Physiological and Pathological Roles of the Cytohesin Family in Neurons
Abstract
:1. Introduction
2. Expression and Subcellular Localization of the Cytohesin Family in the Nervous System
3. Protein–Protein Interaction Networks of the Cytohesin Family
4. Roles of the Cytohesin Family in the Neuronal Development
4.1. Axonal Outgrowth
4.2. Pathfinding
4.3. Dendritic Development
5. Roles of the Cytohesin Family in Mature Neuronal Functions
5.1. Presynaptic Functions
5.2. Postsynaptic Functions
6. Pathological Roles of the Cytohesin Family in the CNS
6.1. Chronic Pain
6.2. Neurodegenerative Disease
6.2.1. ALS
6.2.2. AD
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Aβ | Amyloid-β |
ALS | Amyotrophic lateral sclerosis |
AD | Alzheimer’s disease |
AMPARs | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptors |
ARD1 | ADP ribosylation factor domain protein 1 |
Arfs | ADP ribosylation factors |
Arl | Arf-like protein |
ARNO | Arf nucleotide-binding site opener |
APP | Amyloid precursor protein |
BACE1 | β-site APP-cleaving enzyme 1 |
BFA | Brefeldin A |
BIG | Brefeldin A-inhibited GEF |
BLOC-1 | Biogenesis of lysosome-related organelle complex-1 |
BRAG | Brefeldin A-resistant Arf-GEF |
C9ORF72 | Chromosome 9 open reading frame 72 |
CCDC120 | Coiled-coil domain-containing protein 120 |
cKO | Conditional knockout |
CNK | Connector enhancer of KSR |
CNS | Central nervous system |
CRL | Cullin-RING E3 ligase |
DHPG | 3,5-dihydroxyphenylglycine |
EFA6 | Exchange factor for Arf6 |
ER | Endoplasmic reticulum |
ERK | Extracellular signal-regulated kinase |
FBX8 | F-box only protein 8 |
FRMD4A | FERM domain-containing protein 4A |
FTD | Frontotemporal dementia |
GAPs | GTPase-activating proteins |
GBF1 | Golgi brefeldin A-resistant factor 1 |
GEFs | Guanine nucleotide exchange factors |
GRP1 | General receptor for phosphoinositides 1 |
GRASP | GRP1-associated scaffold protein |
IQSEC | IQ and Sec7 domain-containing |
LIMK | LIM domain kinase |
LTD | Long-term depression |
Mena | Mammalian Enabled |
mGluR | Metabotropic glutamate receptor |
PDZ | PSD-95/Discs large/ZO-1 |
PH | Pleckstrin homology |
PI3K | Phosphatidylinositol 3-kinase |
PI(3,4,5)P3 | Phosphatidylinositol 3,4,5-trisphosphate |
PI(4,5)P2 | Phosphatidylinositol 4,5-bisphosphate |
PIP5K | Phosphatidylinositol 4-phosphate 5-kinase |
PLD | Phospholipase D |
PSD | PH and Sec7 domain-containing |
RBX2 | RING box protein 2 |
SMCR8 | Smith-Magenis chromosome region 8 |
SNARE | Soluble N-ethylmaleimide-sensitive factor attachment protein receptor |
SOD1 | Superoxide dismutase 1 |
TDP-43 | Transactive response DNA-binding protein 43 |
WDR41 | WD repeat-containing protein 41 |
References
- D’Souza-Schorey, C.; Chavrier, P. ARF proteins: Roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 2006, 7, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Gillingham, A.K.; Munro, S. The Small G Proteins of the Arf Family and Their Regulators. Annu. Rev. Cell Dev. Biol. 2007, 23, 579–611. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, J.G.; Jackson, C.L. ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 2011, 12, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Sztul, E.; Chen, P.-W.; Casanova, J.E.; Cherfils, J.; Dacks, J.B.; Lambright, D.G.; Lee, F.-J.S.; Randazzo, P.A.; Santy, L.; Schürmann, A.; et al. ARF GTPases and their GEFs and GAPs: Concepts and challenges. Mol. Biol. Cell 2019, 30, 1249–1271. [Google Scholar] [CrossRef]
- Kahn, R.A.; Cherfils, J.; Elias, M.; Lovering, R.; Munro, S.; Schurmann, A. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J. Cell Biol. 2006, 172, 645–650. [Google Scholar] [CrossRef]
- Donaldson, J.G.; Jackson, C.L. Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 2000, 12, 475–482. [Google Scholar] [CrossRef]
- Casanova, J.E. Regulation of Arf Activation: The Sec7 Family of Guanine Nucleotide Exchange Factors. Traffic 2007, 8, 1476–1485. [Google Scholar] [CrossRef]
- Jackson, T.R.; Kearns, B.G.; Theibert, A.B. Cytohesins and centaurins: Mediators of PI 3-kinase-regulated Arf signaling. Trends Biochem. Sci. 2000, 25, 489–495. [Google Scholar] [CrossRef]
- Kolanus, W. Guanine nucleotide exchange factors of the cytohesin family and their roles in signal transduction. Immunol. Rev. 2007, 218, 102–113. [Google Scholar] [CrossRef]
- Pipaliya, S.V.; Schlacht, A.; Klinger, C.M.; Kahn, R.A.; Dacks, J. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol. Biol. Cell 2019, 30, 1846–1863. [Google Scholar] [CrossRef]
- Kolanus, W.; Nagel, W.; Schiller, B.; Zeitlmann, L.; Godar, S.; Stockinger, H.; Seed, B. αLβ2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 1996, 86, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Chardin, P.; Paris, S.; Antonny, B.; Robineau, S.; Beraud-Dufour, S.; Jackson, C.L.; Chabre, M. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 1996, 384, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Klarlund, J.K.; Guilherme, A.; Holik, J.J.; Virbasius, J.V.; Chawla, A.; Czech, M.P. Signaling by Phosphoinosi-tide-3,4,5-Trisphosphate Through Proteins Containing Pleckstrin and Sec7 Homology Domains. Science 1997, 275, 1927–1930. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, M.; Kim, S.-C.; Adamik, R.; Togawa, A.; Ferrans, V.J.; Takeda, K.; Kirby, M.; Moss, J.; Vaughan, M. Similarities in Function and Gene Structure of Cytohesin-4 and Cytohesin-1, Guanine Nucleotide-exchange Proteins for ADP-ribosylation Factors. J. Biol. Chem. 2000, 275, 3221–3230. [Google Scholar] [CrossRef] [Green Version]
- Klarlund, J.K.; Tsiaras, W.; Holik, J.J.; Chawla, A.; Czech, M.P. Distinct Polyphosphoinositide Binding Selectivities for Pleckstrin Homology Domains of GRP1-like Proteins Based on DiglycineVersus Triglycine Motifs. J. Biol. Chem. 2000, 275, 32816–32821. [Google Scholar] [CrossRef] [Green Version]
- Venkateswarlu, K.; Gunn-Moore, F.; Oatey, P.B.; Tavaré, J.M.; Cullen, P.J. Nerve growth factor- and epidermal growth fac-tor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem. J. 1998, 335, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Langille, S.E.; Patki, V.; Klarlund, J.K.; Buxton, J.M.; Holik, J.J.; Chawla, A.; Corvera, S.; Czech, M.P. ADP-ribosylation Factor 6 as a Target of Guanine Nucleotide Exchange Factor GRP1. J. Biol. Chem. 1999, 274, 27099–27104. [Google Scholar] [CrossRef] [Green Version]
- Meacci, E.; Tsai, S.-C.; Adamik, R.; Moss, J.; Vaughan, M. Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl. Acad. Sci. 1997, 94, 1745–1748. [Google Scholar] [CrossRef] [Green Version]
