Nanoparticle-Based Radiosensitization
Funding
Conflicts of Interest
References
- Kempson, I. Nanoparticle-based radiosensitization. Int. J. Mol. Sci. 2020, 21, 2879. [Google Scholar] [CrossRef] [PubMed]
- Kempson, I. Mechanisms of Nanoparticle Radiosensitization. WIREs Nanomed. Nanobiotechnol. 2020, 13, e1656. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.; Sebastian, S.; Le, Q.V.-C.; Thierry, B.; Kempson, I. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 21, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, C.; Calugaru, V.; Borcoman, E.; Moreno, V.; Calvo, E.; Liem, X.; Salas, S.; Doger, B.; Jouffroy, T.; Mirabel, X.; et al. Phase I dose-escalation study of NBTXR3 activated by intensity-modulated radiation therapy in elderly patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx. Eur. J. Cancer 2021, 146, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Hullo, M.; Grall, R.; Perrot, Y.; Mathé, C.; Ménard, V.; Yang, X.; Lacombe, S.; Porcel, E.; Villagrasa, C.; Chevillard, S.; et al. Radiation enhancer effect of platinum nanoparticles in breast cancer cell lines: In vitro and in silico analyses. Int. J. Mol. Sci. 2021, 22, 4436. [Google Scholar] [CrossRef] [PubMed]
- Peukert, D.; Incerti, S.; Kempson, I.; Douglass, M.; Karamitros, M.; Baldacchino, G.; Bezak, E. Validation and investigation of reactive species yields of Geant4-DNA chemistry models. Med. Phys. 2019, 46, 983–998. [Google Scholar] [CrossRef] [PubMed]
- Peukert, D.; Kempson, I.; Douglass, M.; Bezak, E. Modelling spatial scales of dose deposition and radiolysis products from gold nanoparticle sensitisation of proton therapy in a cell: From intracellular structures to adjacent cells. Int. J. Mol. Sci. 2020, 21, 4431. [Google Scholar] [CrossRef] [PubMed]
- Kolyvanova, M.A.; Belousov, A.V.; Krusanov, G.A.; Isagulieva, A.K.; Morozov, K.V.; Kartseva, M.E.; Salpagarov, M.H.; Krivoshapkin, P.V.; Dement’eva, O.V.; Rudoy, V.M.; et al. Impact of the spectral composition of kilovoltage x-rays on high-z nanoparticle-assisted dose enhancement. Int. J. Mol. Sci. 2021, 22, 6030. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.L.; Liu, W.W.; Cheng, J.C.; Lin, L.C.; Wang, C.R.C.; Li, P.C. Enhanced radiosensitization for cancer treatment with gold nanoparticles through sonoporation. Int. J. Mol. Sci. 2020, 21, 8370. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.W.; Yang, K.; Lee, M.; Moon, J.; Son, A.; Kim, Y.; Choi, S.; Kim, D.H.; Choi, C.; Lee, N.; et al. Manganese ferrite nanoparticles enhance the sensitivity of hepa1-6 hepatocellular carcinoma to radiation by remodeling tumor microenvironments. Int. J. Mol. Sci. 2021, 22, 2637. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kempson, I. Nanoparticle-Based Radiosensitization. Int. J. Mol. Sci. 2022, 23, 4936. https://doi.org/10.3390/ijms23094936
Kempson I. Nanoparticle-Based Radiosensitization. International Journal of Molecular Sciences. 2022; 23(9):4936. https://doi.org/10.3390/ijms23094936
Chicago/Turabian StyleKempson, Ivan. 2022. "Nanoparticle-Based Radiosensitization" International Journal of Molecular Sciences 23, no. 9: 4936. https://doi.org/10.3390/ijms23094936
APA StyleKempson, I. (2022). Nanoparticle-Based Radiosensitization. International Journal of Molecular Sciences, 23(9), 4936. https://doi.org/10.3390/ijms23094936