Modulation of Metabolic Hormone Signaling via a Circadian Hormone and Biogenic Amine in Drosophila melanogaster
Abstract
:1. Introduction
2. Results
2.1. AKH Cells Express Multiple Receptor Molecules
2.2. PDFR Function in AKH Cells Is Required for Normal Behavioral Starvation Responses
2.3. Dopamine Receptor Knockdown in AKH Cells Exhibited Starvation Phenotypes
3. Discussion
4. Materials and Methods
4.1. Fly Husbandry
4.2. AKH Cell-Specific Transcriptome
4.3. Individual Locomotion/Starvation
4.4. Live Cell Imaging
4.5. Immunostaining
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.K.; Rulifson, E.J. Conserved Mechanisms of Glucose Sensing and Regulation by Drosophila Corpora Cardiaca Cells. Nature 2004, 431, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Leopold, P.; Perrimon, N. Drosophila and the Genetics of the Internal Milieu. Nature 2007, 450, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Toivonen, J.M.; Partridge, L. Endocrine Regulation of Aging and Reproduction in Drosophila. Mol. Cell. Endocrinol. 2009, 299, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Birse, R.T.; Söderberg, J.A.E.; Luo, J.; Winther, Å.M.E.; Nässel, D.R. Regulation of Insulin-Producing Cells in the Adult Drosophila Brain via the Tachykinin Peptide Receptor DTKR. J. Exp. Biol. 2011, 214, 4201–4208. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.; Fridell, Y.-W.C. Functional Implications of Drosophila Insulin-like Peptides in Metabolism, Aging, and Dietary Restriction. Front. Physiol. 2013, 4, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Park, J.H.; Aggarwal, S.K.; King, R.C.; An, W.; Wensink, P.C.; Arrese, E.L.; Wells, M.A.; Ashburner, M.; Bedford, J.J.; et al. Hemolymph Sugar Homeostasis and Starvation-Induced Hyperactivity Affected by Genetic Manipulations of the Adipokinetic Hormone-Encoding Gene in Drosophila Melanogaster. Genetics 2004, 167, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braco, J.T.; Gillespie, E.L.; Alberto, G.E.; Brenman, J.E.; Johnson, E.C.; Alesutan, I.; Föller, M.; Sopjani, M.; Dërmaku-Sopjani, M.; Zelenak, C.; et al. Energy-Dependent Modulation of Glucagon-like Signaling in Drosophila via the AMP-Activated Protein Kinase. Genetics 2012, 192, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Gáliková, M.; Diesner, M.; Klepsatel, P.; Hehlert, P.; Xu, Y.; Bickmeyer, I.; Predel, R.; Kühnlein, R.P. Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants. Genetics 2015, 201, 665–683. [Google Scholar] [CrossRef] [Green Version]
- Isabel, G.; Martin, J.-R.; Chidami, S.; Veenstra, J.A.; Rosay, P. AKH-Producing Neuroendocrine Cell Ablation Decreases Trehalose and Induces Behavioral Changes in Drosophila. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R531–R538. [Google Scholar] [CrossRef] [Green Version]
- Bharucha, K.N.; Tarr, P.; Zipursky, S.L. A Glucagon-like Endocrine Pathway in Drosophila Modulates Both Lipid and Carbohydrate Homeostasis. J. Exp. Biol. 2008, 211, 3103–3110. [Google Scholar] [CrossRef] [Green Version]
- Grönke, S.; Müller, G.; Hirsch, J.; Fellert, S.; Andreou, A.; Haase, T.; Jäckle, H.; Kühnlein, R.P. Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila. PLoS Biol. 2007, 5, e137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistlberger, R.E. Neurobiology of Food Anticipatory Circadian Rhythms. Physiol. Behav. 2011, 104, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Scheurink, A.J.W.; Boersma, G.J.; Nergårdh, R.; Södersten, P. Neurobiology of Hyperactivity and Reward: Agreeable Restlessness in Anorexia Nervosa. Physiol. Behav. 2010, 100, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.C. 2.21-Stressed out insects II. Physiology, behavior, and neuroendocrine circuits mediating stress responses. In Hormones, Brain and Behavior, 3rd ed.; Pfaff, D.W., Joëls, M., Eds.; Academic Press: Oxford, UK, 2017; pp. 465–481. ISBN 978-0-12-803608-2. [Google Scholar]