- Frank, S.; Upender, S.; Hansen, S.; Casanova, J.E. ARNO Is a Guanine Nucleotide Exchange Factor for ADP-ribosylation Factor 6. J. Biol. Chem. 1998, 273, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Klarlund, J.K.; Rameh, L.E.; Cantley, L.; Buxton, J.M.; Holik, J.J.; Sakelis, C.; Patki, V.; Corvera, S.; Czech, M.P. Regulation of GRP1-catalyzed ADP Ribosylation Factor Guanine Nucleotide Exchange by Phosphatidylinositol 3,4,5-Trisphosphate. J. Biol. Chem. 1998, 273, 1859–1862. [Google Scholar] [CrossRef] [Green Version]
- Franco, M.; Boretto, J.; Robineau, S.; Monier, S.; Goud, B.; Chardin, P.; Chavrier, P. ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function. Proc. Natl. Acad. Sci. 1998, 95, 9926–9931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco-Rodriguez, G.; Meacci, E.; Vitale, N.; Moss, J.; Vaughan, M. Guanine Nucleotide Exchange on ADP-ribosylation Factors Catalyzed by Cytohesin-1 and Its Sec7 Domain. J. Biol. Chem. 1998, 273, 26543–26548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, A.; Fukaya, M.; Sugawara, T.; Hara, Y.; Okamoto, H.; Yamauchi, J.; Sakagami, H. Cytohesin-2 mediates group I metabo-tropic glutamate receptor-dependent mechanical allodynia through the activation of ADP ribosylation factor 6 in the spinal cord. Neurobiol. Dis. 2021, 159, 105466. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.A.; Honda, A.; Varnai, P.; Brown, F.D.; Balla, T.; Donaldson, J.G. Active Arf6 Recruits ARNO/Cytohesin GEFs to the PM by Binding Their PH Domains. Mol. Biol. Cell 2007, 18, 2244–2253. [Google Scholar] [CrossRef] [Green Version]
- Vitale, N.; Pacheco-Rodriguez, G.; Ferrans, V.J.; Riemenschneider, W.; Moss, J.; Vaughan, M. Specific Functional Interaction of Human Cytohesin-1 and ADP-ribosylation Factor Domain Protein (ARD1). J. Biol. Chem. 2000, 275, 21331–21339. [Google Scholar] [CrossRef] [Green Version]
- Hafner, M.; Schmitz, A.; Grüne, I.; Srivatsan, S.G.; Paul, B.; Kolanus, W.; Quast, T.; Kremmer, E.; Bauer, I.; Famulok, M. Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature 2006, 444, 941–944. [Google Scholar] [CrossRef]
- Hernández-Deviez, D.J.; Casanova, J.E.; Wilson, J.M. Regulation of dendritic development by the ARF exchange factor ARNO. Nat. Neurosci. 2002, 5, 623–624. [Google Scholar] [CrossRef]
- Hernández-Deviez, D.J.; Roth, M.; Casanova, J.E.; Wilson, J.M. ARNO and ARF6 Regulate Axonal Elongation and Branching through Downstream Activation of Phosphatidylinositol 4-Phosphate 5-Kinase α. Mol. Biol. Cell 2004, 15, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita-Kawada, M.; Hasegawa, H.; Hongu, T.; Yanagi, S.; Kanaho, Y.; Masai, I.; Mishima, T.; Chen, X.P.; Tsuboi, Y.; Rao, Y.; et al. A crucial role for Arf6 in the response of commissural axons to Slit. Development 2019, 146, dev172106. [Google Scholar] [CrossRef] [Green Version]
- Ashery, U.; Koch, H.; Scheuss, V.; Brose, N.; Rettig, J. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1. Proc. Natl. Acad. Sci. 1999, 96, 1094–1099. [Google Scholar] [CrossRef] [Green Version]
- Huh, M.; Han, J.-H.; Lim, C.-S.; Lee, S.-H.; Kim, S.; Kim, E.; Kaang, B.-K. Regulation of neuritogenesis and synaptic transmission by msec7-1, a guanine nucleotide exchange factor, in cultured Aplysia neurons. J. Neurochem. 2003, 85, 282–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliatti, E.; Fadda, M.; Falace, A.; Benfenati, F.; Fassio, A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. eLife 2016, 5, e10116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, J.; Zhang, L.; Mojsilovic-Petrovic, J.; Jian, X.; Thomas, J.; Homma, K.; Schmitz, A.; Famulok, M.; Ichijo, H.; Argon, Y.; et al. Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease. . J. Neurosci. 2015, 35, 9088–9105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Liu, X.; Wang, S.; Sun, G.; Zhao, R.; Lu, H. SecinH3 Attenuates TDP-43 p. Q331K-Induced Neuronal Toxicity by Sup-pressing Endoplasmic Reticulum Stress and Enhancing Autophagic Flux. IUBMB Life 2018, 71, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Nykänen, N.-P.; Brunello, C.A.; Haapasalo, A.; Hiltunen, M.; Uronen-Mattila, R.-L.; Huttunen, H.J. FRMD4A-cytohesin signaling modulates cellular release of Tau. J. Cell Sci. 2016, 129, 2003–2015. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, I.; Owada, Y.; Suzuki, R.; Yoshimoto, T.; Kondo, H. Localization of mRNAs for subfamily of guanine nucleo-tide-exchange proteins (GEP) for ARFs (ADP-ribosylation factors) in the brain of developing and mature rats under normal and postaxotomy conditions. Mol. Brain Res. 2001, 98, 41–50. [Google Scholar] [CrossRef]
- Ito, A.; Fukaya, M.; Saegusa, S.; Kobayashi, E.; Sugawara, T.; Hara, Y.; Yamauchi, J.; Okamoto, H.; Sakagami, H. Pallidin is a novel interacting protein for cytohesin-2 and regulates the early endosomal pathway and dendritic formation in neurons. J. Neurochem. 2018, 147, 153–177. [Google Scholar] [CrossRef]
- Luján, R.; Nusser, Z.; Roberts, J.D.B.; Shigemoto, R.; Somogyi, P. Perisynaptic Location of Metabotropic Glutamate Receptors mGluR1 and mGluR5 on Dendrites and Dendritic Spines in the Rat Hippocampus. Eur. J. Neurosci. 1996, 8, 1488–1500. [Google Scholar] [CrossRef]
- Vidnyánszky, Z.; Hamori, J.; Négyessy, L.; Rüegg, D.; Knopfel, T.; Kuhn, R.; Görcs, T.J. Cellular, and subcellular localization of the mGluR5a metabotropic glutamate receptor in rat spinal cord. NeuroReport 1994, 6, 209–213. [Google Scholar] [CrossRef]
- Alvarez, F.J.; Villalba, R.M.; Carr, P.A.; Grandes, P.; Somohano, P.M. Differential distribution of metabotropic glutamate receptors 1a, 1b, and 5 in the rat spinal cord. J. Comp. Neurol. 2000, 422, 464–487. [Google Scholar] [CrossRef]
- Kitano, J.; Kimura, K.; Yamazaki, Y.; Soda, T.; Shigemoto, R.; Nakajima, Y.; Nakanishi, S. Tamalin, a PDZ Domain-Containing Protein, Links a Protein Complex Formation of Group 1 Metabotropic Glutamate Receptors and the Guanine Nucleotide Exchange Factor Cytohesins. J. Neurosci. 2002, 22, 1280–1289. [Google Scholar] [CrossRef] [Green Version]
- Nevrivy, D.J.; Peterson, V.J.; Avram, D.; Ishmael, J.E.; Hansen, S.G.; Dowell, P.; Hruby, D.E.; Dawson, M.I.; Leid, M. Interaction of GRASP, a Protein encoded by a Novel Retinoic Acid-induced Gene, with Members of the Cytohesin Family of Guanine Nucleotide Exchange Factors. J. Biol. Chem. 2000, 275, 16827–16836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban, P.; Yoon, H.-Y.; Becker, J.; Dorsey, S.G.; Caprari, P.; Palko, M.E.; Coppola, V.; Saragovi, H.U.; Randazzo, P.A.; Tessarollo, L. A kinase-deficient TrkC receptor isoform activates Arf6–Rac1 signaling through the scaffold protein tamalin. J. Cell Biol. 2006, 173, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, M.; Lee, S.Y.; Pohajdak, B. The N-terminal Coiled Coil Domain of the Cytohesin/ARNO Family of Guanine Nu-cleotide Exchange Factors Interacts with the Scaffolding Protein CASP. J. Biol. Chem. 2002, 277, 32302–32309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, P.; Cheng, T.P.; Agnello, D.; Wu, C.-Y.; Hissong, B.D.; Watford, W.T.; Ahn, H.-J.; Galon, J.; Moss, J.; Vaughan, M.; et al. Cybr, a cytokine-inducible protein that binds cytohesin-1 and regulates its activity. Proc. Natl. Acad. Sci. 2002, 99, 2625–2629. [Google Scholar] [CrossRef] [Green Version]
