Circulating Noncoding RNAs in Pituitary Neuroendocrine Tumors—Two Sides of the Same Coin
Abstract
:1. Introduction
1.1. Pituitary Neuroendocrine Tumors and Diagnostic Challenges
1.2. Rationale of ncRNAs as Biomarkers Indicating Pituitary Function and the Potential Presence of PitNET
2. Diversity, Biogenesis and Function of Non-Coding RNAs
2.1. Biogenesis and Function of miRNAs
2.2. Biogenesis and Function of lncRNAs
2.3. Biogenesis and Function of circRNAs
3. Non-Coding RNAs as Circulating Biomarkers
4. Circulating ncRNAs in PitNET
4.1. miRNAs as Biomarkers in PitNET
4.1.1. Pituitary Tissue-Specific/Pituitary Function-Specific miRNAs in the Circulation
4.1.2. PitNET-Specific miRNAs in Circulation
Ref. | Patients | Sample Type | RNA Extraction Method | Aim | Detection Method | Endogenous Control | Comparison | Finding | Diagnostic Performance |
---|---|---|---|---|---|---|---|---|---|
miRNAs related to corticotrophic PitNET or corticotropine action | |||||||||
[80] | ACTH-PA (n = 28); ectopic ACTH (n = 13); HC (n = 11) | plasma | miRNeasy Serum/Plasma Kit (Qiagen) | targeted testing (21 miRNAs) | RT-qPCR (TaqMan Advanced MicroRNA Assays) | hsa-miR-191; spike-in control cel-miR-39-3p | ACTH-PA vs. HC | miR-16-5p ↑; miR-7g-5p ↑ | na |
ACTH-PA vs. ectopic ACTH | miR-145- 5p ↑; miR-16-5p ↑; miR-7g-5p ↑ | AUC(miR-16-5p): 0.879, p < 0.001; sens: 90.9%, spec: 77.8% | |||||||
ectopic ACTH vs. HC | miR-145- 5p ↓; miR-16-5p ↓ | na | |||||||
[81] | ACTH-PA (n = 19); CPA (n = 16); HC (n = 21) | serum | miRNeasy Serum/Plasma Kit (Qiagen) | whole miRNome | screening: NGS (Illumina TruSeq Small RNA Library Preparation Kit, Illumina HiSeq2500); validation: RT-qPCR (Advanced TaqMan MicroRNA Assays) | hsa-miR-16-5p | ACTH-PA vs. HC | miR-182-5p ↑ | AUC(miR-182-5p): 0.87, p = 0.0003 |
ACTH-PA&CPA vs. HC | no significant miRNA | na | |||||||
[82] (canine miRNAs) | ACTH-PA (n = 19); CPA (n = 26); HC (n = 6) | serum (HC, CPA); plasma (ACTH-PA) | miRNeasy Serum/Plasma Kit (Qiagen) | targeted testing (20 miRNAs) | RT-qPCR (miRCURY LNA miRNA PCR Assays) | spike-in UniSp2, UniSp4, UniSp5, UniSp6, cel-miR-39-3p, miR-191-5p or the geometric mean of 12 miRNAs | ACTH-PA vs. HC | miR-122-5p ↑, miR-141-3p ↑, miR-222-3p ↑, miR-375-30 3p ↑ and miR-483-3p ↑ | na |
ACTH-PA postop vs. preop | miR-122-5p ↓, miR-141-3p ↓ | na | |||||||
ACTH-PA recurrent (n = 3) vs. non-recurrent (n = 7) for at least one year after surgery | miR-122-5p ↑, miR-222-3p ↑ | na | |||||||
CPA vs. HC | miR-483-3p ↑, miR-223-3p ↓ | na | |||||||
[75] | hyCort (n = 10), Addison (n = 10) | plasma | miRNeasy Serum/Plasma Kit (Qiagen) | targeted testing (5 miRNAs) | RT-qPCR (TaqMan MicroRNA Assays) | spike-in control cel-miR-39 | modulated by adrenocorticotropin | miR-27a ↓ | na |
modulated by dexamethasone | miR-27a ↑ | na | |||||||
miRNAs related to somatotrophic PitNET or somatotrophic action | |||||||||
[83] | GH-PA (n = 7); NFPA (FSH/LH-PA (n = 29); HN/SF1-PA (n = 3); HN-Tpit-PA (n = 3); plurihorm-PA (n = 3)); HC (n = 2 + 23) | plasma | miRNeasy Serum/Plasma Kit (Qiagen) | whole miRNome | screening: NGS (QIAseq™ miRNA Library Kit; Illumina MiSeq); validation: RT-qPCR (Advanced TaqMan MicroRNA Assays) | spike-in control cel-miR-39 | GH-PA vs. HC | miR-134-5p ↓, miR-152-3p ↓, miR-181a-5p ↓, miR-192-5p ↓, miR-27b-3p ↓, miR-320a ↓, miR-323a-3p ↓, miR-339-3p ↓, miR-378a-3p ↓, miR-382-3p ↓, miR-93-5p ↓, miR-99a-5p ↓ | na |
GH-PA postop vs. preop | miR-376a-3p ↑; miR-150-5p ↑; miR-144-5p ↓ | na | |||||||
