract (Allium sativum). Rasayan J. Chem. 2019, 12, 50. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds, 4th ed.; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem. 2022, 97, 107643. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct. 2021, 1242, 130693. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; El-Khatib, R.M.; Nassr, L.A.E.; Abu-Dief, A.M. DNA binding ability mode, spectroscopic studies, hydrophobicity, and in vitro antibacterial evaluation of some new Fe(II) complexes bearing ONO donors amino acid Schiff bases. Arab. J. Chem. 2017, 10, S1835–S1846. [Google Scholar] [CrossRef] [Green Version]
- El-Hinnawi, M.A.; Peter, K.; Meyer, B. Raman spectra of copper(I), silver(I) and gold(I) cyanides in aqueous solutions of sodium thiosulphate. J. Raman Spectrosc. 1985, 16, 272. [Google Scholar] [CrossRef]
- Makhyoun, M.A.; Massoud, R.A.; Soliman, S.M. Tautomerism and spectroscopic properties of the immunosuppressant azathioprine. Spectrochim. Acta 2013, 114, 394. [Google Scholar] [CrossRef]
- Vivoni, A.; Chen, S.P.; Qiao, Z.; Hosten, C.M. Assignment of the Raman-active modes of the antitumor agent azathioprine by normal-mode calculations. J. Raman Spectrosc. 2001, 32, 866. [Google Scholar] [CrossRef]
- Lindberg, B.J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nording, C.; Siegbahn, K. Molecular spectroscopy by means of ESCA. Phys. Scr. 1970, 1, 286–298. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, Y.Y.; Yu, B.Y.; Lin, W.C.; Kuo, C.H.; Shyue, J.J. Sputter-induced chemical transformation in oxoanions by combination of C60+ and Ar+ ion beams analyzed with X-ray photoelectron spectrometry. Analyst 2009, 134, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.F. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics: Chanhassen, MN, USA, 1995; ISBN 9780964812413. [Google Scholar]
- Jiang, Z.; Li, Y.; Zhang, Q.; Hou, B.; Xiong, W.; Liu, H.; Zhang, G. Purine derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic medium: Experimental and theoretical calculations. J. Mol. Liq. 2021, 323, 114809. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Hou, B.S.; Zhang, G.A. Inhibitive and adsorption behavior of thiadiazole derivatives on carbon steel corrosion in CO2-saturatd oilfield produced water:effect of substituent group on efficiency. J. Colloid Interface Sci. 2020, 572, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Berezin, M.Y.; Wan, K.T.; Friedman, R.M.; Orth, R.G.; Raman, S.N.; Ho, S.V.; Ebner, J.R. Thiol protected platinum black and palladium black catalysts in oxidation catalysis. J. Mol. Catal. A Chem. 2000, 158, 567–576. [Google Scholar] [CrossRef]
- Bolognesi, P.; Carravetta, V.; Sementa, L.; Barcaro, G.; Monti, S.; Mishra, P.M.; Cartoi, A.; Castrovilli, M.C.; Chiarinelli, J.; Tosic, S.; et al. Core shell investigation of 2-nitroimidazole. Front. Chem. 2019, 7, 151. [Google Scholar] [CrossRef]
- Piêkoœ, R.; Wesołowski, M.; Teodorczyk, J. Thermal analysis of hydrated silica-sodium thiosulfate-sulfur system. J. Therm. Anal. Calorim. 2001, 66, 541–548. [Google Scholar] [CrossRef]
- Miranda-Trevino, J.C.; Pappoe, M.; Hawboldt, K.; Bottaro, C. The Importance of Thiosalts Speciation, Review of Analytical Methods, Kinetics, and Treatment. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2013–2070. [Google Scholar] [CrossRef]
- Watson, J.T.; Sparkman, O.D. Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation, 4th ed.; John Wiley&Sons Ltd.: Hoboken, NJ, USA, 2007; ISBN 978-0-470-51634-8. [Google Scholar]
- William, E. Wallace, Mass Spectra by NIST Mass Spectrometry Data Center in NIST Chemistry Web Book SRD 69. Available online: http://webbook.nist.gov (accessed on 18 January 2022).