- Boehm, T.; Hofer, S.; Winklehner, P.; Kellersch, B.; Geiger, C.; Trockenbacher, A.; Neyer, S.; Fiegl, H.; Ebner, S.; Ivarsson, L.; et al. Attenuation of cell adhesion in lymphocytes is regulated by CYTIP, a protein which mediates signal complex sequestration. EMBO J. 2003, 22, 1014–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNeil, A.J.; Mansour, M.; Pohajdak, B. Sorting nexin 27 interacts with the Cytohesin associated scaffolding protein (CASP) in lymphocytes. Biochem. Biophys. Res. Commun. 2007, 359, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Klarlund, J.K.; Holik, J.; Chawla, A.; Park, J.G.; Buxton, J.; Czech, M.P. Signaling Complexes of the FERM Domain-containing Protein GRSP1 Bound to ARF Exchange Factor GRP1. J. Biol. Chem. 2001, 276, 40065–40070. [Google Scholar] [CrossRef] [Green Version]
- Ikenouchi, J.; Umeda, M. FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc. Natl. Acad. Sci. 2009, 107, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Zhou, M.; Veenstra, T.D.; Morrison, D.K. The CNK1 scaffold binds cytohesins and promotes insulin pathway signaling. Genes Dev. 2010, 24, 1496–1506. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Ritt, D.A.; Zhou, M.; Morrison, D.K. The CNK2 Scaffold Interacts with Vilse and Modulates Rac Cycling during Spine Morphogenesis in Hippocampal Neurons. Curr. Biol. 2014, 24, 786–792. [Google Scholar] [CrossRef] [Green Version]
- Venkateswarlu, K. Interaction Protein for Cytohesin Exchange Factors 1 (IPCEF1) Binds Cytohesin 2 and Modifies Its Activity. J. Biol. Chem. 2003, 278, 43460–43469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attar, M.A.; Salem, J.C.; Pursel, H.S.; Santy, L.C. CNK3 and IPCEF1 produce a single protein that is required for HGF dependent Arf6 activation and migration. Exp. Cell Res. 2012, 318, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Torii, T.; Miyamoto, Y.; Tago, K.; Sango, K.; Nakamura, K.; Sanbe, A.; Tanoue, A.; Yamauchi, J. Arf6 Guanine Nucleotide Exchange Factor Cytohesin-2 Binds to CCDC120 and Is Transported Along Neurites to Mediate Neurite Growth. J. Biol. Chem. 2014, 289, 33887–33903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, T.; Miyamoto, Y.; Sanbe, A.; Nishimura, K.; Yamauchi, J.; Tanoue, A. Cytohesin-2/ARNO, through Its Interaction with Focal Adhesion Adaptor Protein Paxillin, Regulates Preadipocyte Migration via the Downstream Activation of Arf6. J. Biol. Chem. 2010, 285, 24270–24281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, T.; Miyamoto, Y.; Nishimura, K.; Maeda, M.; Tanoue, A.; Yamauchi, J. The polybasic region of cytohesin-2 determines paxillin binding specificity to mediate cell migration. Adv. Biol. Chem. 2012, 02, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Claing, A.; Chen, W.; Miller, W.; Vitale, N.; Moss, J.; Premont, R.; Lefkowitz, R.J. β-Arrestin-mediated ADP-ribosylation Factor 6 Activation and β2-Adrenergic Receptor Endocytosis. J. Biol. Chem. 2001, 276, 42509–42513. [Google Scholar] [CrossRef] [Green Version]
- Bouschet, T.; Martin, S.; Kanamarlapudi, V.; Mundell, S.; Henley, J.M. The calcium-sensing receptor changes cell shape via a β-arrestin-1-ARNO-ARF6-ELMO protein network. J. Cell. Sci. 2007, 120, 2489–2497. [Google Scholar] [CrossRef] [Green Version]
- Charles, R.; Namkung, Y.; Cotton, M.; Laporte, S.A.; Claing, A. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. J. Biol. Chem. 2016, 291, 3967–3981. [Google Scholar] [CrossRef] [Green Version]
- Neeb, A.; Koch, H.; Schürmann, A.; Brose, N. Direct interaction between the ARF-specific guanine nucleotide exchange factor msec7-1 and presynaptic Munc13-1. Eur. J. Cell Biol. 1999, 78, 533–538. [Google Scholar] [CrossRef]
- Li, C.C.; Chiang, T.C.; Wu, T.S.; Pacheco-Rodriguez, G.; Moss, J.; Lee, F.J.S. ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol. Biol. Cell 2007, 18, 4420–4437. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, I.; Thompson, A.; Sanderson, C.M.; Munro, S. The Arl4 Family of Small G Proteins Can Recruit the Cytohesin Arf6 Exchange Factors to the Plasma Membrane. Curr. Biol. 2007, 17, 711–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurmann, A.; Schmidt, M.; Asmus, M.; Bayer, S.; Fliegert, F.; Koling, S.; Maßmann, S.; Schilf, C.; Subauste, M.C.; Voß, M.; et al. The ADP-ribosylation Factor (ARF)-related GTPase ARF-related Protein Binds to the ARF-specific Guanine Nucleotide Ex-change Factor Cytohesin and Inhibits the ARF-dependent Activation of Phospholipase D. J. Biol. Chem. 1999, 274, 9744–9751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giguere, P.; Rochdi, M.D.; Laroche, G.; Dupre, E.; Whorton, M.R.; Sunahara, R.K.; Claing, A.; Dupuis, G.; Parent, J.L. ARF6 activation by G(alpha q) signaling: Gαq forms molecular complexes with ARNO and ARF6. Cellular Signalling 2006, 18, 1988–1994. [Google Scholar] [CrossRef] [PubMed]
- Laroche, G.; Giguere, P.M.; Dupré, É.; Dupuis, G.; Parent, J.-L. The N-terminal coiled-coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with Gαq. Mol. Cell. Biochem. 2007, 306, 141–152. [Google Scholar] [CrossRef]
- Jun, Y.W.; Lee, S.H.; Shim, J.; Lee, J.A.; Lim, C.S.; Kaang, B.K.; Jang, D.J. Dual roles of the N-terminal coiled-coil domain of an Aplysia sec7 protein: Homodimer formation and nuclear export. J. Neurochem. 2016, 139, 1102–1112. [Google Scholar] [CrossRef]
- Yamaoka, M.; Ando, T.; Terabayashi, T.; Okamoto, M.; Takei, M.; Nishioka, T.; Kaibuchi, K.; Matsunaga, K.; Ishizaki, R.; Izumi, T.; et al. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a. J. Cell Sci. 2016, 129, 637–649. [Google Scholar]
- Goldfinger, L.E.; Ptak, C.; Jeffery, E.D.; Shabanowitz, J.; Hunt, D.F.; Ginsberg, M.H. RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. J. Cell Biol. 2006, 174, 877–888. [Google Scholar] [CrossRef]