[84] | GH-PA (n = 6), HC (n = 6) | serum exosome | PureExo Exosome Isolation Kit; Epicentre Ribo-zeroTM rRNA Removal Kit for ribosomal RNA depletion | whole miRNome | screening: NGS (rRNA-depleted RNA by NEBNext UltraTM Directional RNA Library Prep Kit, Illumina Hiseq); validation: RT-qPCR (miRSCan Panel ChipTM - SYBR based) | spike-in control QB-spike in-1&2 | GH-PA vs. HC | miR-320a ↓; miR-423-5p ↓ | na |
[85] | GH-PA (n = 30), HC (n = 20) | plasma | Hybrid-RTM miRNA isolation kit (GeneAll Biotechnology, Korea) | targeted testing (miR-29c-3p, miR-31-5p and miR-18a-5p) | RT-qPCR (SYBR-based) | U6 snRNA | GH-PA vs. HC | miR-29c-3p ↓ | Association between acromegaly development and downregulation of miR-29c-3p expression: OR (95% Cl) = 1.605 (1.142–2.257), p = 0.006 |
inadequately controlled (n = 7) vs. controlled patients (n = not reported) | miR-29c-3p ↓ | na | |||||||
[86] | GH-PA (axcromegaly) (n = 47), HC (n = 28) | plasma | miRNeasy Serum/Plasma Kit (Qiagen) | whole miRNome | screening: NGS (Illumina TruSeq Small RNA Library Prep Kit; Illumina NextSeq 500); validation: RT-qPCR (Advanced TaqMan MicroRNA Assays) | spike-in control cel-miR-39-3p and miR-191 | GH-PA vs. HC | miR-4446-3p ↓; miR-215-5p ↓; miR146a-5p ↓ | AUC(miR-4446-3p): 0.862, p < 0.001; sens: 89.4%; spec: 82.1%; PPV: 93%; NPV: 83%. AUC(miR-215-5p): 0.829, p < 0.001 sens: 78.7%; spec: 89.3%; PPV: 93%; NPV: 91%. |
[73] | rhGH (n = 6); GH-PA (acromegaly) (n = 11); HC (n = 3) | plasma | miRNeasy Serum/Plasma Kit (Qiagen) | expression profiling | screening: Affymetrix GeneChipW miRNA 2.0 Arrays; validation: RT-qPCR (SYBR-based) | spike-in control cel-miR-39 | rhGH vs. non-rhGH (GH-PA&HC) | miR-663 ↓, miR-2861 ↓, miR-3152 ↓, and miR-3185 ↓ | |
miRNAs related to NFPA | |||||||||
[83] | GH-PA (n = 7); NFPA (FSH/LH-PA (n = 29); HN/SF1-PA (n = 3); HN-Tpit-PA (n = 3)); plurihorm-PA (n = 3)); HC (n = 2 + 23) | plasma | miRNeasy Serum/Plasma Kit (Qiagen) | whole miRNome | screening: NGS (QIAseq™ miRNA Library Kit; Illumina MiSeq); validation: RT-qPCR (Advanced TaqMan MicroRNA Assays) | spike-in control cel-miR-39 | FSH/LH/HN-PA vs. HC | miR-122-5p ↓, miR-134-5p ↓, miR-152-3p ↓, miR-181a-5p ↓, miR-192-5p ↓, miR-27b-3p ↓, miR-320a ↓, miR-339-3p ↓, miR-378a-3p ↓, miR-382-3p ↓, miR-93-5p ↓, miR-99a-5p ↓ | na |
FSH/LH-PA postop vs preop | 7 miRNAs (miR-4647 ↑; miR-143-3p ↓; miR-6514-3p ↑; miR-3122 ↑; miR-101-5p ↑; miR-6850-5p ↑; miR-6867-5p ↑) | AUC(miR-143-3p): 0.79, p = 0.024; sens: 81.8%, spec: 72.7% | |||||||
miRNAs related to PitNET (adenoma type mixed or not specified) | |||||||||
[87] | PA (n = 30) (ACTH (n = 15), P RL (n = 9), GH (n = 6)); inv (n = 15) vs. non-inv (n = 15) (types not defined)) | plasma | Trizol | targeted testing (miR-200a) | RT-qPCR (SYBR-based) | U6 | inv vs. non-inv (preop) | miR-200a ↑ | na |
inv vs. non-inv (postop) | miR-200a ↓ | na | |||||||
inv preop vs. inv postop | miR-200a ↑ | AUC(miR-200a): 0.98, p = not reported; sens: not reported, spec: not reported | |||||||
non-inv preop vs. non-inv postop | not reported | na | |||||||
[88] | PA (n = 36, types not specified), HC (n = 8) | serum | RNAiso Plus | targeted testing (miR-16) | RT-qPCR (SYBR-based) | not reported | PA vs. HC | miR-16 ↓ | na |
[77] | PA (n = 11); glioma (n = 66); meningioma (n = 32); acoustic neuroma (n = 14) | plasma | mirVana PARIS kit (Ambion) | targeted testing (miR-185) | RT-qPCR (SYBR-based) | spike-in control cel-miR-39 and cel-miR-238 | HC vs. PA | not significant | na |
HC vs. glioma | miR-185 ↓ | na | |||||||
[79] | PA (n = 5); glioma (n = 64); HC (n = 45); meningioma (n = 8); primary diffuse large B-cell lymphoma of the CNS (n = 6) | serum | miRNeasy Serum/Plasma Kit (Qiagen) | targeted (miR-205) | RT-qPCR (Advanced TaqMan MicroRNA Assays) | miR-16-5p | glioma vs. PA | miR-205 ↓ | na |
