Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review
Abstract
:1. Introduction
1.1. The Basics
- -
- severe—Hurler syndrome (MPS IH, OMIM #607014),
- -
- moderate—Hureler-Scheie syndrome (MPS IH/S, OMIM #607015),
- -
1.2. Clinical Features
1.3. Diagnosis and Management
2. Nonviral Gene Therapy with Nanoemulsions
2.1. The Basics
2.2. Gene Therapy
3. Challenges and Perspective
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BBB | Blood–brain barrier |
CNS | Central nervous system |
CRISPR | Clustered regularly interspaced short palindromic repeat |
DOTAP | 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane |
DS | Dermatan sulphate |
ERT | Enzyme replacement therapy |
FLS | Fibroblast-like synoviocytes |
GAGs | Glycosaminoglycans |
GvHD | Graft versus host disease |
HS | Heparan sulphate |
HSCT | Hematopoietic stem cell transplantation |
IDUA | Alpha-L-iduronidase |
LSDs | Lysosomal storage disorders |
MPS I | Mucopolysaccharidosis type I |
PUFA | Omega-3 polyunsaturated fatty acids |
Trp | Tryptophan |
References
- Orpha.net. Mucopolysaccharidosis Type 1. Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=579 (accessed on 4 November 2021).
- Online Mendelian Inheritance in Man. Available online: https://www.omim.org/entry/607014 (accessed on 4 November 2021).
- MedlinePlus. Available online: https://medlineplus.gov/genetics/condition/mucopolysaccharidosis-type-i/#frequency (accessed on 9 December 2021).
- Matte, U.; Yogalingam, G.; Brooks, D.; Leistner, S.; Schwartz, I.; Lima, L.; Norato, D.Y.; Brum, J.M.; Beesley, C.; Winchester, B.; et al. Identification and characterization of 13 new mutations in mucopolysaccharidosis type I patients. Mol. Genet. Metab. 2003, 78, 37–43. [Google Scholar] [CrossRef]
- Jones, K.L.; Jones, M.C.; Del Campo, M. Atlas Malformacji Rozwojowych Według Smitha; MediPage: Warsaw, Poland, 2018; pp. 596–599. [Google Scholar]
- Hurler, G. Über einen Typ multipler Abartungen, vorwiegend am Skelettsystem. Z. Kinder-Heilk. 1920, 24, 220–234. [Google Scholar] [CrossRef]
- Scheie, H.G.; Hambrick, G.W., Jr.; Barness, L.A. A newly recognized forme fruste of Hurler’s disease (gargoylism). Am. J. Ophthalmol. 1962, 53, 753–769. [Google Scholar] [PubMed]
- Stevenson, R.E.; Howell, R.R.; McKusick, V.A.; Suskind, R.; Hanson, J.W.; Elliott, D.E.; Neufeld, E.F. The iduronidase-deficient mucopolysaccharidoses: Clinical and roentgenorgraphic features. Pediatrics 1976, 57, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Online Mendelian Inheritance in Man. Available online: https://www.omim.org/clinicalSynopsis/table?mimNumber=253010,601492,607016,607015,607014,253200,253220,252930,253000,252920,252900,309900 (accessed on 9 November 2021).
- Giugliani, R. Mucopolysacccharidoses: From understanding to treatment, a century of discoveries. Genet. Mol. Biol. 2012, 35, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Fratantoni, J.C.; Hall, C.W.; Neufeld, E.F. Hurler and Hunter syndromes: Mutual correction of the defect in cultured fibroblasts. Science 1968, 162, 570–572. [Google Scholar] [CrossRef]
- Hasilik, A.; Neufeld, E.F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J. Biol. Chem. 1980, 255, 4946–4950. [Google Scholar] [CrossRef]
- Giugliani, R.; Federhen, A.; Rojas, M.V.M.; Vieira, T.; Artigalás, O.; Pinto, L.L.; Azevedo, A.C.; Acosta, A.; Bonfim, C.; Lourenço, C.M.; et al. Mucopolysaccharidosis I, II, and VI: Brief review and guidelines for treatment. Genet. Mol. Biol. 2010, 33, 589–604. [Google Scholar] [CrossRef]
- Hollak, C.E.; Wijburg, F.A. Treatment of lysosomal storage disorders: Successes and challenges. J. Inherit. Metab. Dis. 2014, 37, 587–598. [Google Scholar] [CrossRef]
- Blaese, R.M.; Culver, K.W.; Miller, A.D.; Carter, C.S.; Fleisher, T.; Clerici, M.; Shearer, G.; Chang, L.; Chiang, Y.; Tolstoshev, P.; et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 1995, 270, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, K.B.; Büning, H.; Galy, A.; Schambach, A.; Grez, M. Gene therapy on the move. EMBO Mol. Med. 2013, 5, 1642–1661. [Google Scholar] [CrossRef] [PubMed]
- Zapolnik, P.; Pyrkosz, A. Gene Therapy for Mucopolysaccharidosis Type II-A Review of the Current Possibilities. Int. J. Mol. Sci. 2021, 22, 5490. [Google Scholar] [CrossRef] [PubMed]
- Schuh, R.S.; de Carvalho, T.G.; Giugliani, R.; Matte, U.; Baldo, G.; Teixeira, H.F. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur. J. Pharm. Biopharm. 2018, 122, 158–166. [Google Scholar] [CrossRef]
- Liu, C.H.; Yu, S.Y. Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids Surf. B Biointerfaces 2010, 79, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Liu, F.; Liu, D.; Huang, L. Emulsion formulations as a vector for gene delivery in vitro and in vivo. Adv. Drug Deliv. Rev. 1997, 24, 265–271. [Google Scholar] [CrossRef]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Naqvi, S.; Panghal, A.; Flora, S.J.S. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front. Neurosci. 2020, 14, 494. [Google Scholar] [CrossRef]