- Lee, S.; Wurtzel, J.G.; Goldfinger, L.E. The RLIP76 N-terminus binds ARNO to regulate PI 3-kinase, Arf6 and Rac signaling, cell spreading and migration. Biochem. Biophys. Res. Commun. 2014, 454, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Geiger, C.; Nagel, W.; Boehm, T.; Van Kooyk, Y.; Figdor, C.G.; Kremmer, E.; Hogg, N.; Zeitlmann, L.; Dierks, H.; Weber, K.S.; et al. Cytohesin-1 regulates beta-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO J. 2000, 19, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
- Korthäuer, U.; Nagel, W.; Davis, E.M.; Le Beau, M.M.; Menon, R.S.; Mitchell, E.O.; Kozak, C.A.; Kolanus, W.; Bluestone, J.A. Anergic T Lymphocytes Selectively Express an Integrin Regulatory Protein of the Cytohesin Family. J. Immunol. 2000, 164, 308–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Azreq, M.A.; Garceau, V.; Bourgoin, S.G. Cytohesin-1 regulates fMLF-mediated activation and functions of the β2 integrin Mac-1 in human neutrophils. J. Leukocyte Biol. 2011, 89, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-S.; Shome, K.; Rojas, R.; Rizzo, M.A.; Vasudevan, C.; Fluharty, E.; Santy, L.C.; Casanova, J.E.; Romero, G. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin. BMC Mol. Cell Biol. 2003, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado-Lorenzo, A.; Skinner, M.; El Annan, J.; Futai, M.; Sun-Wada, G.-H.; Bourgoin, S.; Casanova, J.; Wildeman, A.; Bechoua, S.; Ausiello, D.A.; et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 2006, 8, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Merkulova, M.; Bakulina, A.; Thaker, Y.R.; Grüber, G.; Marshansky, V. Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO. Biochim. et Biophys. Acta 2010, 1797, 1398–1409. [Google Scholar] [CrossRef] [Green Version]
- Gsandtner, I.; Charalambous, C.; Stefan, E.; Ogris, E.; Freissmuth, M.; Zezula, J. Heterotrimeric G protein-independent sig-naling of a G protein-coupled receptor. Direct binding of ARNO/cytohesin-2 to the carboxyl terminus of the A2A adenosine receptor is necessary for sustained activation of the ERK/MAP kinase pathway. J. Biol. Chem. 2005, 280, 31898–31905. [Google Scholar] [CrossRef] [Green Version]
- Viegas, A.; Yin, D.M.; Borggräfe, J.; Viennet, T.; Falke, M.; Schmitz, A.; Famulok, M.; Etzkorn, M. Molecular Architecture of a Network of Potential Intracellular EGFR Modulators: ARNO, CaM, Phospholipids, and the Juxtamembrane Segment. Structure 2019, 28, 54–62e5. [Google Scholar] [CrossRef]
- Kliche, S.; Nagel, W.; Kremmer, E.; Atzler, C.; Ege, A.; Knorr, T.; Koszinowski, U.; Kolanus, W.; Haas, J. Signaling by Human Herpesvirus 8 kaposin A through Direct Membrane Recruitment of cytohesin-1. Mol. Cell 2001, 7, 833–843. [Google Scholar] [CrossRef]
- Dierks, H.; Kolanus, J.; Kolanus, W. Actin Cytoskeletal Association of Cytohesin-1 Is Regulated by Specific Phosphorylation of Its Carboxyl-terminal Polybasic Domain. J. Biol. Chem. 2001, 276, 37472–37481. [Google Scholar] [CrossRef] [Green Version]
- Torii, T.; Miyamoto, Y.; Nakamura, K.; Maeda, M.; Yamauchi, J.; Tanoue, A. Arf6 guanine-nucleotide exchange factor, cyto-hesin-2, interacts with actinin-1 to regulate neurite extension. Cell. Signal. 2012, 24, 1872–1882. [Google Scholar] [CrossRef]
- Merkulova, M.; Hurtado-Lorenzo, A.; Hosokawa, H.; Zhuang, Z.; Brown, D.; Ausiello, D.A.; Marshansky, V. Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Am. J. Physiol. Physiol. 2011, 300, C1442–C1455. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, V.; Nakata, T.; Desch, A.N.; Lévesque, C.; Boroughs, A.; Guzman, G.; Cao, Z.; Creasey, E.; Yao, J.; Boucher, G.; et al. C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 2018, 359, 1161–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betz, A.; Ashery, U.; Rickmann, M.; Augustin, I.; Neher, E.; Südhof, T.C.; Rettig, J.; Brose, N. Munc13-1 Is a Presynaptic Phorbol Ester Receptor that Enhances Neurotransmitter Release. Neuron 1998, 21, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Setty, S.R.G.; Tenza, D.; Truschel, S.T.; Chou, E.; Sviderskaya, E.V.; Theos, A.C.; Lamoreux, M.L.; Di Pietro, S.M.; Starcevic, M.; Bennett, D.C.; et al. BLOC-1 Is Required for Cargo-specific Sorting from Vacuolar Early Endosomes toward Lysosome-related Organelles. Mol. Biol. Cell 2007, 18, 768–780. [Google Scholar] [CrossRef] [Green Version]
- Salazar, G.; Craige, B.; Styers, M.L.; Newell-Litwa, K.; Doucette, M.M.; Wainer, B.H.; Falcon-Perez, J.M.; Dell’Angelica, E.C.; Peden, A.; Werner, E.; et al. BLOC-1 Complex Deficiency Alters the Targeting of Adaptor Protein Complex-3 Cargoes. Mol. Biol. Cell 2006, 17, 4014–4026. [Google Scholar] [CrossRef] [Green Version]
- Monis, W.J.; Faundez, V.; Pazour, G.J. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia. J. Cell Biol. 2017, 216, 2131–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell-Litwa, K.; Salazar, G.; Smith, Y.; Faundez, V. Roles of BLOC-1 and Adaptor Protein-3 Complexes in Cargo Sorting to Synaptic Vesicles. Mol. Biol. Cell 2009, 20, 1441–1453. [Google Scholar] [CrossRef] [Green Version]
- Di Giovanni, J.; Sheng, Z. Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting. EMBO J. 2015, 34, 2059–2077. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ma, W.; Zhang, S.; Paluch, J.; Guo, W.; Dickman, D.K. The BLOC-1 Subunit Pallidin Facilitates Activity-Dependent Synaptic Vesicle Recycling. eneuro 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Santy, L.; Casanova, J.E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol. 2001, 154, 599–610. [Google Scholar] [CrossRef]
- Zhang, Q.; Cox, D.; Tseng, C.-C.; Donaldson, J.G.; Greenberg, S. A Requirement for ARF6 in Fcγ Receptor-mediated Phago-cytosis in Macrophages. J. Biol. Chem. 1998, 273, 19977–19981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Calafat, J.; Janssen, H.; Greenberg, S. ARF6 Is Required for Growth Factor- and Rac-Mediated Membrane Ruffling in Macrophages at a Stage Distal to Rac Membrane Targeting. Mol. Cell. Biol. 1999, 19, 8158–8168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tushir, J.S.; D’Souza-Schorey, C. ARF6-dependent activation of ERK and Rac1 modulates epithelial tubule development. EMBO J. 2007, 26, 1806–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, H.N.M.; Dunbar, C.; Mórotz, G.M.; Cheng, W.H.; Chan, H.Y.E.; Miller, C.C.J.; Lau, K. FE65 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. FASEB J. 2013, 28, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Ko, J.; Lee, J.-R.; Lee, H.W.; Kim, K.; Chung, H.S.; Kim, H.; Kim, E. ARF6 and EFA6A Regulate the Development and Maintenance of Dendritic Spines. J. Neurosci. 2006, 26, 4811–4819. [Google Scholar] [CrossRef] [Green Version]
