Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity
Abstract
:1. Introduction
2. Results
2.1. Fresh and Dry Weight (Biomass)
2.2. Root Fresh and Dry Weight
2.3. Plant Height and Number of Branches
2.4. 1000-Seed Weight
2.5. TSS Content
2.6. Oil Yield
2.7. Chlorophyll a and b Content
2.8. Total Phenolic, Flavonoid, and Anthocyanin content
2.9. Malondialdehyde Content
2.10. Hydrogen Peroxide Content
2.11. Catalase Activity
2.12. Proline Content
2.13. Nitrogen Content
2.14. Phosphorus Content
2.15. Potassium and Calcium Content
2.16. Zinc and Iron Content
2.17. Na Content a Na/K Ratio
2.18. Magnesium Content
2.19. Manganese Content
2.20. Multivariate Analysis of NaCl Salinity × Foliar Use of Salicylic Acid, Cerium Oxide-NPs, and CeO2:SA-NPs Effects on Growth Responses in Portulaca Oleracea Plants
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Setup
4.2. Synthesis of CeO2 Nanoparticles
4.3. Preparation of CeO2:SA-Nanoparticles
4.4. Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) Analysis
4.5. Fresh and Dry Weight of Plants
4.6. Chlorophyll Content
4.7. Total Soluble Solid Content (°Brix)
4.8. Oil Extraction
4.9. Content of Phenolics and Flavonoids
4.10. Anthocyanin Content
4.11. Proline Content
4.12. Hydrogen Peroxide Content and Lipid Peroxidation
4.13. Catalase Activity
4.14. Elemental Composition
4.15. Experimental Design and Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. Biomed Res. Int. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dabbou, S.; Lahbib, K.; Pandino, G.; Dabbou, S.; Lombardo, S. Evaluation of pigments, phenolic and volatile compounds, and antioxidant activity of a spontaneous population of Portulaca oleracea L. grown in Tunisia. Agriculture 2020, 10, 353. [Google Scholar] [CrossRef]
- Available online: https://www.fao.org/newsroom/detail/salt-affected-soils-map-symposium/en#:~:text=Rome%20%2D%20The%20Food%20and%20Agriculture,8.7%25%20of%20the%20planet (accessed on 2 March 2022).
- Vojodi Mehrabani, L.; Valizadeh Kamran, R.; Hassanpouraghdam, M.B.; Pessarakli, M. Zinc sulfate foliar application effects on some physiological characteristics and phenolic and essential oil contents of Lavandula stoechas L. under sodium chloride (NaCl) salinity conditions. Commun. Soil Sci. Plant Anal. 2017, 48, 1860–1867. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Akhavan Hezaveh, T.; Pourakbar, L.; Rahmani, F.; Alipour, H. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Commun. Soil Sci. Plant Anal. 2019, 50, 698–715. [Google Scholar] [CrossRef]
- Faizan, M.; Bhat, J.A.; Chen, C.; Aleymeni, M.N.; Wijaya, L.; Ahmad, P.; Yu, F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. 2021, 161, 122–130. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Michailidi, E.; Tzortzakis, N. Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; You, X.; Qin, L. High salinity reduces plant growth and photosynthetic performance but enhances certain nutritional qualities of C4 halophy0te Portullaca oleraceae L. grown hydroponically under LED lighting. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeong, J.S.; Kim, S.Y.; Lee, S.J.; Shin, Y.J.; Im, W.J.; Kim, S.H.; Park, K.; Jeong, E.J.; Nam, S.Y.; et al. Safety assessment of cerium oxide nanoparticles: Combined repeated-dose toxicity with reproductive/developmental toxicity screening and biodistribution in rats. Nanotoxicology 2020, 14, 696–710. [Google Scholar] [CrossRef]