- Perry, R.J.; Saunders, C.J.; Nelson, J.M.; Rizzo, M.J.; Braco, J.T.; Johnson, E.C. Regulation of Metabolism by an Ensemble of Different Ion Channel Types: Excitation-Secretion Coupling Mechanisms of Adipokinetic Hormone Producing Cells in Drosophila. Front. Physiol. 2020, 11, 1396. [Google Scholar] [CrossRef]
- Stephan, D.; Winkler, M.; Kühner, P.; Russ, U.; Quast, U. Selectivity of Repaglinide and Glibenclamide for the Pancreatic over the Cardiovascular KATP Channels. Diabetologia 2006, 49, 2039–2048. [Google Scholar] [CrossRef] [Green Version]
- Pannabecker, T.; Orchard, I. Octopamine and Cyclic AMP Mediate Release of Adipokinetic Hormone I and II from Isolated Locust Neuroendocrine Tissue. Mol. Cell. Endocrinol. 1986, 48, 153–159. [Google Scholar] [CrossRef]
- Brown, M.R.; Lea, A.O. FMRFamide- and Adipokinetic Hormone-like Immunoreactivity in the Nervous System of the Mosquito, Aedes Aegypti. J. Comp. Neurol. 1988, 270, 606–614. [Google Scholar] [CrossRef]
- Veelaert, D.; Passier, P.; Devreese, B.; Vanden Broeck, J.; van Beeumen, J.; Vullings, H.G.B.; Diederen, J.H.B.; Schoofs, L.; de Loof, A. Isolation and Characterization of an Adipokinetic Hormone Release-Inducing Factor in Locusts: The Crustacean Cardioactive Peptide. Endocrinology 1997, 138, 138–142. [Google Scholar] [CrossRef]
- Vullings, H.G.B.; Ten Voorde, S.E.C.G.; Passier, P.C.C.M.; Diederen, J.H.B.; van der Horst, D.J.; Nässel, D.R. A Possible Role of SchistoFLRFamide in Inhibition of Adipokinetic Hormone Release from Locust Corpora Cardiaca. J. Neurocytol. 1998, 27, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Hentze, J.L.; Carlsson, M.A.; Kondo, S.; Nässel, D.R.; Rewitz, K.F. The Neuropeptide Allatostatin a Regulates Metabolism and Feeding Decisions in Drosophila. Sci. Rep. 2015, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Lai, J.S.-Y.; Mills, H.J.; Erdjument-Bromage, H.; Giammarinaro, B.; Saadipour, K.; Wang, J.G.; Abu, F.; Neubert, T.A.; Suh, G.S.B. A Glucose-Sensing Neuron Pair Regulates Insulin and Glucagon in Drosophila. Nature 2019, 574, 559–564. [Google Scholar] [CrossRef]
- Kapan, N.; Lushchak, O.V.; Luo, J.; Nässel, D.R. Identified Peptidergic Neurons in the Drosophila Brain Regulate Insulin-Producing Cells, Stress Responses and Metabolism by Coexpressed Short Neuropeptide F and Corazonin. Cell. Mol. Life Sci. 2012, 69, 4051–4066. [Google Scholar] [CrossRef] [PubMed]
- Birgül, N.; Weise, C.; Kreienkamp, H.-J.; Richter, D. Reverse Physiology in Drosophila: Identification of a Novel Allatostatin-like Neuropeptide and Its Cognate Receptor Structurally Related to the Mammalian Somatostatin/Galanin/Opioid Receptor Family. EMBO J. 1999, 18, 5892–5900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, P.-H.; Yu, M.; Ma, Y.-P.; Li, J.; Sui, Y.-M.; Shi, M.-Y. Central Nervous System Regulation of Food Intake and Energy Expenditure: Role of Galanin-Mediated Feeding Behavior. Neurosci. Bull. 2011, 27, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, J.M.; Saunders, C.J.; Johnson, E.C. The Intrinsic Nutrient Sensing Adipokinetic Hormone Producing Cells Function in Modulation of Metabolism, Activity, and Stress. Int. J. Mol. Sci. 2021, 22, 7515. [Google Scholar] [CrossRef]
