Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Adipose Tissue Biopsies (Leipzig Adipose Tissue Childhood Cohort)
2.2. Metabolic Syndrome, Weight Loss Cohort
2.3. In Vitro Adipocyte Differentiation
2.4. RNA Isolation and cDNA Synthesis
2.5. Microarray-Based Transcriptome Analysis
2.6. Quantitative Real-Time RT-PCR Analysis
2.7. Statistical Analyses
3. Results
3.1. Obesity-Associated Alterations in Gene Expression Profiles in the Adipose Tissue of Children
3.2. Alterations in Gene Expression Occurring with Adipocyte Hypertrophy in Children
3.3. EGFL6 Is Associated with AT Dysfunction and Metabolic Disease in Children
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- WHO Obesity and Overweight Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 November 2021).
- Landgraf, K.; Rockstroh, D.; Wagner, I.V.; Weise, S.; Tauscher, R.; Schwartze, J.T.; Löffler, D.; Bühligen, U.; Wojan, M.; Till, H.; et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes 2015, 64, 1249–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Mejhert, N.; Fretz, J.A.; Arner, E.; Lorente-Cebrian, S.; Ehrlund, A.; Dahlman-Wright, K.; Gong, X.; Stromblad, S.; Douagi, I.; et al. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue. Cell Metab. 2014, 19, 981–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef]
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and diabetes in the developing world—A growing challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 2019, 92, 82–97. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K.; International Agency for Research on Cancer Handbook Working Group. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [Green Version]
- Geserick, M.; Vogel, M.; Gausche, R.; Lipek, T.; Spielau, U.; Keller, E.; Pfäffle, R.; Kiess, W.; Körner, A. Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. N. Engl. J. Med. 2018, 379, 1303–1312. [Google Scholar] [CrossRef]
- Kursawe, R.; Eszlinger, M.; Narayan, D.; Liu, T.; Bazuine, M.; Cali, A.M.; D’Adamo, E.; Shaw, M.; Pierpont, B.; Shulman, G.I.; et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: Association with insulin resistance and hepatic steatosis. Diabetes 2010, 59, 2288–2296. [Google Scholar] [CrossRef] [Green Version]
- Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiss, H.C.; Ziegler, A.; Hesse, V.; von Hippel, A.; Johnsen, D.; Korte, W.; et al. Perzentilen für den body mass index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. (Centiles for body mass index for children and adolescents derived from distinct independent German cohorts). Monatsschr. Kinderheilkd. 2001, 149, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Biemann, R.; Penner, M.; Borucki, K.; Westphal, S.; Luley, C.; Ronicke, R.; Biemann, K.; Weikert, C.; Lux, A.; Goncharenko, N.; et al. Serum bile acids and GLP-1 decrease following telemetric induced weight loss: Results of a randomized controlled trial. Sci. Rep. 2016, 6, 30173. [Google Scholar] [CrossRef] [PubMed]
- Biemann, R.; Roomp, K.; Noor, F.; Krishnan, S.; Li, Z.; Shahzad, K.; Borucki, K.; Luley, C.; Schneider, J.G.; Isermann, B. Gene expression profile of CD14+ blood monocytes following lifestyle-induced weight loss in individuals with metabolic syndrome. Sci. Rep. 2020, 10, 17855. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, S.; Costa, M.B.W.; Mathew, A.; Krishnan, S.; Schneider, J.G.; Roomp, K.; Isermann, B.; Biemann, R. Osteocalcin Is Independently Associated with C-Reactive Protein during Lifestyle-Induced Weight Loss in Metabolic Syndrome. Metabolites 2021, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Wabitsch, M.; Brenner, R.E.; Melzner, I.; Braun, M.; Möller, P.; Heinze, E.; Debatin, K.M.; Hauner, H. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, F.; Landgraf, K.; Klöting, N.; Berthold, A.; Büttner, P.; Friebe, D.; Kiess, W.; Kovacs, P.; Blüher, M.; Körner, A. Functional relevance of genes implicated by obesity genome-wide association study signals for human adipocyte biology. Diabetologia 2013, 56, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Landgraf, K.; Klöting, N.; Gericke, M.; Maixner, N.; Guiu-Jurado, E.; Scholz, M.; Witte, A.V.; Beyer, F.; Schwartze, J.T.; Lacher, M.; et al. The Obesity-Susceptibility Gene TMEM18 Promotes Adipogenesis through Activation of PPARG. Cell Rep. 2020, 33, 108295. [Google Scholar] [CrossRef]
- Kirsten, H.; Al-Hasani, H.; Holdt, L.; Gross, A.; Beutner, F.; Krohn, K.; Horn, K.; Ahnert, P.; Burkhardt, R.; Reiche, K.; et al. Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci. Hum. Mol. Genet. 2015, 24, 4746–4763. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [Green Version]
- Oberauer, R.; Rist, W.; Lenter, M.C.; Hamilton, B.S.; Neubauer, H. EGFL6 is increasingly expressed in human obesity and promotes proliferation of adipose tissue-derived stromal vascular cells. Mol. Cell. Biochem. 2010, 343, 257–269. [Google Scholar] [CrossRef]
- Franks, P.W.; Hanson, R.L.; Knowler, W.C.; Sievers, M.L.; Bennett, P.H.; Looker, H.C. Childhood obesity, other cardiovascular risk factors, and premature death. N. Engl. J. Med. 2010, 362, 485–493. [Google Scholar] [CrossRef]
- Tam, C.S.; Heilbronn, L.K.; Henegar, C.; Wong, M.; Cowell, C.T.; Cowley, M.J.; Kaplan, W.; Clement, K.; Baur, L.A. An early inflammatory gene profile in visceral adipose tissue in children. Int. J. Pediatr. Obes. 2011, 6, e360–e363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, C.M.; Gomez-Llorente, C.; Tofe, I.; Gil-Campos, M.; Canete, R.; Gil, A. Genome-wide expression in visceral adipose tissue from obese prepubertal children. Int. J. Mol. Sci. 2015, 16, 7723–7737. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, G.; Li, N.; Yu, H.; Si, J.; Wang, J. Identification of key genes and pathways associated with obesity in children. Exp. Ther. Med. 2017, 14, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Tordjman, J.; Divoux, A.; Baur, L.A.; Clement, K. Adipose tissue remodeling in children: The link between collagen deposition and age-related adipocyte growth. J. Clin. Endocrinol. Metab. 2012, 97, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.B.; Harris, R.C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal. 2005, 17, 1183–1193. [Google Scholar] [CrossRef]
- Yeung, G.; Mulero, J.J.; Berntsen, R.P.; Loeb, D.B.; Drmanac, R.; Ford, J.E. Cloning of a novel epidermal growth factor repeat containing gene EGFL6: Expressed in tumor and fetal tissues. Genomics 1999, 62, 304–307. [Google Scholar] [CrossRef]
- Chim, S.M.; Qin, A.; Tickner, J.; Pavlos, N.; Davey, T.; Wang, H.; Guo, Y.; Zheng, M.H.; Xu, J. EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J. Biol. Chem. 2011, 286, 22035–22046. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.T.; Lee, V. Identification and characterization of a novel human nephronectin gene in silico. Int. J. Mol. Med. 2005, 15, 719–724. [Google Scholar] [CrossRef]