HC vs. PA | not significant | na | |||||||
[78] | PA (n = 10); glioma (n = 30); meningioma (n = 10) | plasma | miRcute miRNA isolation kit (chloroform based) | targeted testing (9 miRNA) | RT-qPCR (SYBR-based) | spike-in control mmu-miR-295 | HC vs. PA; HC vs. Meningeioma | not significant | na |
PA vs. glioma | miR-21 ↓, miR-128 ↑ and miR-342-3p ↑ | na |
4.2. LncRNAs as Biomarkers in PitNET
4.3. circRNAs as Biomarkers in PitNET
5. Potential Causes of Discrepancies in Literature Findings—Technical Aspects
5.1. Biological Variation
5.2. Sample Type
5.3. Blood Collection and Storage
5.4. RNA Extraction
5.5. Quantification Methods and Data Normalization
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ezzat, S.; Asa, S.L.; Couldwell, W.T.; Barr, C.E.; Dodge, W.E.; Vance, M.L.; McCutcheon, I.E. The Prevalence of Pituitary Adenomas: A Systematic Review. Cancer 2004, 101, 613–619. [Google Scholar] [CrossRef]
- Fernandez, A.; Karavitaki, N.; Wass, J.A.H. Prevalence of Pituitary Adenomas: A Community-Based, Cross-Sectional Study in Banbury (Oxfordshire, UK). Clin. Endocrinol. 2010, 72, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.B.S. The 2017 World Health Organization Classification of Tumors of the Pituitary Gland: A Summary. Acta Neuropathol. 2017, 134, 521–535. [Google Scholar] [CrossRef]
- Jonsson, B.; Nilsson, B. The Impact of Pituitary Adenoma on Morbidity. Increased Sick Leave and Disability Retirement in a Cross-Sectional Analysis of Swedish National Data. Pharmacoeconomics 2000, 18, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Burman, P.; McCormack, A.; Heaney, A.; Petersenn, S.; Popovic, V.; Trouillas, J.; Dekkers, O.M. European Society of Endocrinology European Society of Endocrinology Clinical Practice Guidelines for the Management of Aggressive Pituitary Tumours and Carcinomas. Eur. J. Endocrinol. 2018, 178, G1–G24. [Google Scholar] [CrossRef]
- Heaney, A. Management of Aggressive Pituitary Adenomas and Pituitary Carcinomas. J. Neurooncol. 2014, 117, 459–468. [Google Scholar] [CrossRef]
- Cironi, K.A.; Decater, T.; Iwanaga, J.; Dumont, A.S.; Tubbs, R.S. Arterial Supply to the Pituitary Gland: A Comprehensive Review. World Neurosurg. 2020, 142, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Wang, F.; Shen, J.; Sun, Y.; Xu, W.; Lu, J.; Wei, M.; Xu, C.; Wu, C.; Zhang, Z.; et al. Long Non-Coding RNA Metastasis Associated in Lung Adenocarcinoma Transcript 1 Derived MiniRNA as a Novel Plasma-Based Biomarker for Diagnosing Prostate Cancer. Eur. J. Cancer 2013, 49, 2949–2959. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis. Cell Res. 2015, 25, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Zhang, H.; Zeng, B.; Liu, J.; Luo, J.; Chen, T.; Sun, J.; Xi, Q.; Zhang, Y. An Exploration of Non-Coding RNAs in Extracellular Vesicles Delivered by Swine Anterior Pituitary. Front. Genet 2021, 12, 772753. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.; Pan, W.; Gawad, C.; Fan, H.C.; Kerchner, G.A.; Wyss-Coray, T.; Blumenfeld, Y.J.; El-Sayed, Y.Y.; Quake, S.R. Noninvasive In Vivo Monitoring of Tissue-Specific Global Gene Expression in Humans. Proc. Natl. Acad. Sci. USA 2014, 111, 7361–7366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gossing, W.; Frohme, M.; Radke, L. Biomarkers for Liquid Biopsies of Pituitary Neuroendocrine Tumors. Biomedicines 2020, 8, 148. [Google Scholar] [CrossRef]
- Naylor, S. Biomarkers: Current Perspectives and Future Prospects. Expert Rev. Mol. Diagn. 2003, 3, 525–529. [Google Scholar] [CrossRef] [PubMed]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource; Food and Drug Administration (US): Silver Spring, MD, USA, 2016.
- Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef] [Green Version]
- ENCODE Project Consortium; Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; et al. Identification and Analysis of Functional Elements in 1% of the Human Genome by the ENCODE Pilot Project. Nature 2007, 447, 799–816. [Google Scholar] [CrossRef] [Green Version]
- Adelman, K.; Egan, E. Non-Coding RNA: More Uses for Genomic Junk. Nature 2017, 543, 183–185. [Google Scholar] [CrossRef]
- Palazzo, A.F.; Lee, E.S. Non-Coding RNA: What Is Functional and What Is Junk? Front. Genet. 2015, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; et al. Chromatin Signature Reveals over a Thousand Highly Conserved Large Non-Coding RNAs in Mammals. Nature 2009, 458, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierinckx, A.; Roche, M.; Legras-Lachuer, C.; Trouillas, J.; Raverot, G.; Lachuer, J. MicroRNAs in Pituitary Tumors. Mol. Cell. Endocrinol. 2017, 456, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Jia, Y.; Zhang, Y.; Shi, L.; Li, Q.; Zang, A.; Wang, H. Circular RNA: Biogenesis, Degradation, Functions and Potential Roles in Mediating Resistance to Anticarcinogens. Epigenomics 2020, 12, 267–283. [Google Scholar] [CrossRef]
- Anfossi, S.; Babayan, A.; Pantel, K.; Calin, G.A. Clinical Utility of Circulating Non-Coding RNAs-an Update. Nat. Rev. Clin. Oncol. 2018, 15, 541–563. [Google Scholar] [CrossRef]
- Mercer, T.R.; Dinger, M.E.; Sunkin, S.M.; Mehler, M.F.; Mattick, J.S. Specific Expression of Long Noncoding RNAs in the Mouse Brain. Proc. Natl. Acad. Sci. USA 2008, 105, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, S.; Abu-Shahba, A.G.; Paananen, R.O.; Hongisto, H.; Hiidenmaa, H.; Skottman, H.; Seppänen-Kaijansinkko, R.; Mannerström, B. Small Non-Coding RNA Landscape of Extracellular Vesicles from Human Stem Cells. Sci. Rep. 2018, 8, 15503. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cai, Y.; Xu, J. Circular RNAs: Biogenesis, Mechanism, and Function in Human Cancers. Int. J. Mol. Sci. 2019, 20, 3926. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Zhou, X.; Du, X. Circulating Long Non-Coding RNAs in Cancer: Current Status and Future Perspectives. Mol. Cancer 2016, 15, 39. [Google Scholar] [CrossRef] [Green Version]
- Salviano-Silva, A.; Lobo-Alves, S.C.; de Almeida, R.C.; Malheiros, D.; Petzl-Erler, M.L. Besides Pathology: Long Non-Coding RNA in Cell and Tissue Homeostasis. Noncoding RNA 2018, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Abramowicz, A.; Story, M.D. The Long and Short of It: The Emerging Roles of Non-Coding RNA in Small Extracellular Vesicles. Cancers 2020, 12, 1445. [Google Scholar] [CrossRef]
- Ambros, V. MicroRNAs: Tiny Regulators with Great Potential. Cell 2001, 107, 823–826. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krol, J.; Loedige, I.; Filipowicz, W. The Widespread Regulation of MicroRNA Biogenesis, Function and Decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Valinezhad Orang, A.; Safaralizadeh, R.; Kazemzadeh-Bavili, M. Mechanisms of MiRNA-Mediated Gene Regulation from Common Downregulation to MRNA-Specific Upregulation. Int. J. Genom. 2014, 2014, 970607. [Google Scholar] [CrossRef] [Green Version]
- Mattick, J.S.; Makunin, I.V. Small Regulatory RNAs in Mammals. Hum. Mol. Genet. 2005, 14, R121–R132. [Google Scholar] [CrossRef] [Green Version]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of MicroRNAs and MicroRNA-Protective Protein by Mammalian Cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Chen, X. Emerging Role of Extracellular MicroRNAs and LncRNAs. ExRNA 2019, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Quinn, J.J.; Chang, H.Y. Unique Features of Long Non-Coding RNA Biogenesis and Function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- Khandelwal, A.; Bacolla, A.; Vasquez, K.M.; Jain, A. Long Non-Coding RNA: A New Paradigm for Lung Cancer. Mol. Carcinog. 2015, 54, 1235–1251. [Google Scholar] [CrossRef]
- Ulveling, D.; Francastel, C.; Hubé, F. When One Is Better than Two: RNA with Dual Functions. Biochimie 2011, 93, 633–644. [Google Scholar] [CrossRef]
- Fritz, J.V.; Heintz-Buschart, A.; Ghosal, A.; Wampach, L.; Etheridge, A.; Galas, D.; Wilmes, P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu. Rev. Nutr. 2016, 36, 301–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Yang, L.; Chen, L.-L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-Intron Circular RNAs Regulate Transcription in the Nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef]
- Li, F.; Yang, Q.; He, A.T.; Yang, B.B. Circular RNAs in Cancer: Limitations in Functional Studies and Diagnostic Potential. Semin. Cancer Biol. 2021, 75, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Dong, Y.; Gong, A.; Kong, H.; Gao, J.; Hao, X.; Liu, Y.; Wang, Z.; Fan, Y.; Liu, C.; et al. Exosomal CircRNAs as Novel Cancer Biomarkers: Challenges and Opportunities. Int. J. Biol. Sci. 2021, 17, 562–573. [Google Scholar] [CrossRef]