- Attar, M.A.; Santy, L.C. The scaffolding protein GRASP/Tamalin directly binds to Dock180 as well as to cytohesins facilitating GTPase crosstalk in epithelial cell migration. BMC Cell Biol. 2013, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Nagata, K.-I. Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders. Cells 2022, 11, 303. [Google Scholar] [CrossRef]
- DiNitto, J.P.; Delprato, A.; Lee, M.-T.G.; Cronin, T.C.; Huang, S.; Guilherme, A.; Czech, M.P.; Lambright, D.G. Structural Basis and Mechanism of Autoregulation in 3-Phosphoinositide-Dependent Grp1 Family Arf GTPase Exchange Factors. Mol. Cell 2007, 28, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Malaby, A.W.; Berg, B.V.D.; Lambright, D.G. Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors. Proc. Natl. Acad. Sci. 2013, 110, 14213–14218. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Malaby, A.W.; Nawrotek, A.; Zhang, W.; Zeghouf, M.; Maslen, S.; Skehel, M.; Chakravarthy, S.; Irving, T.C.; Bilsel, O.; et al. Structural Organization and Dynamics of Homodimeric Cytohesin Family Arf GTPase Exchange Factors in Solution and on Membranes. Structure 2019, 27, 1782–1797e7. [Google Scholar] [CrossRef] [Green Version]
- Stalder, D.; Barelli, H.; Gautier, R.; Macia, E.; Jackson, C.; Antonny, B. Kinetic Studies of the Arf Activator Arno on Model Membranes in the Presence of Arf Effectors Suggest Control by a Positive Feedback Loop. J. Biol. Chem. 2011, 286, 3873–3883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takano, T.; Funahashi, Y.; Kaibuchi, K. Neuronal Polarity: Positive and Negative Feedback Signals. Front. Cell Dev. Biol. 2019, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, S.; Schweighofer, N.; Kawato, M. Exploration of Signal Transduction Pathways in Cerebellar Long-Term Depression by Kinetic Simulation. J. Neurosci. 2001, 21, 5693–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Augustine, G.J. A positive feedback signal transduction loop determines timing of cerebellar long-term de-pression. Neuron 2008, 59, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.P.; Polleux, F. Establishment of Axon-Dendrite Polarity in Developing Neurons. Annu. Rev. Neurosci. 2009, 32, 347–381. [Google Scholar] [CrossRef] [Green Version]
- Sann, S.; Wang, Z.; Brown, H.; Jin, Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol. 2009, 19, 317–324. [Google Scholar] [CrossRef]
- Winkle, C.C.; Gupton, S.L. Membrane Trafficking in Neuronal Development: Ins and Outs of Neural Connectivity. In International Review of Cell and Molecular Biology; Academic Press: Cambridge, MA, USA, 2016; Volume 322, pp. 247–280. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Deviez, D.; Mackay-Sim, A.; Wilson, J.M. A Role for ARF6 and ARNO in the Regulation of Endosomal Dynamics in Neurons. Traffic 2007, 8, 1750–1764. [Google Scholar] [CrossRef]
- Han, J.S.; Hino, K.; Li, W.; Reyes, R.V.; Canales, C.P.; Miltner, A.M.; Haddadi, Y.; Sun, J.; Chen, C.-Y.; La Torre, A.; et al. CRL5-dependent regulation of the small GTPases ARL4C and ARF6 controls hippocampal morphogenesis. Proc. Natl. Acad. Sci. 2020, 117, 23073–23084. [Google Scholar] [CrossRef]
- Jareb, M.; Banker, G. Inhibition of Axonal Growth by Brefeldin A in Hippocampal Neurons in Culture. J. Neurosci. 1997, 17, 8955–8963. [Google Scholar] [CrossRef]
- Hess, D.T.; Smith, D.S.; Patterson, S.I.; Kahn, R.A.; Skene, J.H.P.; Norden, J.J. Rapid arrest of axon elongation by brefeldin A: A role for the small GTP-binding protein ARF in neuronal growth cones. J. Neurobiol. 1999, 38, 105–115. [Google Scholar] [CrossRef]
- Amano, T.; Richelson, E.; Nirenberg, M. Neurotransmitter Synthesis by Neuroblastoma Clones. Proc. Natl. Acad. Sci. 1972, 69, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz-Llancao, P.; de Gregorio, C.; Las Heras, M.; Meinohl, C.; Noorman, K.; Boddeke, E.; Cheng, X.D.; Lezoualc’h, F.; Schmidt, M.; Gonzalez-Billault, C. Microtubule-regulating proteins and cAMP-dependent signaling in neuroblastoma dif-ferentiation. Cytoskeleton 2017, 74, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, J.; Miyamoto, Y.; Torii, T.; Mizutani, R.; Nakamura, K.; Sanbe, A.; Koide, H.; Kusakawa, S.; Tanoue, A. Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells. Exp. Cell Res. 2009, 315, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Serafini, T.; Kennedy, T.E.; Gaiko, M.J.; Mirzayan, C.; Jessell, T.M.; Tessier-Lavigne, M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 1994, 78, 409–424. [Google Scholar] [CrossRef]
- Comer, J.D.; Alvarez, S.; Butler, S.J.; Kaltschmidt, J.A. Commissural axon guidance in the developing spinal cord: From Cajal to the present day. Neural Dev. 2019, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ducuing, H.; Gardette, T.; Pignata, A.; Tauszig-Delamasure, S.; Castellani, V. Commissural axon navigation in the spinal cord: A repertoire of repulsive forces is in command. Semin. Cell Dev. Biol. 2019, 85, 3–12. [Google Scholar] [CrossRef]
- Akiyama, M.; Hasegawa, H.; Hongu, T.; Frohman, M.A.; Harada, A.; Sakagami, H.; Kanaho, Y. Trans-regulation of oli-godendrocyte myelination by neurons through small GTPase Arf6-regulated secretion of fibroblast growth factor-2. Nat. Commun. 2014, 5, 4744. [Google Scholar] [CrossRef] [Green Version]
- Patrick, G.N. Synapse formation and plasticity: Recent insights from the perspective of the ubiquitin proteasome system. Curr. Opin. Neurobiol. 2006, 16, 90–94. [Google Scholar] [CrossRef]
- Hegde, A.N.; Upadhya, S.C. The ubiquitin–proteasome pathway in health and disease of the nervous system. Trends Neurosci. 2007, 30, 587–595. [Google Scholar] [CrossRef]
- Ivanova, D.; Cousin, M.A. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front. Synaptic Neurosci. 2022, 14. [Google Scholar] [CrossRef]
- Galas, M.C.; Helms, J.B.; Vitale, N.; Thierse, D.; Aunis, D.; Bader, M.F. Regulated exocytosis in chromaffin cells - A potential role for a secretory granule-associated ARF6 protein. J. Biol. Chem. 1997, 272, 2788–2793. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, Y.; Martin, T.F. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J. Cell Biol. 2003, 162, 647–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béglé, A.; Tryoen-Tóth, P.; de Barry, J.; Bader, M.-F.; Vitale, N. ARF6 Regulates the Synthesis of Fusogenic Lipids for Calci-um-regulated Exocytosis in Neuroendocrine Cells. J. Biol. Chem. 2009, 284, 4836–4845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caumon, A.S.; Vitale, N.; Gensse, M.; Galas, M.C.; Casanova, J.E.; Bader, M.F. Identification of a plasma membrane-associated guanine nucleotide exchange factor for ARF6 in chromaffin cells - Possible role in the regulated exocytotic pathway. J. Biol. Chem. 2000, 275, 15637–15644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, I.; Rosenmund, C.; Sudhof, T.C.; Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synoptic vesicles. Nature 1999, 400, 457–461. [Google Scholar] [CrossRef]