AZA [14] | The ST-Reacted AZA Samples | Assignments [24,25,26,27] |
---|---|---|
636 | 635 | C-S-C |
829 | 829 | NO bending |
858 | 856 | C-H deformation |
921 | 920 | C-H out-of-plane (aromatic) bending |
997–1008 | 995–1007 | C-S |
1136 | 1163 | CN |
1232 | 1232 | Ring breathing + C-H in-plane deformation |
1303 | 1302–1300 | NO |
1336 | 1333–1331 | N-C-N deformation + C-N stretching + N-H deformation |
1373–1421 | 1373–1422 | C-H in-plane (aromatic) bending |
1479 | 1476 | C=C stretching |
1497 | 1497 | C=N stretching |
1530 | 1530–1527 | N-H in-plane bending |
1579 | 1576–1574 | NO asymmetric stretching |
2806 | 2808–2806 | C-H in CH3 stretching |
3107 | 3109–3123 | C-H aromatic stretching |
AZA [14] | The ST-Reacted AZA Samples | Assignments [29,30] |
---|---|---|
650–670–719 | 652–673–721 | Pyrimidine ring of purine bending |
831 | 831 | Nitroimide |
854 | 856 | The imidazole ring of purine bending |
995–1010 | 995–1012 | C-S stretching |
1072 | 1074 | Ring stretching |
1152 | 1155 | C-H in the imidazole ring of purine |
1267–1303 | 1269–1305 | Nitroimide |
1329 | 1330 | C-H bending in pyrimidine ring of purine |
1372 | 1375 | C-N stretching in imidazole ring of purine |
1424 | 1427 | Nitroimide |
1459 | 1459 | Imidazole ring stretching of purine |
1475–1473 | 1477–1485 | N-H bending + C-C stretching in imidazole ring of purine |
1524 | 1535 | C-H bending in pyrimidine ring of purine |
Samples | Mass Number (m/e) | Relative Abundance | Key Fragments | Probable |
---|---|---|---|---|
ST | 14 | 9.01% | N+ | N2 |
16 | 18.92% | O+ | O2 | |
17 | 65.77% | OH+ | H2O | |
18 | 97.30% | H2O+ | H2O | |
23 | 6.31% | Na+ | Na | |
28 | 17.12% | N2+ | N2 | |
30 | 7.21% | NO+ | NO2 | |
32 | 22.52% | O2+ S+ S+ | O2 H2S SO2 | |
40 | 13.51% | NaOH | NaOH | |
44 | 8.11% | N2O+ | N2O | |
47 | 11.71% | HNO2 | HNO2 | |
48 | 9.01% | SO+ | SO2 | |
AZA after exposure to UV light | 13 | 9.43 | CH+ | CH |
14 | 16.08% | CH2+ N+ | CH2 N2 | |
15 | 16.98% | CH3+ NH+ | CH3 NH | |
16 | 5.66% | O+ CH4+ NH2+ | O2 CH4 NH3 | |
17 | 13.21% | OH+ NH3+ | H2O NH3 | |
18 | 12.26% | H2O+ | H2O | |
23 | 16.98% | Na+ | Na | |
24 | 16.98% | C2+ | CxHy | |
26 | 13.21% | C2H2+ | C2H2 | |
27 | 13.21% | C2H3+ | C2H3 | |
28 | 10.38% | N2+ C2H4+ CO+ | N2 C2H4 CO | |
29 | 10.38% | C2H5+ | C2H5 | |
30 | 14.15% | C2H6+ NO+ | C2H6 NO | |
31 | 14.15% | C2H2OH+ | C2H2OH | |
32 | 14.15% | O2+ | O2 | |
34 | 9.43% | S+ | H2S | |
38 | 8.49% | C3H2+ | C3H2 | |
39 | 11.32% | C3H3+ | C3H2 | |
40 | 5.66% | C3H4+ | C3H4 | |
41 | 13.21% | C3H5+ | C3H5 | |
42 | 10.38% | C3H6+ | C3H6 | |
43 | 12.26% | C3H7+ | C3H6 | |