- Xue, H.Y.; Guo, P.; Wen, W.C.; Wong, H.L. Lipid-Based Nanocarriers for RNA Delivery. Curr. Pharm. Des. 2015, 21, 3140–3147. [Google Scholar] [CrossRef]
- Shah, L.; Yadav, S.; Amiji, M. Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv. Transl. Res. 2013, 3, 336–351. [Google Scholar] [CrossRef]
- Bazylińska, U.; Saczko, J. Nanoemulsion-templated polylelectrolyte multifunctional nanocapsules for DNA entrapment and bioimaging. Colloids Surf. B Biointerfaces 2016, 137, 191–202. [Google Scholar] [CrossRef]
- Brito, L.A.; Chan, M.; Shaw, C.A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G.R.; Beard, C.W.; et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 2014, 22, 2118–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, H.Y.; Park, J.H.; Kim, K.; Kwon, I.C.; Jeong, S.Y. Lipid-based emulsion system as non-viral gene carriers. Arch. Pharm. Res. 2009, 32, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, H.F.; Bruxel, F.; Fraga, M.; Schuh, R.S.; Zorzi, G.K.; Matte, U.; Fattal, E. Cationic nanoemulsions as nucleic acids delivery systems. Int. J. Pharm. 2017, 534, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Fraga, M.; Bruxel, F.; Diel, D.; de Carvalho, T.G.; Perez, C.A.; Magalhães-Paniago, R.; Malachias, Â.; Oliveira, M.C.; Matte, U.; Teixeira, H.F. PEGylated cationic nanoemulsions can efficiently bind and transfect pIDUA in a mucopolysaccharidosis type I murine model. J. Control. Release 2015, 209, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Fraga, M.; de Carvalho, T.G.; Bidone, J.; Schuh, R.S.; Matte, U.; Teixeira, H.F. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model. Int. J. Nanomed. 2017, 12, 2061–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, M.; Schuh, R.S.; Poletto, É.; de Carvalho, T.G.; França, R.T.; Pinheiro, C.V.; Baldo, G.; Giugliani, R.; Teixeira, H.F.; Matte, U. Gene Therapy of Mucopolysaccharidosis Type I Mice: Repeated Administrations and Safety Assessment of pIDUA/Nanoemulsion Complexes. Curr. Gene Ther. 2021, 21, 464–471. [Google Scholar] [CrossRef]
- Bidone, J.; Schuh, R.S.; Farinon, M.; Poletto, É.; Pasqualim, G.; de Oliveira, P.G.; Fraga, M.; Xavier, R.M.; Baldo, G.; Teixeira, H.F.; et al. Intra-articular nonviral gene therapy in mucopolysaccharidosis I mice. Int. J. Pharm. 2018, 548, 151–158. [Google Scholar] [CrossRef]
- Schuh, R.S.; Bidone, J.; Poletto, E.; Pinheiro, C.V.; Pasqualim, G.; de Carvalho, T.G.; Farinon, M.; da Silva Diel, D.; Xavier, R.M.; Baldo, G.; et al. Nasal Administration of Cationic Nanoemulsions as Nucleic Acids Delivery Systems Aiming at Mucopolysaccharidosis Type I Gene Therapy. Pharm. Res. 2018, 35, 221. [Google Scholar] [CrossRef]
- Boutin, S.; Monteilhet, V.; Veron, P.; Leborgne, C.; Benveniste, O.; Montus, M.F.; Masurier, C. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum. Gene Ther. 2010, 21, 704–712. [Google Scholar] [CrossRef]
- Poletto, E.; Baldo, G.; Gomez-Ospina, N. Genome Editing for Mucopolysaccharidoses. Int. J. Mol. Sci. 2020, 21, 500. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/results?cond=Mucopolysaccharidosis+I+gene+therapy&term=&cntry=&state=&city=&dist= (accessed on 1 December 2021).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/results?cond=nanoemulsion&term=&cntry=&state=&city=&dist= (accessed on 1 December 2021).
Features | Nanoemulsions Gene Transfer |
---|---|
Main benefits | No risk of mutagenesis Easy to produceEasy to modify Ease of incorporating various therapeutic agents into nanoemulsions |
Main limitations | Risk of lower stability in relation to other nanoparticles The ‘droplets’ may be too large Risk of uncertain gene expression Immunogenicity |
Routes of administration in model organisms | Intravenous [23] Intraarticular [26] Intranasal [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapolnik, P.; Pyrkosz, A. Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review. Int. J. Mol. Sci. 2022, 23, 4785. https://doi.org/10.3390/ijms23094785
Zapolnik P, Pyrkosz A. Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review. International Journal of Molecular Sciences. 2022; 23(9):4785. https://doi.org/10.3390/ijms23094785
Chicago/Turabian StyleZapolnik, Paweł, and Antoni Pyrkosz. 2022. "Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review" International Journal of Molecular Sciences 23, no. 9: 4785. https://doi.org/10.3390/ijms23094785
APA StyleZapolnik, P., & Pyrkosz, A. (2022). Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review. International Journal of Molecular Sciences, 23(9), 4785. https://doi.org/10.3390/ijms23094785