- Krauss, M.; Kinuta, M.; Wenk, M.R.; De Camilli, P.; Takei, K.; Haucke, V. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type I gamma. J. Cell Biol. 2003, 162, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Scholz, R.; Berberich, S.; Rathgeber, L.; Kolleker, A.; Köhr, G.; Kornau, H.-C. AMPA Receptor Signaling through BRAG2 and Arf6 Critical for Long-Term Synaptic Depression. Neuron 2010, 66, 768–780. [Google Scholar] [CrossRef] [Green Version]
- Rocca, D.L.; Amici, M.; Antoniou, A.; Suarez, E.B.; Halemani, N.; Murk, K.; McGarvey, J.; Jaafari, N.; Mellor, J.R.; Collingridge, G.L.; et al. The Small GTPase Arf1 Modulates Arp2/3-Mediated Actin Polymerization via PICK1 to Regulate Synaptic Plasticity. Neuron 2013, 79, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Myers, K.R.; Wang, G.; Sheng, Y.; Conger, K.K.; Casanova, J.E.; Zhu, J.J. Arf6-GEF BRAG1 Regulates JNK-Mediated Synaptic Removal of GluA1-Containing AMPA Receptors: A New Mechanism for Nonsyndromic X-Linked Mental Disorder. J. Neurosci. 2012, 32, 11716–11726. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C.; Petersen, A.; Zhong, L.; Himelright, M.L.; Murphy, J.A.; Walikonis, R.S.; Gerges, N.Z. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression. Nat. Commun. 2016, 7, 11080. [Google Scholar] [CrossRef] [Green Version]
- Kitano, J.; Yamazaki, Y.; Kimura, K.; Masukado, T.; Nakajima, Y.; Nakanishi, S. Tamalin Is a Scaffold Protein That Interacts with Multiple Neuronal Proteins in Distinct Modes of Protein-Protein Association. J. Biol. Chem. 2003, 278, 14762–14768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, S.; Ramsakha, N.; Sharma, R.; Gulia, R.; Ojha, P.; Lu, W.; Bhattacharyya, S. The post-synaptic scaffolding protein tamalin regulates ligand-mediated trafficking of metabotropic glutamate receptors. J. Biol. Chem. 2020, 295, 8575–8588. [Google Scholar] [CrossRef] [PubMed]
- Neyman, S.; Braunewell, K.-H.; O’Connell, K.E.; Dev, K.K.; Manahan-Vaughan, D. Inhibition of the Interaction Between Group I Metabotropic Glutamate Receptors and PDZ-Domain Proteins Prevents Hippocampal Long-Term Depression, but Not Long-Term Potentiation. Front. Synaptic Neurosci. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J.; Mannion, R.J. Neuropathic pain: Aetiology, symptoms, mechanisms, and management. Lancet 1999, 353, 1959–1964. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- Kuner, R. Central mechanisms of pathological pain. Nat. Med. 2010, 16, 1258–1266. [Google Scholar] [CrossRef]
- Bleakman, D.; Alt, A.; Nisenbaum, E.S. Glutamate receptors and pain. Semin. Cell Dev. Biol. 2006, 17, 592–604. [Google Scholar] [CrossRef]
- Liu, X.J.; Salter, M.W. Glutamate receptor phosphorylation and trafficking in pain plasticity in spinal cord dorsal horn. Eur. J. Neurosci. 2010, 32, 278–289. [Google Scholar] [CrossRef]
- Ji, R.R.; Kohno, T.; Moore, K.A.; Woolf, C.J. Central sensitization and LTP: Do pain and memory share similar mechanisms? Trends Neurosci. 2003, 26, 696–705. [Google Scholar] [CrossRef]
- Luo, C.; Kuner, T.; Kuner, R. Synaptic plasticity in pathological pain. Trends Neurosci. 2014, 37, 343–355. [Google Scholar] [CrossRef]
- Tague, S.E.; Muralidharan, V.; D’Souza-Schorey, C. ADP-ribosylation factor 6 regulates tumor cell invasion through the ac-tivation of the MEK/ERK signaling pathway. Proc. Natl. Acad. Sci. 2004, 101, 9671–9676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.Z.; Du, J.; Yang, L.; Zhu, Y.C.; Yang, Y.; Zheng, D.T.; Someya, A.; Gu, L.; Lu, X. GEP100/Arf6 Is Required for Epidermal Growth Factor-Induced ERK/Rac1 Signaling and Cell Migration in Human Hepatoma HepG2 Cells. Plos One 2012, 7, e38777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, F.; Wang, C.-C.; Gereau, R.W. Metabotropic Glutamate Receptor Subtypes 1 and 5 Are Activators of Extracellular Signal-Regulated Kinase Signaling Required for Inflammatory Pain in Mice. J. Neurosci. 2001, 21, 3771–3779. [Google Scholar] [CrossRef] [PubMed]
- Adwanikar, H.; Karim, F.; Gereau, R.W. Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain 2004, 111, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.; Berrocoso, E.; Mico, J.-A.; Neto, F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog. Neuro-Psychopharmacology Biol. Psychiatry 2015, 60, 77–92. [Google Scholar] [CrossRef]
- Ghasemi, M.; Brown, R.H. Genetics of Amyotrophic Lateral Sclerosis. Csh Perspect. Med. 2018, 8, a024125. [Google Scholar] [CrossRef]
- Burk, K.; Pasterkamp, R.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol. 2019, 137, 859–877. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.-X.; et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362, 59–62. [Google Scholar] [CrossRef]
- Zou, Z.-Y.; Zhou, Z.-R.; Che, C.-H.; Liu, C.-Y.; He, R.-L.; Huang, H.-P. Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 540–549. [Google Scholar] [CrossRef]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chro-mosome 9p-Linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Renton, A.E.; Majounie, E.; Waite, A.; Simon-Saánchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten, J.C.; Myllykangas, L.; et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 2011, 72, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendron, T.F.; Petrucelli, L. Disease Mechanisms of C9ORF72 Repeat Expansions. Cold Spring Harb. Perspect. Med. 2017, 8, a024224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivadasan, R.; Hornburg, D.; Drepper, C.; Frank, N.; Jablonka, S.; Hansel, A.; Lojewski, X.; Sterneckert, J.; Hermann, A.; Shaw, P.; et al. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat. Neurosci. 2016, 19, 1610–1618. [Google Scholar] [CrossRef] [PubMed]
- Namme, J.N.; Bepari, A.K.; Takebayashi, H. Cofilin Signaling in the CNS Physiology and Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 10727. [Google Scholar] [CrossRef]
- Su, M.-Y.; Fromm, S.A.; Zoncu, R.; Hurley, J.H. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature 2020, 585, 251–255. [Google Scholar] [CrossRef]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2015, 17, 22–35. [Google Scholar] [CrossRef]
- Lee, V.M.-Y.; Goedert, M.; Trojanowski, J.Q. Neurodegenerative Tauopathies. Annu. Rev. Neurosci. 2001, 24, 1121–1159. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Jucker, M.; Walker, L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nat. 2013, 501, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Brettschneider, J.; Del Tredici, K.; Lee, V.M.-Y.; Trojanowski, J.Q. Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat. Rev. Neurosci. 2015, 16, 109–120. [Google Scholar] [CrossRef]