- Lasda, E.; Parker, R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for CircRNA Clearance. PLoS ONE 2016, 11, e0148407. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Cha, D.J.; Franklin, J.L.; Higginbotham, J.N.; Jeppesen, D.K.; Weaver, A.M.; Prasad, N.; Levy, S.; Coffey, R.J.; Patton, J.G.; et al. Circular RNAs Are Down-Regulated in KRAS Mutant Colon Cancer Cells and Can Be Transferred to Exosomes. Sci. Rep. 2016, 6, 37982. [Google Scholar] [CrossRef]
- Bazan, H.A.; Hatfield, S.A.; Brug, A.; Brooks, A.J.; Lightell, D.J.; Woods, T.C. Carotid Plaque Rupture Is Accompanied by an Increase in the Ratio of Serum CircR-284 to MiR-221 Levels. Circ. Cardiovasc. Genet. 2017, 10, e001720. [Google Scholar] [CrossRef] [Green Version]
- Sunderland, N.; Skroblin, P.; Barwari, T.; Huntley, R.P.; Lu, R.; Joshi, A.; Lovering, R.C.; Mayr, M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ. Res. 2017, 120, 418–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hergenreider, E.; Heydt, S.; Tréguer, K.; Boettger, T.; Horrevoets, A.J.G.; Zeiher, A.M.; Scheffer, M.P.; Frangakis, A.S.; Yin, X.; Mayr, M.; et al. Atheroprotective Communication between Endothelial Cells and Smooth Muscle Cells through MiRNAs. Nat. Cell Biol. 2012, 14, 249–256. [Google Scholar] [CrossRef]
- Decruyenaere, P.; Offner, F.; Vandesompele, J. Circulating RNA Biomarkers in Diffuse Large B-Cell Lymphoma: A Systematic Review. Exp. Hematol. Oncol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Butz, H.; Patócs, A. MicroRNAs in Endocrine Tumors. EJIFCC 2019, 30, 146–164. [Google Scholar] [PubMed]
- El-Hefnawy, T.; Raja, S.; Kelly, L.; Bigbee, W.L.; Kirkwood, J.M.; Luketich, J.D.; Godfrey, T.E. Characterization of Amplifiable, Circulating RNA in Plasma and Its Potential as a Tool for Cancer Diagnostics. Clin. Chem. 2004, 50, 564–573. [Google Scholar] [CrossRef]
- Tsui, N.B.Y.; Ng, E.K.O.; Lo, Y.M.D. Stability of Endogenous and Added RNA in Blood Specimens, Serum, and Plasma. Clin. Chem. 2002, 48, 1647–1653. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [Green Version]
- Viereck, J.; Bang, C.; Foinquinos, A.; Thum, T. Regulatory RNAs and Paracrine Networks in the Heart. Cardiovasc. Res. 2014, 102, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Viereck, J.; Thum, T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circ. Res. 2017, 120, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs Are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turchinovich, A.; Weiz, L.; Burwinkel, B. Extracellular MiRNAs: The Mystery of Their Origin and Function. Trends Biochem. Sci. 2012, 37, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Arita, T.; Ichikawa, D.; Konishi, H.; Komatsu, S.; Shiozaki, A.; Shoda, K.; Kawaguchi, T.; Hirajima, S.; Nagata, H.; Kubota, T.; et al. Circulating Long Non-Coding RNAs in Plasma of Patients with Gastric Cancer. Anticancer Res. 2013, 33, 3185–3193. [Google Scholar]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of MicroRNAs in Serum: A Novel Class of Biomarkers for Diagnosis of Cancer and Other Diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Laterza, O.F.; Lim, L.; Garrett-Engele, P.W.; Vlasakova, K.; Muniappa, N.; Tanaka, W.K.; Johnson, J.M.; Sina, J.F.; Fare, T.L.; Sistare, F.D.; et al. Plasma MicroRNAs as Sensitive and Specific Biomarkers of Tissue Injury. Clin. Chem. 2009, 55, 1977–1983. [Google Scholar] [CrossRef] [Green Version]
- Jalapothu, D.; Boieri, M.; Crossland, R.E.; Shah, P.; Butt, I.A.; Norden, J.; Dressel, R.; Dickinson, A.M.; Inngjerdingen, M. Tissue-Specific Expression Patterns of MicroRNA during Acute Graft-versus-Host Disease in the Rat. Front. Immunol. 2016, 7, 361, PMCID:PMC5025478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, K.-H.; Yang, S.; Kim, S.-H.; Chun, S.; Joo, J.-Y. Discoveries for Long Non-Coding RNA Dynamics in Traumatic Brain Injury. Biology 2020, 9, 458. [Google Scholar] [CrossRef]