- Lee, M.J.; Wu, Y.; Fried, S.K. Adipose tissue remodeling in pathophysiology of obesity. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Buckanovich, R.J.; Sasaroli, D.; O’Brien-Jenkins, A.; Botbyl, J.; Hammond, R.; Katsaros, D.; Sandaltzopoulos, R.; Liotta, L.A.; Gimotty, P.A.; Coukos, G. Tumor vascular proteins as biomarkers in ovarian cancer. J. Clin. Oncol. 2007, 25, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gong, Y.; Wang, D.; Xie, Q.; Zheng, M.; Zhou, Y.; Li, Q.; Yang, Z.; Tang, H.; Li, Y.; et al. Analysis of gene expression profiling in meningioma: Deregulated signaling pathways associated with meningioma and EGFL6 overexpression in benign meningioma tissue and serum. PLoS ONE 2012, 7, e52707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, K.; Mangala, L.S.; Han, H.D.; Zhang, N.; Pradeep, S.; Wu, S.Y.; Ma, S.; Mora, E.; Rupaimoole, R.; Jiang, D.; et al. Differential Effects of EGFL6 on Tumor versus Wound Angiogenesis. Cell Rep. 2017, 21, 2785–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majali-Martinez, A.; Hiden, U.; Ghaffari-Tabrizi-Wizsy, N.; Lang, U.; Desoye, G.; Dieber-Rotheneder, M. Placental membrane-type metalloproteinases (MT-MMPs): Key players in pregnancy. Cell Adhes. Migr. 2016, 10, 136–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, A.Y.; Ledoux, S.; Larger, E. Adipose tissue angiogenesis in obesity. Thromb. Haemost. 2013, 110, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648. [Google Scholar] [PubMed] [Green Version]
Trait | Transcriptome Subset Analysed | Sample Size, N | Mean (SD) | Range |
---|---|---|---|---|
Whole cohort available for transcriptome analysis | ||||
Sex (male/female) | 317 (191/126) | - | - | |
Age (years) | 317 | 9.6 (5.5) | 0.1–20.7 | |
Transcriptome analysis related to BMI SDS of children | ||||
BMI SDS | AT | 306 | 0.7 (1.5) | −3.2–4.3 |
Adipocytes | 117 | 1.3 (1.4) | −2.5–4.3 | |
SVF | 113 | 1.3 (1.4) | −1.8–4.3 | |
Transcriptome analysis related to parameters of AT dysfunction | ||||
Adipocyte size (µm) | Adipocytes | 62 | 119.1 (14.0) | 90.9–146.2 |
Leptin (ng/mL) | Adipocytes | 100 | 21.7 (21.0) | 0.4–99.0 |
Adiponectin (mg/L) | Adipocytes | 98 | 7.8 (5.9) | 1.7–43.8 |
Macrophage infiltration (number/100 adipocytes) | Adipocytes | 94 | 13.3 (16.9) | 0–115 |
Lean | Obese | ||||||
---|---|---|---|---|---|---|---|
N | Mean ± SEM | Range | N | Mean ± SEM | Range | p | |
Male/Female | 59 | 27/32 (45.8) | - | 73 | 34/39 (46.6) | - | 0.926 a |
(% male) | |||||||
Age (years) | 59 | 10.4 ± 0.6 | 1.1–18.3 | 73 | 13.3 ± 0.3 | 4.8–18.4 | <0.001 |
PH | 50 | 2.4 ± 0.2 | 1–6 | 63 | 3.4 ± 0.2 | 1–6 | 0.002 |
BMI SDS | 59 | 0.1 ± 0.1 | −1.8–1.2 | 73 | 2.3 ± 0.1 | 1.3–4.3 | <0.001 |
Adipocyte size (µm) | 32 | 114.3 ± 2.3 | 80.9-138.8 | 43 | 127.2 ± 2.4 | 98.0–174.8 | <0.001 |
Macrophages per 100 adipocytes | 49 | 8.8 ± 1.1 | 0-29 | 59 | 15.8 ± 2.4 | 0–115 | 0.013 b |
Number of children with CLS (%) | 49 | 7 (14.3%) | 59 | 31 (52.5%) | <0.001 a | ||
Adiponectin (mg/L) | 45 | 9.0 ± 1.0 | 1.6–43.8 | 63 | 5.6 ± 0.3 | 1.7–15.1 | <0.001 b |
Leptin (ng/mL) | 42 | 7.5 ± 1.2 | 0.4–28.2 | 64 | 29.4 ± 2.7 | 1.3–89.1 | <0.001 b |
HOMA-IR | 48 | 1.5 ± 0.2 | 0.04–5.6 | 62 | 3.6 ± 0.3 | 0.3–12.7 | <0.001 b |
Gene Set | Description | Size | Enrichment Ratio | FDR |
---|---|---|---|---|
Adipose tissue | ||||
GO:0050900 | leukocyte migration | 413 | 3.9 | 8.2 × 10−5 |
GO:1901615 | organic hydroxy compound metabolic process | 494 | 3.6 | 8.2 × 10−5 |
GO:0008202 | steroid metabolic process | 302 | 4.3 | 3.0 × 10−4 |
GO:0006898 | receptor-mediated endocytosis | 279 | 4.1 | 2.0 × 10−3 |
GO:0044282 | small molecule catabolic process | 419 | 3.3 | 3.0 × 10−3 |
GO:0043062 | extracellular structural organisation | 392 | 3.3 | 3.7 × 10−3 |
GO:0002446 | neutrophil-mediated immunity | 484 | 3.0 | 3.7 × 10−3 |
GO:0036230 | granulocyte activation | 488 | 3.0 | 3.7 × 10−3 |