- Brunello, C.A.; Merezhko, M.; Uronen-Mattila, R.-L.; Huttunen, H.J. Mechanisms of secretion and spreading of pathological tau protein. Cell. Mol. Life Sci. 2020, 77, 1721–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.C.; Grenier-Boley, B.; Harold, D.; Zelenika, D.; Chouraki, V.; Kamatani, Y.; Sleegers, K.; Ikram, M.A.; Hiltunen, M.; Reitz, C.; et al. Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer’s disease. Mol. Psychiatry 2013, 18, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Vassar, R.; Kovacs, D.M.; Yan, R.Q.; Wong, P.C. The β-Secretase Enzyme BACE in Health and Alzheimer’s Disease: Regulation, Cell Biology, Function, and Therapeutic Potential. J. Neurosci. 2009, 29, 12787–12794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.L. Neuronal protein trafficking associated with Alzheimer disease From APP and BACE1 to glutamate receptors. Cell Adh. Migr. 2009, 3, 118–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannerud, R.; Declerck, I.; Peric, A.; Raemaekers, T.; Menendez, G.; Zhou, L.J.; Veerle, B.; Coen, K.; Munck, S.; De Strooper, B.; et al. ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc. Natl. Acad. Sci. USA 2011, 108, E559–E568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Tam, J.H.; Seah, C.; Chiu, J.; Tyrer, A.; Cregan, S.P.; Meakin, S.O.; Pasternak, S.H. Arf6 controls beta-amyloid pro-duction by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes. Mol. Brain 2015, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santy, L.; Frank, S.R.; Hatfield, J.C.; Casanova, J.E. Regulation of ARNO nucleotide exchange by a PH domain electrostatic switch. Curr. Biol. 1999, 9, 1173–1176. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, J.; Miyamoto, Y.; Torii, T.; Takashima, S.; Kondo, K.; Kawahara, K.; Nemoto, N.; Chan, J.R.; Tsujimoto, G.; Tanoue, A. Phosphorylation of Cytohesin-1 by Fyn Is Required for Initiation of Myelination and the Extent of Myelination During Development. Sci. Signal. 2012, 5, ra69. [Google Scholar] [CrossRef] [PubMed]
- Hiester, K.G.; Santy, L.C. The Cytohesin Coiled-Coil Domain Interacts with Threonine 276 to Control Membrane Association. PLoS ONE 2013, 8, e82084. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Torii, T.; Homma, K.; Oizumi, H.; Ohbuchi, K.; Mizoguchi, K.; Takashima, S.; Yamauchi, J. The adaptor SH2B1 and the phosphatase PTP4A1 regulate the phosphorylation of cytohesin-2 in myelinating Schwann cells in mice. Sci. Signal. 2022, 15. [Google Scholar] [CrossRef]
Interacting Proteins | Proposed Functions | Specificity for Interaction *1 | Interaction Domains in Cytohesin | Experimental Approaches *2 | Refs |
---|---|---|---|---|---|
Scaffold/adaptor proteins | |||||
Tamalin/GRASP | ・ Trafficking and surface expression of group I mGluRs ・ Arf-to-Rac crosstalk by forming a protein complex with cytohesin-2 and Dock180 during epithelial cell migration ・ Neurotrophin-3-induced actin reorganization by forming a protein complex with cytohesin-2 and TrkCT1 | Cyth-2, -3 (Cyth-1, -4: ND) | CC | Y2H, PD, IP(exo), IP(endo) | [41,42,43] |
CASP/Cybr/CYTIP | ・ β2 integrin-dependent cell adhesion in lymphocytes by sequestering cytohesins ・ Endosomal trafficking and sorting by forming a ternary complex with cytohesin and sorting nexin 27 in lymphocytes | Cyth-1, -2, -3 (Cyth-4: ND) | CC | Y2H, PD, IP(exo), IP(endo) | [44,45,46,47] |
FRMD4A FRMD4B/GRSP1 | ・ Arf6-dependent formation of adherence junctions by recruiting cytohesin-1 to the Par complex in primordial adherence junctions during epithelial polarization | Cyth-1, -2, -3 (Cyth-4: ND) | CC | Y2H, PD, IP(exo), IP(endo) | [48,49] |
CNK1 | ・ Insulin-dependent recruitment of cytohesins to the plasma membrane (PM) and facilitation of IRS1/phosphatidylinositol 3-kinase/Akt signaling through activation of the Arf-PIP5K pathway | Cyth-1, -2, -3 (Cyth-4: ND) | CC | MS(exo), IP(exo), IP(endo) | [50] |
CNK2A/MAGUIN-1 | ・ Neurite outgrowth in NG108 cells and spine morphogenesis in hippocampal neurons by forming a multiprotein signaling complex including cytohesin, GIT1/2, Vilse/ARHGAP39, α/β-PIX, and PAK3/4 | Cyth-2 (Cyth-1, -3, -4: ND) | CC | MS(exo), IP(exo), IP(endo) | [50,51] |
CNK3/IPCEF1 | ・ Hepatocyte growth factor-dependent Arf6 activation and scattering/migration of MDCK cells | Cyth-1, -2, -3, -4 | CC | Y2H, PD, IP(exo) | [52,53] |
CCDC120 | ・ Recruitment of cytohesin-2 to transporting vesicles along neurites, and neurite outgrowth through Arf6 activation in N1E-115 cells | Cyth-2 (Cyth-1, -3, -4: ND) | CC | Y2H, PD, IP(exo), IP(endo) | [54] |
Paxillin | ・ Migration of preadipocyte 3T3-L1 cells through the activation of Arf6 | Cyth-2 (Cyth-1, -3, -4: ND) | PB | PD, IP(exo), IP(endo) | [55,56] |
β-Arrestin-1/2 | ・ Arf6-dependent endocytosis of β2-adernergic receptor upon ligand stimulation through the recruitment of cytohesin-2 to the PM ・ Calcium-sensing protein (CaSR)-stimulated cytoskeletal reorganization and PM ruffling through β-arrestin-1– cytohesin-2–Arf6–ELMO protein network ・ Angiotensin II type 1 receptor-stimulated cell migration through Arf6-dependent endocytosis and mitogen-activated protein kinase activation | Cyth-1, -2 (Cyth-3, -4: ND) | ND | IP(exo), PD | [57,58,59] |
Munc13-1 | ・ Neurotransmitter release in the presynaptic axon terminal | Cyth-1 (Cyth-2, -3, -4: ND) | CC | Y2H, PD | [60] |
Pallidin | ・ Early endosome dynamics and dendritic growth of cultured hippocampal neurons | Cyth-2 | CC | Y2H, PD, IP(exo), IP(endo) | [37] |
GTPases and their regulators | |||||
Arf6 | ・ Recruitment of cytohesins to the PM to activate Arf6 | Cyth-2, -3 (Cyth-1 -4: ND) | PH | IP(exo) | [24] |
Arl4 | ・ Recruitment of cytohesins to the PM to promote Arf6-dependent actin remodeling and cell migration | Cyth-1, -2, -3, -4 | PH+PB | Y2H, PD, IP(exo) | [61,62] |
ARD1 | ・ Recruitment GDP-ARD1 to exchange GDP for GTP as a substrate | Cyth-1 (Cyth-3, -4: ND) | Sec7 | Y2H, PD | [25] |
ARP | ・ Negative regulation of Arf-dependent phospholipase D activation upon stimulation of muscarinic acetylcholine receptor-3 by preventing the recruitment of cytohesin to the PM | Cyth-1, -2 (Cyth-3, -4: ND) | Sec7 | Y2H, PD | [63] |
Gαq | ・ Agonist-induced internalization of the thromboxane A2 receptor through the recruitment of cytohesin to the PM and Arf6 activation | Cyth-1, -2, -3 (Cyth-4: ND) | CC | PD, IP(exo) | [64,65] |
Cytohesin | ・ Homodimerization | Cyth-2 (Cyth-1, -3, -4: ND) | CC | IP(exo) | [66] |