- Qiao, L.; Mo, S.; Zhou, Y.; Zhang, Y.; Li, B.; Wu, S.; Lin, L.; Zhu, L.; Zhao, R. Circular RNA Expression Alteration in Whole Blood of Premature Infants with Periventricular White Matter Damage. Genomics 2020, 112, 2875–2885. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Wang, Z.; Wang, F.; Guo, X.; Li, G. Circulating MicroRNA Profiles and the Identification of MiR-593 and MiR-511 Which Directly Target the PROP1 Gene in Children with Combined Pituitary Hormone Deficiency. Int. J. Mol. Med. 2015, 35, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Taheri, S.; Tanriverdi, F.; Zararsiz, G.; Elbuken, G.; Ulutabanca, H.; Karaca, Z.; Selcuklu, A.; Unluhizarci, K.; Tanriverdi, K.; Kelestimur, F. Circulating MicroRNAs as Potential Biomarkers for Traumatic Brain Injury-Induced Hypopituitarism. J. Neurotrauma 2016, 33, 1818–1825. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.N.; Haverstick, D.M.; Lee, J.K.; Thorner, M.O.; Vance, M.L.; Xin, W.; Bruns, D.E. Circulating MicroRNA as a Biomarker of Human Growth Hormone Administration to Patients. Drug Test. Anal. 2014, 6, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Tang, Y.; Fan, F.; Zeng, Y.; Li, C.; Zhou, G.; Hu, Z.; Zhang, L.; Liu, Z. Exosomal Hsa-MiR-21-5p Derived from Growth Hormone-Secreting Pituitary Adenoma Promotes Abnormal Bone Formation in Acromegaly. Transl. Res. 2020, 215, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igaz, I.; Nyírő, G.; Nagy, Z.; Butz, H.; Nagy, Z.; Perge, P.; Sahin, P.; Tóth, M.; Rácz, K.; Igaz, P.; et al. Analysis of Circulating MicroRNAs In Vivo Following Administration of Dexamethasone and Adrenocorticotropin. Int. J. Endocrinol. 2015, 2015, 589230. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, I.; Nahmias, N.; Novoselsky Persky, M.; Greenfield, C.; Goldman-Wohl, D.; Hurwitz, A.; Haimov-Kochman, R.; Yagel, S.; Imbar, T. Elevated Circulating Micro-Ribonucleic Acid (MiRNA)-200b and MiRNA-429 Levels in Anovulatory Women. Fertil. Steril. 2017, 107, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Liu, Q.; Liu, X.; Ye, F.; Xie, X.; Xie, X.; Wu, M. Plasma MiR-185 as a Predictive Biomarker for Prognosis of Malignant Glioma. J. Cancer Res. Ther. 2015, 11, 630–634. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Li, A.; Jiang, W.; Wang, H.; Wang, J.; Xie, K. Plasma Specific MiRNAs as Predictive Biomarkers for Diagnosis and Prognosis of Glioma. J. Exp. Clin. Cancer Res. 2012, 31, 97. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Lan, F.; Hu, M.; Pan, Q.; Wang, Q.; Wang, J. Downregulation of Serum MicroRNA-205 as a Potential Diagnostic and Prognostic Biomarker for Human Glioma. J. Neurosurg. 2016, 124, 122–128. [Google Scholar] [CrossRef]
- Belaya, Z.; Khandaeva, P.; Nonn, L.; Nikitin, A.; Solodovnikov, A.; Sitkin, I.; Grigoriev, A.; Pikunov, M.; Lapshina, A.; Rozhinskaya, L.; et al. Circulating Plasma MicroRNA to Differentiate Cushing’s Disease From Ectopic ACTH Syndrome. Front. Endocrinol. 2020, 11, 331. [Google Scholar] [CrossRef]
- Vetrivel, S.; Zhang, R.; Engel, M.; Altieri, B.; Braun, L.; Osswald, A.; Bidlingmaier, M.; Fassnacht, M.; Beuschlein, F.; Reincke, M.; et al. Circulating MicroRNA Expression in Cushing’s Syndrome. Front. Endocrinol. 2021, 12, 620012. [Google Scholar] [CrossRef]
- Sanders, K.; Veldhuizen, A.; Kooistra, H.S.; Slob, A.; Timmermans-Sprang, E.P.M.; Riemers, F.M.; Daminet, S.; Fracassi, F.; van Nimwegen, S.A.; Meij, B.P.; et al. Circulating MicroRNAs as Non-Invasive Biomarkers for Canine Cushing’s Syndrome. Front. Vet. Sci. 2021, 8, 760487. [Google Scholar] [CrossRef] [PubMed]
- Németh, K.; Darvasi, O.; Likó, I.; Szücs, N.; Czirják, S.; Reiniger, L.; Szabó, B.; Krokker, L.; Pállinger, É.; Igaz, P.; et al. Comprehensive Analysis of Circulating MicroRNAs in Plasma of Patients with Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2019, 104, 4151–4168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, J.; Feng, J.; Li, Z.; Liu, Q.; Lv, P.; Wang, F.; Gao, H.; Zhang, Y. Identification of Serum MiRNA-423-5p Expression Signature in Somatotroph Adenomas. Int. J. Endocrinol. 2019, 2019, 8516858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, H.; Hekimler Öztürk, K.; Torus, B. Circulating MiR-29c-3p Is Downregulated in Patients with Acromegaly. Turk. J. Med. Sci. 2021, 51, 2081–2086. [Google Scholar] [CrossRef] [PubMed]
- Lutsenko, A.; Belaya, Z.; Nikitin, A.; Solodovnikov, A.; Lapshina, A.; Koshkin, P.; Vorontsova, M.; Rozhinskaya, L.; Melnichenko, G.; Dedov, I. Circulating Plasma MicroRNA in Patients With Active Acromegaly. J. Clin. Endocrinol. Metab. 2022, 107, 500–511. [Google Scholar] [CrossRef]
- Beylerli, O.; Khasanov, D.; Gareev, I.; Valitov, E.; Sokhatskii, A.; Wang, C.; Pavlov, V.; Khasanova, G.; Ahmad, A. Differential Non-Coding RNAs Expression Profiles of Invasive and Non-Invasive Pituitary Adenomas. Noncoding RNA Res. 2021, 6, 115–122. [Google Scholar] [CrossRef]
- Lu, B.; Liu, G.-L.; Yu, F.; Li, W.-J.; Xiang, X.-X.; Xiao, H.-Z. MicroRNA-16/VEGFR2/P38/NF-κB Signaling Pathway Regulates Cell Growth of Human Pituitary Neoplasms. Oncol. Rep. 2018, 39, 1235–1244. [Google Scholar] [CrossRef] [Green Version]
- Bottoni, A.; Piccin, D.; Tagliati, F.; Luchin, A.; Zatelli, M.C.; degli Uberti, E.C. MiR-15a and MiR-16-1 down-Regulation in Pituitary Adenomas. J. Cell. Physiol. 2005, 204, 280–285. [Google Scholar] [CrossRef]