44 | 16.04% | CO2+ N2O+ C3H8+ | CO2 N2O C3H8 | |
45 | 8.49% | C2H5O+ | C2H5OH | |
46 | 11.32% | NO2+ | NO2 | |
48 | 12.26% | SO+ | SO2 | |
AZA reacted with ST and exposed to UV light | 14 | 3.77% | CH2+ | CH2 |
15 | 1.89% | CH3+ NH+ | CH3 NH | |
16 | 1.89% | O+ CH4+ NH2+ | O2 CxHy NH3 | |
17 | 3.21% | OH+ NH3+ | H2O NH3 | |
18 | 5.66% | H2O+ | H2O | |
23 | 5.66% | Na+ | Na | |
26 | 9.43% | C2H2+ | C2H2 | |
27 | 1.87% | C2H3+ | C2H3 | |
28 | 1.89% | N2+ CO++ | N2 CO | |
29 | 1.84% | C2H5+ | C2H5 | |
31 | 3.77% | C2H2OH+ | C2H2OH | |
32 | 1.89% | O2+ | O2 | |
38 | 1.89% | C3H2+ | C3H2 | |
39 | 7.55% | C3H3+ | C3H2 | |
40 | 9.43% | C3H4+ | C3H4 | |
41 | 5.66% | C3H5+ | C3H5 | |
42 | 9.43% | C3H6+ | C3H6 | |
43 | 3.77% | C3H7+ | C3H7 | |
46 | 7.55% | NO2+ | NO2 | |
48 | 7.55% | SO+ | SO2 | |
AZA in dark conditions | 13 | 4.11% | CH+ | CH |
14 | 1.37% | CH2+ | CH2 | |
15 | 2.74% | CH3+ NH+ | CH3 NH | |
17 | 4.11% | OH+ NH3+ | H2O NH3 | |
18 | 2.74% | H2O+ | H2O | |
24 | 5.48% | C2+ | CxHy | |
26 | 1.38% | C2H2+ | C2H2 | |
27 | 6.85% | C2H3+ | C2H3 | |
28 | 2.74% | N2+ CO++ | N2 CO | |
29 | 2.74% | C2H5+ | C2H5 | |
30 | 1.37% | C2H6+ NO+ | C2H6 NO | |
31 | 5.48% | C2H2OH+ | C2H2OH | |
32 | 4.11% | O2+ | O2 | |
34 | 2.74% | S+ | H2S | |
38 | 1.37% | C3H2+ | C3H2 | |
39 | 4.11% | C3H3+ | C3H2 | |
40 | 1.37% | C3H4+ | C3H4 | |
41 | 1.37% | C3H5+ | C3H5 | |
42 | 1.37% | C3H6+ | C3H6 | |
43 | 2.74% | C3H7+ | C3H7 | |
44 | 1.37% | CO2+ N2O+ C3H8+ | CO2 N2O C3H8 | |
46 | 2.74% | NO2+ | NO2 | |
48 | 2.74% | SO+ | SO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toulbe, N.; Smaranda, I.; Negrila, C.; Bartha, C.; Manta, C.M.; Baibarac, M. Photodegradation of Azathioprine in the Presence of Sodium Thiosulfate. Int. J. Mol. Sci. 2022, 23, 3975. https://doi.org/10.3390/ijms23073975
Toulbe N, Smaranda I, Negrila C, Bartha C, Manta CM, Baibarac M. Photodegradation of Azathioprine in the Presence of Sodium Thiosulfate. International Journal of Molecular Sciences. 2022; 23(7):3975. https://doi.org/10.3390/ijms23073975
Chicago/Turabian StyleToulbe, N’ghaya, Ion Smaranda, Catalin Negrila, Cristina Bartha, Corina M. Manta, and Mihaela Baibarac. 2022. "Photodegradation of Azathioprine in the Presence of Sodium Thiosulfate" International Journal of Molecular Sciences 23, no. 7: 3975. https://doi.org/10.3390/ijms23073975
APA StyleToulbe, N., Smaranda, I., Negrila, C., Bartha, C., Manta, C. M., & Baibarac, M. (2022). Photodegradation of Azathioprine in the Presence of Sodium Thiosulfate. International Journal of Molecular Sciences, 23(7), 3975. https://doi.org/10.3390/ijms23073975