- Rodea-Palomares, I.; Boltes, K.; Fernández-Pinas, F.; Leganés, F.; García-Calvo, E.; Santiago, J.; Rosal, R. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci. 2010, 119, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Choi, J.; Park, Y.K.; Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008, 245, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, A.; Rao, P.J.; Selvam, G.; Murthy, P.B.; Reddy, P.N. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett. 2011, 205, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, M.B.; Sadeghnia, H.R.; Pasdar, A.R.; Ghayour-Mobarhan, M.; Riahi-Zanjani, B.; Hashemzadeh, A.R.; Zare, M.; Darroudi, M. Antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats. Int. J. Nanomed. 2019, 14, 2915–2926. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.I.; Rico, C.M.; Hernandez-Viezcas, J.A.; Nunez, J.E.; Barrios, A.C.; Tafoya, A.T.; Flores-Marges, J.P.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J. Agric. Food Chem. 2013, 61, 6224–6230. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Chen, L.; Gu, J.; Wu, H.; Li, Z. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. J. Nanobiotechnol. 2021, 19, 153. [Google Scholar] [CrossRef]
- Jahani, S.; Saadatmand, S.; Mahmoodzadeh, H.; Khavari-Nejad, R.A. Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L. Biologia 2019, 74, 1063–1075. [Google Scholar] [CrossRef]
- Es-sbihi, F.Z.; Hazzoumi, Z.; Aasfar, A.; Amrani Joutei, K. Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chem. Biol. Technol. Agric. 2021, 8. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Syeed, S.; Nazar, R.; Anjum, N.A. An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In Phytohormones and Abiotic Stress Tolerance in Plants; Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A., Eds.; Springer: Berlin, Germany. [CrossRef]
- Souri, M.K.; Tohidloo, G. Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedling under salinity. Chem. Biol. Technol. Agric. 2019, 6. [Google Scholar] [CrossRef]
- El-Esawi, M.; Elansary, H.O.; El-Shanhorey, N.A.; Abdel-Hamid, A.M.E.; Ali, H.M.; Elshikh, M.S. Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Fornt. Physiol. 2017, 8. [Google Scholar] [CrossRef]
- Abdoli, S.; Ghassemi-Golezani, K.; Alizadeh-Salteh, S. Response of ajowan (Trachyspormum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ. Sci. Pollut. Res. Int. 2020, 27, 36939–36953. [Google Scholar] [CrossRef]
- Zaman, S.; Hu, S.; Alam, M.A.; Du, H.; Che, S. The accumulation of fatty acids in different organs of purslane under salt stress. Sci. Hortic. 2019, 250, 236–242. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Hasan, M.M.; Zainudin, M.A.M.; Uddin, M.K. Evaluation of antioxidant compounds, antioxidant activities and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. Biomed. Res. Int. 2014, 296063. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Borhaauddin Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Salehi, H.; Chehregani Rad, A.; Raza, A.; Chen, J.T. 2021. Foliar application of CeO2 nanoparticles alters generative components fitness and seed productivity in Bean crop (Phaseolus vulgaris L.). Nanomaterials 2021, 11, 862. [Google Scholar] [CrossRef] [PubMed]