- Magalhaes, A.C.; Dunn, H.; Ferguson, S.S. Regulation of GPCR Activity, Trafficking and Localization by GPCR-Interacting Proteins. Br. J. Pharmacol. 2012, 165, 1717–1736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.C.; Bohn, L.M.; Barak, L.S.; Birse, R.T.; Nässel, D.R.; Caron, M.G.; Taghert, P.H. Identification of Drosophila Neuropeptide Receptors by G Protein-Coupled Receptors-β-Arrestin2 Interactions. J. Biol. Chem. 2003, 278, 52172–52178. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.C.; Shafer, O.T.; Trigg, J.S.; Park, J.; Schooley, D.A.; Dow, J.A.; Taghert, P.H. A Novel Diuretic Hormone Receptor in Drosophila: Evidence for Conservation of CGRP Signaling. J. Exp. Biol. 2005, 208, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- McLatchie, L.M.; Fraser, N.J.; Main, M.J.; Wise, A.; Brown, J.; Thompson, N.; Solari, R.; Lee, M.G.; Foord, S.M. RAMPs Regulate the Transport and Ligand Specificity of the Calcitonin-Receptor-like Receptor. Nature 1998, 393, 333–339. [Google Scholar] [CrossRef]
- Pauls, D.; Selcho, M.; Räderscheidt, J.; Amatobi, K.M.; Fekete, A.; Krischke, M.; Hermann-Luibl, C.; Ünal, A.G.; Ehmann, N.; Itskov, P.M.; et al. Endocrine Fine-Tuning of Daily Locomotor Activity Patterns under Non-Starving Conditions in Drosophila. bioRxiv 2021, 2020-02. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Yu, Y.; Zhang, V.; Tian, Y.; Qi, W.; Wang, L. Octopamine Mediates Starvation-Induced Hyperactivity in Adult Drosophila. Proc. Natl. Acad. Sci. USA 2015, 112, 5219–5224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lear, B.C.; Zhang, L.; Allada, R. The Neuropeptide PDF Acts Directly on Evening Pacemaker Neurons to Regulate Multiple Features of Circadian Behavior. PLoS Biol. 2009, 7, e1000154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.; Fortin, J.-P.; McCarthy, E.V.; Oksman, L.; Kopin, A.S.; Nitabach, M.N. Cellular Dissection of Circadian Peptide Signals with Genetically Encoded Membrane-Tethered Ligands. Curr. Biol. 2009, 19, 1167–1175. [Google Scholar] [CrossRef] [Green Version]
- Shafer, O.T.; Kim, D.J.; Dunbar-Yaffe, R.; Nikolaev, V.O.; Lohse, M.J.; Taghert, P.H. Widespread Receptivity to Neuropeptide PDF throughout the Neuronal Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging. Neuron 2008, 58, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Renn, S.C.P.; Park, J.H.; Rosbash, M.; Hall, J.C.; Taghert, P.H. A Pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in Drosophila. Cell 1999, 99, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Mertens, I.; Vandingenen, A.; Johnson, E.C.; Shafer, O.T.; Li, W.; Trigg, J.S.; de Loof, A.; Schoofs, L.; Taghert, P.H. PDF Receptor Signaling in Drosophila Contributes to Both Circadian and Geotactic Behaviors. Neuron 2005, 48, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Shafer, O.T.; Taghert, P.H.; Dunlap, J.; Herzog, E.; Ralph, M.; Foster, R.; Davis, F.; Menaker, M.; Silver, R.; LeSauter, J.; et al. RNA-Interference Knockdown of Drosophila Pigment Dispersing Factor in Neuronal Subsets: The Anatomical Basis of a Neuropeptide’s Circadian Functions. PLoS ONE 2009, 4, e8298. [Google Scholar] [CrossRef]
- Friggi-Grelin, F.; Coulom, H.; Meller, M.; Gomez, D.; Hirsh, J.; Birman, S. Targeted Gene Expression in Drosophila Dopaminergic Cells Using Regulatory Sequences from Tyrosine Hydroxylase. J. Neurobiol. 2003, 54, 618–627. [Google Scholar] [CrossRef]
- Srivastava, D.P.; Yu, E.J.; Kennedy, K.; Chatwin, H.; Reale, V.; Hamon, M.; Smith, T.; Evans, P.D. Rapid, Nongenomic Responses to Ecdysteroids and Catecholamines Mediated by a Novel Drosophila G-Protein-Coupled Receptor. J. Neurosci. 2005, 25, 6145–6155. [Google Scholar] [CrossRef]