- Bottoni, A.; Zatelli, M.C.; Ferracin, M.; Tagliati, F.; Piccin, D.; Vignali, C.; Calin, G.A.; Negrini, M.; Croce, C.M.; Degli Uberti, E.C. Identification of Differentially Expressed MicroRNAs by Microarray: A Possible Role for MicroRNA Genes in Pituitary Adenomas. J. Cell. Physiol. 2007, 210, 370–377. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA Profiling: Approaches and Considerations. Nat. Rev. Genet. 2012, 13, 358–369. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood Cell Origin of Circulating MicroRNAs: A Cautionary Note for Cancer Biomarker Studies. Cancer Prev. Res. 2012, 5, 492–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafouri-Fard, S.; Abak, A.; Hussen, B.M.; Taheri, M.; Sharifi, G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers 2021, 13, 5987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.T.; Tang, H.; Xie, W.Q.; Yao, H.; Gu, W.T.; Zheng, Y.Z.; Shang, H.B.; Wang, Y.; Wei, Y.X.; et al. Exosome-Transmitted LncRNA H19 Inhibits the Growth of Pituitary Adenoma. J. Clin. Endocrinol. Metab. 2019, 104, 6345–6356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Dahle, D.; Zhou, Y.; Zhang, X.; Klibanski, A. Hypermethylation of the Promoter Region Is Associated with the Loss of MEG3 Gene Expression in Human Pituitary Tumors. J. Clin. Endocrinol. Metab. 2005, 90, 2179–2186. [Google Scholar] [CrossRef] [Green Version]
- Gejman, R.; Batista, D.L.; Zhong, Y.; Zhou, Y.; Zhang, X.; Swearingen, B.; Stratakis, C.A.; Hedley-Whyte, E.T.; Klibanski, A. Selective Loss of MEG3 Expression and Intergenic Differentially Methylated Region Hypermethylation in the MEG3/DLK1 Locus in Human Clinically Nonfunctioning Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2008, 93, 4119–4125. [Google Scholar] [CrossRef]
- Butz, H.; Likó, I.; Czirják, S.; Igaz, P.; Korbonits, M.; Rácz, K.; Patócs, A. MicroRNA Profile Indicates Downregulation of the TGFβ Pathway in Sporadic Non-Functioning Pituitary Adenomas. Pituitary 2011, 14, 112–124. [Google Scholar] [CrossRef]
- Krokker, L.; Patócs, A.; Butz, H. Essential Role of the 14q32 Encoded MiRNAs in Endocrine Tumors. Genes 2021, 12, 698. [Google Scholar] [CrossRef]
- Shao, H.-F.; Li, Z.-Z.; Zheng, X.-F.; Wang, H.-J.; Wang, Y.-G.; Ma, Z.-L.; Liu, Z.-B.; Han, Q.-Y. Research on the Correlation of Changes in Plasma LncRNA MEG3 with Change in Inflammatory Factors and Prognosis in Patients with Traumatic Brain Injury. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4341–4347. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, T.; Lin, Z.; Gao, Y. Aberrant Methylation of MEG3 Functions as a Potential Plasma-Based Biomarker for Cervical Cancer. Sci. Rep. 2017, 7, 6271. [Google Scholar] [CrossRef]
- Ghaedi, H.; Mozaffari, M.A.N.; Salehi, Z.; Ghasemi, H.; Zadian, S.S.; Alipoor, S.; Hadianpour, S.; Alipoor, B. Co-Expression Profiling of Plasma MiRNAs and Long Noncoding RNAs in Gastric Cancer Patients. Gene 2019, 687, 135–142. [Google Scholar] [CrossRef]
- Xie, L.; Mao, M.; Xiong, K.; Jiang, B. Circular RNAs: A Novel Player in Development and Disease of the Central Nervous System. Front. Cell. Neurosci. 2017, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Hu, B.; Feng, Y.; Wang, Z.; Wang, X.; Zhu, D.; Zhu, Y.; Jiang, X.; Wang, H. CircOMA1-Mediated MiR-145-5p Suppresses Tumor Growth of Nonfunctioning Pituitary Adenomas by Targeting TPT1. J. Clin. Endocrinol. Metab. 2019, 104, 2419–2434. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, N.; Zhang, S.; Zhou, P.; Lv, L.; Richard, S.A.; Ma, W.; Chen, C.; Wang, X.; Huang, S.; et al. Differential Circular RNA Expression Profiles of Invasive and Non-Invasive Non-Functioning Pituitary Adenomas. Medicine 2019, 98, e16148. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhang, W.; Feng, Q.; Hao, B.; Cheng, C.; Cheng, Y.; Li, Y.; Fan, X.; Chen, Z. Comprehensive Circular RNA Profiling Reveals That Hsa_circ_0001368 Is Involved in Growth Hormone-Secreting Pituitary Adenoma Development. Brain Res. Bull. 2020, 161, 65–77. [Google Scholar] [CrossRef]
- Butz, H. Circulating MicroRNAs: From PitNET Pathogenesis to Diagnostics. EJEA 2020, 70. [Google Scholar] [CrossRef]
- Butz, H.; Patócs, A. Technical Aspects Related to the Analysis of Circulating MicroRNAs. Exp. Suppl. 2015, 106, 55–71. [Google Scholar] [CrossRef]
- MacLellan, S.A.; MacAulay, C.; Lam, S.; Garnis, C. Pre-Profiling Factors Influencing Serum MicroRNA Levels. BMC Clin. Pathol. 2014, 14, 27. [Google Scholar] [CrossRef] [Green Version]
- Ammerlaan, W.; Betsou, F. Intraindividual Temporal MiRNA Variability in Serum, Plasma, and White Blood Cell Subpopulations. Biopreserv. Biobank. 2016, 14, 390–397. [Google Scholar] [CrossRef]
- Max, K.E.A.; Wang, V.R.; Chang, M.S.; Liau, J.; Weiss, Z.R.; Morgan, S.; Li, J.; Bogardus, K.A.; Morozov, P.; Suryawanshi, H.; et al. Plasma MicroRNA Interindividual Variability in Healthy Individuals, Pregnant Women, and an Individual with a Stably Altered Neuroendocrine Phenotype. Clin. Chem. 2021, 67, 1676–1688. [Google Scholar] [CrossRef]