- Salehi, H.; Chehregani, A.; Lucini, L.; Majd, A.; Gholami, M. Morphological Proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci. Total Environ. 2018, 616, 1540–1551. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Gardea-Torresdey, J.L.; Ji, R.; Yin, Y.; Zhu, J.; Peralta-Videa, J.R.; Guo, H. Physiological and biochemical changes imposed by CeO2 nanoparticles nanoparticles on wheat: A life cycle field study. Environ. Sci. Technol. 2015, 49, 11884–11893. [Google Scholar] [CrossRef] [PubMed]
- Jini, D.; Joseph, B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci. 2017, 24, 97–108. [Google Scholar] [CrossRef]
- Shaki, F.; Ebrahimzadeh Maboud, H.; Niknam, V. Central role of salicylic acid in resistance of safflower (Carthamus tinctorius L.) against salinity. J. Plant Interact. 2017, 12, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Li, Y.; Khan, Z.; Chen, L.; Liu, J.; Hu, J.; Wu, H.; Li, Z. Nanocoria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α1-amylase activities. J. Nanobiotechnol. 2021, 19, 276. [Google Scholar] [CrossRef]
- Singh, S.; Husen, A. Role of nanomaterials in the mitigation of abiotic stress in plants. In Nanomaterials & Plant Potential; Husen, A., Iqbal, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 441–471. [Google Scholar] [CrossRef]
- Samadi, S.; Habibi, G.; Vaziri, A. Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism and photochemical activity of strawberry under salt stress. Iran. J. Plant Physiol. 2019, 9, 2685–2694. [Google Scholar]
- Jurkow, R.; Sękara, A.; Pokluda, R.; Smoleń, S.; Kalisz, A. Biochemical response of oakleaf lettuce seedlings to different concentrations of some metal (oid) oxide nanoparticles. Agronomy 2020, 10, 997. [Google Scholar] [CrossRef]
- Ahmed, W.; Imran, M.; Yaseen, M.; ul Hag, T.; Jamshaid, M.U.; Rukh, S.; Ikram, R.M.; Ali, M.; Ali, A.; Maqbool, M.; et al. Role of salicylic acid in regulation ethylene and physiological characteristics for alleviating salinity stress on germination, growth and yield of sweet peppar. Peer J. 2020, 8. [Google Scholar] [CrossRef]
- Kim, Y.; Mun, B.G.; Khan, A.L.; Waqas, M.; Kim, H.H.; Shahzad, R.; Imran, M.; Yun, B.W.; Lee, I.J. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS ONE 2018. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Zhang, W.; Lombardini, L.; Ma, X. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ. Pollut. 2016, 219, 28–36. [Google Scholar] [CrossRef]
- Kumar, D.; Al Hassan, M.; Naranjo, M.A.; Agrawal, V.; Boscaiu, M.; Vicente, O. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Torun, H.; Novak, O.; Mikulik, J.; Pencik, A.; Strnad, M.; Ayaz, F.A. Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Husen, A.; Iqbal, M.; Sohrab, S.S.; Ansari, M.K.A. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric. Food Secur. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci. 2017, 8, 600. [Google Scholar] [CrossRef] [PubMed]
- Jangra, M.; Devi, S.; Satpal, S.D.; Kumar, N.; Goyal, V.; Mehrotra, S. Amelioration effects of salicylic acid under salt stress in Sorghum bicolor L. Appl. Biochem. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Kalisz, A.; Huska, D.; Jurkow, R.; Dvork, M.; Klejdus, B.; Caruso, G.; Sekara, A. Nanoparticles of cerium oxide. Iron, and silicon oides change the metabolism of phenols and flavonoids in butterhead lettuce and sweet pepper seedling. Environ. Sci. Nano 2021, 7, 1945–1959. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Salachna, P.; Meller, E. Change in photosynthetic pigments, total phenolic content and antioxidant activity of Salvia coccinea Buchoz Ex Etl. Induced by exogenous salicylic acid and soil salinity. Molecules 2018, 23, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sdouga, D.; Ben Amor, F.; Ghribi, S.; Kabtni, S.; Tebini, M.; Branca, F.; Trifi-Farah, N.; Marghali, S. An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicol. Environ. Saf. 2019, 172, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Zhang, W.L.; Ma, X.M. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ. Pollut. 2017, 229, 132–138. [Google Scholar] [CrossRef]
- Wu, H.; Shabala, L.; Shabala, S.; Giraldo, J.P. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ. Sci. Nano 2018, 5, 1567–1583. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tittal, M.; Mir, R.A.; Agarwal, R.M. Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma 2017, 254, 1953–1963. [Google Scholar] [CrossRef]
- Hassanpouraghdam, M.B.; Vojodi Mehrabani, L.; Badali, R.; Aazami, M.A.; Rasouli, F.; Kakaei, K.; Szczepanek, M. Cerium oxide salicylic acid nanoparticles (CeO2: SA-NPs) foliar application and in-soil animal manure use influence the growth and physiological responses of Aloe vera L. Agronomy 2022, 12, 731. [Google Scholar] [CrossRef]
- Prochazkova, D.; Sairam, R.K.; Srivastava, G.C.; Singh, D.V. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 2001, 161, 765–771. [Google Scholar] [CrossRef]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Wanger, G.J. Contact and vacuole/extravacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplast. Plant Physiol. 1979, 64, 88–93. [Google Scholar]
- Fedina, I.; Georgieva, K.; Velitchkova, M.; Grigorova, I. Effect of pretreatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environ. Exp. Bot. 2006, 56, 225–230. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Sahu, G.K.; Sabat, S.C. Changes in growth, pigment content and antioxidants in the root and leaf tissues of wheat plants under the influence of exogenous salicylic acid. Braz. J. Plant Physiol. 2011, 23, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Luhova, L.; Lebeda, A.; Hederorva, D.; Pee, P. Activities of oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Enviorn. 2003, 49, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Honarjoo, N.; Hajrasuliha, S.H.; Amini, H. Comparing three plants in absorption of ions from different natural saline and sodic soils. Int. J. Agric. Crop Sci. 2013, 6, 988–993. [Google Scholar]
Plant Fresh Weight (Fresh Biomass) | Root Fresh Weight | Plant Dry Weight (Dry Biomass) | Root Dry Weight | Plant Height | Branch Number | 1000-Seed Weight | Total Soluble Solid Content | Oil Yield | |
---|---|---|---|---|---|---|---|---|---|
Salinity (S) | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Foliar (F) | ** | ** | ** | ** | ** | ** | ** | ** | ** |
S × F | ** | ** | ** | ** | ** | ** | ns | ns | ns |
Salinity | Foliar Spray | Plant Dry Weight (g) | Plant Fresh Weight (g) | Root Fresh Weight (g) | Root Dry Weight (g) | Plant Height (cm) | Sub-Branch Number |
---|---|---|---|---|---|---|---|
0 | No spray | 1.8 ± 0.07f | 15.2 ± 1.28f | 0.24 ± 0.02c | 0.020 ± 0.0e–g | 21.8 ± 1.02ef | 4.0 ± 0.81d |
0 | Salicylic acid | 2.8 ± 0.09d | 27.5 ± 1.50b | 0.38 ± 0.07b | 0.065 ± 0.0c | 25.0 ± 1.41cd | 5.6 ± 0.47b |