- Hyun, S.; Lee, Y.; Hong, S.-T.; Bang, S.; Paik, D.; Kang, J.; Shin, J.; Lee, J.; Jeon, K.; Hwang, S.; et al. Drosophila GPCR Han Is a Receptor for the Circadian Clock Neuropeptide PDF. Neuron 2005, 48, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Peschel, N.; Helfrich-Förster, C. Setting the Clock–by Nature: Circadian Rhythm in the Fruitfly Drosophila Melanogaster. FEBS Lett. 2011, 585, 1435–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, A. Control of metabolism by central and peripheral clocks in drosophila. In A Time for Metabolism and Hormones; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 33–40. [Google Scholar]
- Schneider, N.-L.; Stengl, M. Pigment-Dispersing Factor and GABA Synchronize Cells of the Isolated Circadian Clock of the Cockroach Leucophaea Maderae. J. Neurosci. 2005, 25, 5138–5147. [Google Scholar] [CrossRef] [PubMed]
- Seluzicki, A.; Flourakis, M.; Kula-Eversole, E.; Zhang, L.; Kilman, V.; Allada, R. Dual PDF Signaling Pathways Reset Clocks via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior. PLoS Biol. 2014, 12, e1001810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavey, M.; Collins, B.; Bertet, C.; Blau, J. Circadian Rhythms in Neuronal Activity Propagate through Output Circuits. Nat. Neurosci. 2016, 19, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiAngelo, J.R.; Erion, R.; Crocker, A.; Sehgal, A.; Stein, C.; Colditz, G.; Kohlwein, S.; Benarroch, E.; Nogueiras, R.; Lopez, M.; et al. The Central Clock Neurons Regulate Lipid Storage in Drosophila. PLoS ONE 2011, 6, e19921. [Google Scholar] [CrossRef] [Green Version]
- Talsma, A.D.; Christov, C.P.; Terriente-Felix, A.; Linneweber, G.A.; Perea, D.; Wayland, M.; Shafer, O.T.; Miguel-Aliaga, I. Remote Control of Renal Physiology by the Intestinal Neuropeptide Pigment-Dispersing Factor in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109, 12177–12182. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.C.; Bohn, L.M.; Taghert, P.H. Drosophila CG8422 Encodes a Functional Diuretic Hormone Receptor. J. Exp. Biol. 2004, 207, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Kunst, M.; Hughes, M.E.; Raccuglia, D.; Felix, M.; Li, M.; Barnett, G.; Duah, J.; Nitabach, M.N. Calcitonin Gene-Related Peptide Neurons Mediate Sleep-Specific Circadian Output in Drosophila. Curr. Biol. 2014, 24, 2652–2664. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Kwon, J.Y.; Chandrashekar, J.; Hoon, M.; Ryba, N.; Zuker, C.; Clyne, P.; Warr, C.; Carlson, J.; Dunipace, L.; et al. Heterogeneous Expression of Drosophila Gustatory Receptors in Enteroendocrine Cells. PLoS ONE 2011, 6, e29022. [Google Scholar] [CrossRef] [Green Version]
- Lebestky, T.; Chang, J.-S.C.; Dankert, H.; Zelnik, L.; Kim, Y.-C.; Han, K.-A.; Wolf, F.W.; Perona, P.; Anderson, D.J. Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits. Neuron 2009, 64, 522–536. [Google Scholar] [CrossRef] [Green Version]
- Keleman, K.; Vrontou, E.; Krüttner, S.; Yu, J.Y.; Kurtovic-Kozaric, A.; Dickson, B.J. Dopamine Neurons Modulate Pheromone Responses in Drosophila Courtship Learning. Nature 2012, 489, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Linford, N.J.; Ro, J.; Chung, B.Y.; Pletcher, S.D. Gustatory and Metabolic Perception of Nutrient Stress in Drosophila. Proc. Natl. Acad. Sci. USA 2015, 112, 2587–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, A.; Pranski, E.; Miller, R.D.; Radmard, S.; Bernhard, D.; Jinnah, H.A.; Betarbet, R.; Rye, D.B.; Sanyal, S. Sleep Fragmentation and Motor Restlessness in a Drosophila Model of Restless Legs Syndrome. Curr. Biol. 2012, 22, 1142–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Seto, E.S. Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms. Exp. Anim. 2014, 63, 107–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, H.K.; Ben-Tabou de-Leon, S.; Wong, A.M.; Jagadish, S.; Ishimoto, H.; Barnea, G.; Kitamoto, T.; Axel, R.; Anderson, D.J. Visualizing Neuromodulation in Vivo: TANGO-Mapping of Dopamine Signaling Reveals Appetite Control of Sugar Sensing. Cell 2012, 148, 583–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kume, K.; Kume, S.; Park, S.K.; Hirsh, J.; Jackson, F.R. Dopamine Is a Regulator of Arousal in the Fruit Fly. J. Neurosci. 2005, 25, 7377–7384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruntenko, N.E.; Rauschenbach, I.Y. Interplay of JH, 20E and Biogenic Amines under Normal and Stress Conditions and Its Effect on Reproduction. J. Insect Physiol. 2008, 54, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.D.; Bayliss, A.; Reale, V. GPCR-Mediated Rapid, Non-Genomic Actions of Steroids: Comparisons between DmDopEcR and GPER1 (GPR30). Gen. Comp. Endocrinol. 2014, 195, 157–163. [Google Scholar] [CrossRef]
- Simon, A.F.; Shih, C.; Mack, A.; Benzer, S. Steroid Control of Longevity in Drosophila Melanogaster. Science 2003, 299, 1407–1410. [Google Scholar] [CrossRef] [Green Version]
- Terashima, J.; Takaki, K.; Sakurai, S.; Bownes, M. Nutritional Status Affects 20-Hydroxyecdysone Concentration and Progression of Oogenesis in Drosophila Melanogaster. J. Endocrinol. 2005, 187, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Bloomington Drosophila Stock Center, Bloomington Drosophila Stock Center. Available online: https://bdsc.indiana.edu/information/recipes/bloomfood.html (accessed on 28 March 2022).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Morgan, M.T.; Carey, V.J. Software for computing and annotating genomic ranges. PLoS Computat. Biol. 2013, 9, e1003118. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Bretz, C.A.; Hawksworth, S.A.; Hirsh, J.; Johnson, E.C. Corazonin Neurons Function in Sexually Dimorphic Circuitry That Shape Behavioral Responses to Stress in Drosophila. PLoS ONE 2010, 5, e9141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Ueda, A.; Wu, C.F. A Modified Minimal hemolymph-like Solution, HL3.1, For Physiological Recordings at The Neuromuscular Junctions of Normal and Mutant Drosophila Larvae. J. Neurogenet. 2004, 18, 377–402. [Google Scholar] [CrossRef]
- Saunders, C.J. JakeSaunders/Dmel_AKHcell_RNA-seq v1. 0.1; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braco, J.T.; Nelson, J.M.; Saunders, C.J.; Johnson, E.C. Modulation of Metabolic Hormone Signaling via a Circadian Hormone and Biogenic Amine in Drosophila melanogaster. Int. J. Mol. Sci. 2022, 23, 4266. https://doi.org/10.3390/ijms23084266
Braco JT, Nelson JM, Saunders CJ, Johnson EC. Modulation of Metabolic Hormone Signaling via a Circadian Hormone and Biogenic Amine in Drosophila melanogaster. International Journal of Molecular Sciences. 2022; 23(8):4266. https://doi.org/10.3390/ijms23084266
Chicago/Turabian StyleBraco, Jason T., Jonathan M. Nelson, Cecil J. Saunders, and Erik C. Johnson. 2022. "Modulation of Metabolic Hormone Signaling via a Circadian Hormone and Biogenic Amine in Drosophila melanogaster" International Journal of Molecular Sciences 23, no. 8: 4266. https://doi.org/10.3390/ijms23084266
APA StyleBraco, J. T., Nelson, J. M., Saunders, C. J., & Johnson, E. C. (2022). Modulation of Metabolic Hormone Signaling via a Circadian Hormone and Biogenic Amine in Drosophila melanogaster. International Journal of Molecular Sciences, 23(8), 4266. https://doi.org/10.3390/ijms23084266