GO:0060326 | cell chemotaxis | 285 | 3.7 | 5.1 × 10−3 |
GO:0062012 | regulation of small molecule metabolic process | 338 | 3.4 | 6.7 × 10−3 |
Adipocytes | ||||
GO:0043062 | extracellular structural organisation | 392 | 6.2 | 7.6 × 10−13 |
GO:0006898 | receptor-mediated endocytosis | 279 | 4.1 | 4.1 × 10−3 |
GO:0050900 | leukocyte migration | 413 | 3.3 | 4.1 × 10−3 |
GO:0007492 | endoderm development | 72 | 7.9 | 5.8 × 10−3 |
GO:0071559 | response to transforming growth factor beta | 234 | 4.2 | 5.8 × 10−3 |
GO:0006638 | neutral lipid metabolic process | 118 | 5.5 | 1.2 × 10−2 |
GO:0048771 | tissue remodelling | 151 | 4.8 | 1.2 × 10−2 |
GO:0002526 | acute inflammatory response | 153 | 4.8 | 1.2 × 10−2 |
GO:0016042 | lipid catabolic process | 310 | 3.4 | 1.2 × 10−2 |
GO:0050673 | epithelial cell proliferation | 359 | 3.2 | 1.2 × 10−2 |
Stromal vascular fraction cells | ||||
GO:0050900 | leukocyte migration | 413 | 6.2 | 1.9 × 10−13 |
GO:0036230 | granulocyte activation | 488 | 5.6 | 1.9 × 10−13 |
GO:0002446 | neutrophil-mediated immunity | 484 | 5.1 | 3.6 × 10−11 |
GO:0002237 | response to molecule of bacterial origin | 326 | 5.6 | 1.3 × 10−8 |
GO:0002694 | regulation of leukocyte activation | 473 | 4.6 | 1.6 × 10−8 |
GO:0071216 | cellular response to biotic stimulus | 221 | 6.7 | 2.3 × 10−8 |
GO:0002521 | leukocyte differentiation | 489 | 4.4 | 2.3 × 10−8 |
GO:0060326 | cell chemotaxis | 285 | 5.8 | 2.6 × 10−8 |
GO:0050727 | regulation of inflammatory response | 358 | 5.1 | 3.7 × 10−8 |
GO:0006909 | phagocytosis | 234 | 6.4 | 3.9 × 10−8 |
Gene Set | Description | Size | Enrichment Ratio | FDR |
---|---|---|---|---|
Adipocytes | ||||
GO:0043062 | extracellular structural organisation | 392 | 4.2 | 5.3 × 10−5 |
GO:0001525 | angiogenesis | 476 | 3.5 | 5.8 × 10−4 |
GO:0090287 | regulation of cellular response to growth factor stimulus | 252 | 4.6 | 6.9 × 10−4 |
GO:0042326 | negative regulation of phosphorylation | 417 | 3.4 | 2.8 × 10−3 |
GO:0031667 | response to nutrient levels | 474 | 3.1 | 3.2 × 10−3 |
GO:0050673 | epithelial cell proliferation | 359 | 3.4 | 4.6 × 10−3 |
GO:0070482 | response to oxygen levels | 326 | 3.5 | 5.4 × 10−3 |
GO:0033002 | muscle cell proliferation | 180 | 4.6 | 7.4 × 10−3 |
GO:1902532 | negative regulation of intracellular signal transduction | 486 | 2.9 | 8.5 × 10−3 |
GO:0016042 | lipid catabolic process | 310 | 3.5 | 9.1 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landgraf, K.; Kühnapfel, A.; Schlanstein, M.; Biemann, R.; Isermann, B.; Kempf, E.; Kirsten, H.; Scholz, M.; Körner, A. Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children. Int. J. Mol. Sci. 2022, 23, 4349. https://doi.org/10.3390/ijms23084349
Landgraf K, Kühnapfel A, Schlanstein M, Biemann R, Isermann B, Kempf E, Kirsten H, Scholz M, Körner A. Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children. International Journal of Molecular Sciences. 2022; 23(8):4349. https://doi.org/10.3390/ijms23084349
Chicago/Turabian StyleLandgraf, Kathrin, Andreas Kühnapfel, Maria Schlanstein, Ronald Biemann, Berend Isermann, Elena Kempf, Holger Kirsten, Markus Scholz, and Antje Körner. 2022. "Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children" International Journal of Molecular Sciences 23, no. 8: 4349. https://doi.org/10.3390/ijms23084349
APA StyleLandgraf, K., Kühnapfel, A., Schlanstein, M., Biemann, R., Isermann, B., Kempf, E., Kirsten, H., Scholz, M., & Körner, A. (2022). Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children. International Journal of Molecular Sciences, 23(8), 4349. https://doi.org/10.3390/ijms23084349