0 | CeO2-nanoparticles | 3.5 ± 0.09b | 27.9 ± 2.56b | 0.46 ± 0.05b | 0.110 ± 0.0b | 30.3 ± 1.25b | 7.3 ± 0.47a |
0 | CeO2: SA-nanoparticles | 4.5 ± 0.13a | 36.9 ± 2.26a | 0.91 ± 0.11a | 0.180 ± 0.0a | 39.6 ± 1.70a | 7.3 ± 0.47a |
50 | No spray | 1.8 ± 0.25f | 13.2 ± 0.52f | 0.13 ± 0.02d–f | 0.180f ± 0.0g | 19.4 ± 1.18g | 4.0 ± 0.82d |
50 | Salicylic acid | 2.8 ± 0.12d | 23.6 ± 0.60cd | 0.16 ± 0.01c–f | 0.034 ± 0.0ef | 23.0 ± 1.00de | 5.0 ± 0.47bc |
50 | CeO2-nanoparticles | 2.8 ± 0.12d | 22.8 ± 1.51c–e | 0.12 ± 0.01ef | 0.035 ± 0.0ef | 24.3 ± 0.05d | 5.3 ± 0.47b |
50 | CeO2: SA-nanoparticles | 3.2 ± 0.05c | 24.6 ± 3.26bc | 0.21 ± 0.06c–e | 0.070 ± 0.0c | 30.3 ± 0.94b | 5.3 ± 0.82b |
100 | No spray | 0.9 ± 0.04h | 13.5 ± 1.76f | 0.09 ± 0.01f | 0.012 ± 0.0g | 16.3 ± 0.94h | 2.6 ± 0.82e |
100 | Salicylic acid | 1.3 ± 0.08g | 19.4 ± 0.58e | 0.17 ± 0.02c–f | 0.013 ± 0.0g | 20.3 ± 0.93fg | 4.3 ± 0.47cd |
100 | CeO2-nanoparticles | 1.5 ± 0.14g | 19.8 ± 0.87de | 0.22 ± 0.03cd | 0.041d ± 0.0e | 23.5 ± 0.48de | 4.3 ± 0.47cd |
100 | CeO2: SA-nanoparticles | 2.4 ± 0.12e | 21.4 ± 2.51c–e | 0.25 ± 0.02c | 0.050 ± 0.0cd | 27.0 ± 0.82c | 5.6 ± 0.47b |
Salinity | 1000-Seed Weight | Total Soluble Solid Content (°Brix) | Oil Yield (g m−2) | Chlorophyll a Content (mg g−1FW) | Chlorophyll b Content (mg g−1FW) |
---|---|---|---|---|---|
0 | 3.0 ± 0.08a | 1.6 ± 0.12b | 0.64 ± 0.05a | 2.40 ± 0.14a | 0.95 ± 0.12a |
50 | 2.7 ± 0.31ab | 2.1 ± 0.08a | 0.52 ± 0.09b | 1.66 ± 0.12b | 0.17ab |
100 | 0.26b | 0.09a | 0.04b | b | 0.18b |
Foliar Application | 1000-Seed Weight (g) | Total Soluble Solid Content (°Brix) | Oil Yield (g m−2) | Chlorophyll a Content (mg g−1FW) | Chlorophyll b Content (mg g−1FW) |
---|---|---|---|---|---|
No spray | 0.20c | 0.05c | 0.08b | 0.17b | 0.09c |
Salicylic acid | 0.05b | 0.08b | 0.04a | b | 0.07b |
CeO2-nanoparticles | 0.09ab | 0.03a | 0.09a | ab | b |
CeO2: SA-nanoparticles | 0.08a | 0.09a | 0.06a | a | 0.09a |
Chlorophyll a Content | Chlorophyll b Content | Total Phenolic Content | Flavonoid Content | Anthocyanin Content | |
---|---|---|---|---|---|
Salinity (S) | ** | ** | ** | ** | ** |
Foliar (F) | ** | ** | ** | ** | ** |
S × F | ns | ns | ** | ** | * |
Salinity | Foliar Spray | Phenolic Content (mg g−1 DW) | Flavonoid Content (mg g−1 DW) | Anthocyanin Content (mg g−1 FW) | MDA Content (µmol g−1 FW) | H2O2 Content (µmol g−1 FW) | CAT Activity (nmol H2O2 mg Protein m−1) | Proline Content (µmol g−1 FW) |
---|---|---|---|---|---|---|---|---|
0 | No spray | 0.47f | 0.81g | 0.36d | 2.05f | 0.16e | 0.08f | 0.23g |
Salicylic acid | .63ef | 0.47ef | 0.12d | 1.69ef | 0.12e | 0.04e | 0.24fg | |
CeO2-nanoparticles | 2.05d | .08ac | 0.44c | 0.77f | 0.09e | 0.06e | 0.47f | |
CeO2: SA-nanoparticles | 1.24ef | 0.99ab | 0.20b | 2.49f | 0.16e | 0.07bc | 0.38f | |
50 | No spray | 3.68d | 0.41df | 0.28d | 2.94b | 0.28bc | 0.04ce | 0.29bc |
Salicylic acid | 1.24c | 0.23f | 0.30bc | 3.29b | 0.14d | 0.09ab | 0.55bd | |
CeO2-nanoparticles | 3.55c | 0.53ce | 0.12bc | 1.24cd | 0.23d | 0.08a | 0.49de | |
CeO2: SA-nanoparticles | 4.66b | 0.80bd | 0.49a | 0.94d | 0.18d | 0.03ab | 0.25e | |
100 | No spray | 3.29e | 0.40ef | 0.43b | 2.05a | 0.27a | 0.04e | 0.12a |
Salicylic acid | 2.05d | 0.47bd | 0.12d | 1.24b | 0.09b | 0.11de | 0.24ab | |
CeO2-nanoparticles | 3.09c | 0.75bd | 0.09bc | 1.69c | 0.12bc | 0.10bd | 0.49b | |
CeO2: SA-nanoparticles | 1.63a | 0.69a | 0.71a | 1.24cd | 0.10c | 0.70cd | 0.81cd |