TBC1D10A/EPI64 | ・ Glucose-dependent endocytosis through Arf6 activation and recruitment of TBC1D10A to the PM to activate Rab27a | Cyth-2 (Cyth-1, -3, -4: ND) | PH | PD, IP(exo), IP(endo) | [67] |
RLIP76 | ・ Cell spreading and migration by connecting activated R-Ras with the downstream cytohesin-2-Arf6 signaling | Cyth-2 (Cyth-1, -3, -4: ND) | ND | IP(exo) | [68,69] |
Transmembrane proteins | |||||
β2 integrin | ・ LFA1-mediated adhesion to ICAM-1 in lymphocytes through inside-out signaling of β2 integrin ・ Negative regulation of Mac1-dependent adhesion, phagocytosis, and chemotaxis in neutrophils | Cyth-1, -3 (Cyth-2, -4: ND) | Sec7 | Y2H, PD, IP(endo) | [11,70,71,72] |
Insulin receptor | ・ Arf1-dependent activation of phospholipase D upon insulin stimulation | Cyth-2 (Cyth-1, -3, -4: ND) | CC + PH | IP(exo) | [73] |
V-ATPase a subunit | ・ Membrane trafficking between early endosomes to late endosomes in renal proximal tubule epithelial cells through intraendosomal acidification-dependent recruitment of cytohesin-2 and Arf6 to early endosomes | Cyth-2 (Cyth-1, -3, -4: ND) | Sec7, (PH, PB) | M2H, PD, SPR, IP(endo) | [74,75] |
A2A adenosine receptor | ・ Agonist-induced sustained activation of mitogen-activated protein kinase through Arf6 activation | Cyth-2 (Cyth-1, -3, -4: ND) | PH | Y2H, PD, IP(exo) DRAP-FRET | [76] |
EGFR | ・ Modulation of EGFR activation | Cyth-2 (Cyth-1, -3, -4: ND) | Sec7 | MST | [77] |
Kaposin A | ・ Human herpesvirus kaposin A-induced transformation of fibroblasts through the recruitment of cytohesin-1 to the PM and Arf activation | Cyth-1, -2, -3 (Cyth-4: ND) | ND | PD, IP(exo) | [78] |
Cytoskeleton | |||||
Actin cytoskeleton | ・ Recruitment of cytohesin-1 phosphorylated by protein kinase C to the actin cytoskeleton during β2 integrin-mediated cell adhesion of T lymphocytes | Cyth-1 (Cyth-2, -3, -4: ND) | ND | CoS | [79] |
Actinin-1 | ・ Neurite outgrowth in N1E-115 cells through potentiation of Arf6 in the growth cone | Cyth-2 (Cyth-1, -3, -4: ND) | PH + PB | PD, IP(exo), IP(endo) | [80] |
Neurodegenerative disease-related | |||||
SOD1 | ・ Neurotoxic effects through enhanced ER stress and reduced autophagic flux | Cyth-1, -2, -3 (Cyth-4: ND) | ND | IP(exog) | [33] |
Others | |||||
Aldolase | ・ Actin cytoskeleton-dependent cell morphology and redistribution of acidic vesicles by forming a protein complex with cytohesin-2 and V-ATPase | Cyth-2 (Cyth-1, -3, -4: ND) | PH | PD, SPR | [81] |
C1orf106 | ・ Maintenance of adherence junctions in intestinal epithelial cells by limiting Arf6 activation through ubiquitin-mediated degradation of cytohesin-1 | Cyth-1, -2, -3 (Cyth-4: ND) | CC | MS(exo), IP(exo) | [82] |
Neuronal Processes | Functions | Cell Types | Experimental Approaches | Refs |
---|---|---|---|---|
Axon outgrowth | The cytohesin-2-Arf6 pathway negatively regulates axonal extension and branching of hippocampal neurons through downstream activation of phosphatidylinositol 4-phosphate 5-kinase α and phospholipase D. | ・ Primary rat hippocampal neurons | Overexpression | [28,108] |
Axon pathfinding | Cytohesin family members differentially regulate the responsiveness of commissural axons of dorsal spinal cord neurons to the repellent Slit during midline crossing: Cytohesin-2 suppresses Slit-mediated repulsion by inhibiting the surface expression of Robo before axons reach the midline, whereas cytohesin-1 and cytohesin-3 mediate Robo1 recycling to the plasma membrane and increase Slit response, allowing axons to cross and exit the midline. | ・ Primary neurons from mouse dorsal spinal cord ・ Explant culture of embryonic mouse spinal cord | Knockdown | [29] |
Dendrite development | The cytohesin-2-Arf6 pathway negatively regulates dendritic arborization of hippocampal neurons partly through a Rac1-dependent manner. | ・ Primary rat hippocampal neurons | Overexpression | [27] |
Cytohesin-2 positively regulates dendritic extension of hippocampal neurons. | ・ Primary mouse hippocampal neurons | Knockdown | [37] | |
Cytohesin-1 and Arf6 participate in the extension of the apical dendrite of hippocampal pyramidal cells into the stratum lacunosum-moleculare. | ・ Pyramidal cells in the mouse hippocampus | In utero electroporation Knockdown | [109] | |
Presynapse | The cytohesin-Arf6 pathway regulates the readily releasable pool of synaptic vesicles and recycling pathway of retrieved synaptic membrane to reform synaptic vesicles in hippocampal neurons. | ・ Primary rat hippocampal neurons | SecinH3 Knockdown | [32] |
Cytohesin-1 mediates the basal synaptic transmission at the Xenopus neuromuscular junctions and Aplysia sensory-to-motor synapses. | ・ Primary Xenopus spinal motor neurons ・ Primary Aplysia pedal ganglion sensory neurons | Overexpression | [30,31] | |
Postsynapse | Cytohesin-2 may regulate the intracellular trafficking and surface expression of group I mGluRs through the protein complex formation with group I mGluR via tamalin. | ・ Primary rat hippocampal neurons | Overexpression | [41] |
Diseases | Functions | Cell types | Experimental approaches | Refs |
---|---|---|---|---|
Chronic pain | The cytohesin-2-Arf6 pathway mediates group I mGluR-dependent central sensitization at postsynapses in dorsal horn neurons of the mouse spinal cord. | Mouse spinal cord dorsal horn neurons | cKO mice SecinH3 | [23] |
Amyotrophic lateral sclerosis | Cytohesins promote mutant SOD1-induced neurotoxicity upstream of Arf1 and Arf5 through the interaction with mutant SOD1. | Primary rat spinal cord neurons | Overexpression Knockdown SecinH3 | [33] |
Cytohesins promote mutant TDP-42-induced neurotoxicity through enhanced endoplasmic reticulum stress and reduced autophagic flux. | SH-SY5Y neuroblastoma cell line | SecinH3 | [34] | |
Alzheimer’s disease | Cytohesins regulate FRMD4A-dependent secretion of tau dimers into the extracellular space. | Primary mouse cortical neurons HEK293 cells | SecinH3 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, A.; Fukaya, M.; Okamoto, H.; Sakagami, H. Physiological and Pathological Roles of the Cytohesin Family in Neurons. Int. J. Mol. Sci. 2022, 23, 5087. https://doi.org/10.3390/ijms23095087
Ito A, Fukaya M, Okamoto H, Sakagami H. Physiological and Pathological Roles of the Cytohesin Family in Neurons. International Journal of Molecular Sciences. 2022; 23(9):5087. https://doi.org/10.3390/ijms23095087
Chicago/Turabian StyleIto, Akiko, Masahiro Fukaya, Hirotsugu Okamoto, and Hiroyuki Sakagami. 2022. "Physiological and Pathological Roles of the Cytohesin Family in Neurons" International Journal of Molecular Sciences 23, no. 9: 5087. https://doi.org/10.3390/ijms23095087