Malondialdehyde Content | H2O2 Content | Catalase Activity | Proline Content | |
---|---|---|---|---|
Salinity (S) | ** | ** | ** | ** |
Foliar (F) | ** | ** | ** | ** |
S×F | ** | ** | * | ** |
N Content | P Content | K Content | Na Content | K/Na Ratio | Ca Content | Mg Content | Fe Content | Zn Content | Mn Content | |
---|---|---|---|---|---|---|---|---|---|---|
Salinity (S) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Foliar (F) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
S × F | ** | * | ns | ** | ** | ns | ** | ns | ns | ** |
Salinity | K Content (g kg−1 DW) | Ca Content (g kg−1 DW) | Fe Content (mg kg−1 DW) | Zn Content (mg kg−1 DW) |
---|---|---|---|---|
0 | 1.25a | a | 8.10a | 4.11a |
50 | ab | b | b | b |
100 | 2.32b | 0.92c | 19.00c | c |
Foliar Spray | K Content (g kg−1 DW) | Ca Content (g kg−1 DW) | Fe Content (mg kg−1 DW) | Zn Content (mg kg−1 DW) |
---|---|---|---|---|
No spray | c | c | 7.41c | c |
Salicylic acid | 16.70 ± 1.41b | b | 6.49b | 3.40b |
CeO2-nanoparticles | 18.50 ± 0.81ab | ab | ab | ab |
CeO2:SA-nanoparticles | 0.94a | a | a | 7.91a |
Salinity | Foliar Spray | N (g Kg−1 DW) | P (g Kg−1 DW) | Na (mg Kg−1 DW) | Na/k | Mg (mg Kg−1 DW) | Mn (mg Kg−1 DW) |
---|---|---|---|---|---|---|---|
0 | No spray | 0.47gh | 0.12ef | 0.30g | 0.01fg | 0.47de | 2.05de |
Salicylic acid | 1.59b | 0.09bc | 0.09gh | 0.00gh | 2.86c | 2.49b | |
CeO2-nanoparticles | 1.25b | b | 0.09gh | 0.00gh | 1.63b | 0.81b | |
CeO2: SA-nanoparticles | 0.95a | 0.08a | 0.28h | 0.00h | 1.69a | 0.94a | |
50 | No spray | 0.44fg | 0.10df | 0.40b | 0.03d | ef | 2.47f |
Salicylic acid | e | 0.09ce | 0.54de | 0.02de | 1.04de | 0.94de | |
CeO2-nanoparticles | 0.62de | 0.11cd | 0.63de | 0.01ef | 0.61c | 0.67cd | |
CeO2: SA-nanoparticles | 0.85bc | 0.04b | 0.59f | 0.02f | 1.25cd | 0.92c | |
100 | No spray | 0.49h | 0.46 ± 0.06g | 0.41a | 0.08a | 1.24g | 1.63g |
Salicylic acid | 0.57ef | 0.63 ± 0.07fg | 0.49bc | 0.08cd | 0.47f | 0.94f | |
CeO2-nanoparticles | 0.84de | 0.02df | 0.24cd | 0.04d | 1.22f | 0.94ef | |
CeO2: SA-nanoparticles | 1.12cd | 0.86 ± 0.05ce | 0.43ef | 0.01ef | ef | 1.26de |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanpouraghdam, M.B.; Vojodi Mehrabani, L.; Bonabian, Z.; Aazami, M.A.; Rasouli, F.; Feldo, M.; Strzemski, M.; Dresler, S. Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity. Int. J. Mol. Sci. 2022, 23, 5093. https://doi.org/10.3390/ijms23095093
Hassanpouraghdam MB, Vojodi Mehrabani L, Bonabian Z, Aazami MA, Rasouli F, Feldo M, Strzemski M, Dresler S. Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity. International Journal of Molecular Sciences. 2022; 23(9):5093. https://doi.org/10.3390/ijms23095093
Chicago/Turabian StyleHassanpouraghdam, Mohammad Bagher, Lamia Vojodi Mehrabani, Zahra Bonabian, Mohammad Ali Aazami, Farzad Rasouli, Marcin Feldo, Maciej Strzemski, and Sławomir Dresler. 2022. "Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity" International Journal of Molecular Sciences 23, no. 9: 5093. https://doi.org/10.3390/ijms23095093
APA StyleHassanpouraghdam, M. B., Vojodi Mehrabani, L., Bonabian, Z., Aazami, M. A., Rasouli, F., Feldo, M., Strzemski, M., & Dresler, S. (2022). Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity. International Journal of Molecular Sciences, 23(9), 5093. https://doi.org/10.3390/ijms23095093