- McDonald, J.S.; Milosevic, D.; Reddi, H.V.; Grebe, S.K.; Algeciras-Schimnich, A. Analysis of Circulating MicroRNA: Preanalytical and Analytical Challenges. Clin. Chem. 2011, 57, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Ameling, S.; Kacprowski, T.; Chilukoti, R.K.; Malsch, C.; Liebscher, V.; Suhre, K.; Pietzner, M.; Friedrich, N.; Homuth, G.; Hammer, E.; et al. Associations of Circulating Plasma MicroRNAs with Age, Body Mass Index and Sex in a Population-Based Study. BMC Med. Genom. 2015, 8, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantilla-Escalante, D.C.; López de las Hazas, M.-C.; Gil-Zamorano, J.; del Pozo-Acebo, L.; Crespo, M.C.; Martín-Hernández, R.; del Saz, A.; Tomé-Carneiro, J.; Cardona, F.; Cornejo-Pareja, I.; et al. Postprandial Circulating MiRNAs in Response to a Dietary Fat Challenge. Nutrients 2019, 11, 1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Bai, M.; Xu, J.; Zhu, L.; Liu, C.; Duan, R. Long-Term Exercise Alters the Profiles of Circulating Micro-RNAs in the Plasma of Young Women. Front. Physiol. 2020, 11, 372. [Google Scholar] [CrossRef]
- Ferrero, G.; Carpi, S.; Polini, B.; Pardini, B.; Nieri, P.; Impeduglia, A.; Grioni, S.; Tarallo, S.; Naccarati, A. Intake of Natural Compounds and Circulating MicroRNA Expression Levels: Their Relationship Investigated in Healthy Subjects With Different Dietary Habits. Front. Pharmacol. 2021, 11, 619200. [Google Scholar] [CrossRef] [PubMed]
- Giardina, S.; Hernández-Alonso, P.; Díaz-López, A.; Salas-Huetos, A.; Salas-Salvadó, J.; Bulló, M. Changes in Circulating MiRNAs in Healthy Overweight and Obese Subjects: Effect of Diet Composition and Weight Loss. Clin. Nutr. 2019, 38, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Cannataro, R.; Perri, M.; Gallelli, L.; Caroleo, M.C.; De Sarro, G.; Cione, E. Ketogenic Diet Acts on Body Remodeling and MicroRNAs Expression Profile. MIRNA 2019, 8, 116–126. [Google Scholar] [CrossRef]
- Manca, S.; Upadhyaya, B.; Mutai, E.; Desaulniers, A.T.; Cederberg, R.A.; White, B.R.; Zempleni, J. Milk Exosomes Are Bioavailable and Distinct MicroRNA Cargos Have Unique Tissue Distribution Patterns. Sci. Rep. 2018, 8, 11321. [Google Scholar] [CrossRef] [Green Version]
- Barber, J.L.; Zellars, K.N.; Barringhaus, K.G.; Bouchard, C.; Spinale, F.G.; Sarzynski, M.A. The Effects of Regular Exercise on Circulating Cardiovascular-Related MicroRNAs. Sci. Rep. 2019, 9, 7527. [Google Scholar] [CrossRef]
- Kornienko, A.E.; Dotter, C.P.; Guenzl, P.M.; Gisslinger, H.; Gisslinger, B.; Cleary, C.; Kralovics, R.; Pauler, F.M.; Barlow, D.P. Long Non-Coding RNAs Display Higher Natural Expression Variation than Protein-Coding Genes in Healthy Humans. Genome Biol. 2016, 17, 14. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zheng, Y.-C.; Kayani, M.U.R.; Xu, W.; Wang, G.-Q.; Sun, P.; Ao, N.; Zhang, L.-N.; Gu, Z.-Q.; Wu, L.-C.; et al. Comprehensive Analysis of CircRNA Expression Profiles in Humans by RAISE. Int. J. Oncol. 2017, 51, 1625–1638. [Google Scholar] [CrossRef] [Green Version]
- Shende, V.R.; Goldrick, M.M.; Ramani, S.; Earnest, D.J. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice. PLoS ONE 2011, 6, e22586. [Google Scholar] [CrossRef] [Green Version]
- Heegaard, N.H.H.; Schetter, A.J.; Welsh, J.A.; Yoneda, M.; Bowman, E.D.; Harris, C.C. Circulating Micro-RNA Expression Profiles in Early Stage Nonsmall Cell Lung Cancer. Int. J. Cancer 2012, 130, 1378–1386. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yuan, Y.; Cho, J.-H.; McClarty, S.; Baxter, D.; Galas, D.J. Comparing the MicroRNA Spectrum between Serum and Plasma. PLoS ONE 2012, 7, e41561. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.; Cox, M.A.; Gaffney, K.A.; Moreland, A.; Boland, C.R.; Goel, A. Technical Factors Involved in the Measurement of Circulating MicroRNA Biomarkers for the Detection of Colorectal Neoplasia. PLoS ONE 2014, 9, e112481. [Google Scholar] [CrossRef] [PubMed]
- Witwer, K.W.; Théry, C. Extracellular Vesicles or Exosomes? On Primacy, Precision, and Popularity Influencing a Choice of Nomenclature. J. Extracell. Vesicles 2019, 8, 1648167. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldovan, L.; Batte, K.E.; Trgovcich, J.; Wisler, J.; Marsh, C.B.; Piper, M. Methodological Challenges in Utilizing MiRNAs as Circulating Biomarkers. J. Cell. Mol. Med. 2014, 18, 371–390. [Google Scholar] [CrossRef]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kääb, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs-Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Gray, W.D.; Hayek, S.S.; Ko, Y.-A.; Thomas, S.; Rooney, K.; Awad, M.; Roback, J.D.; Quyyumi, A.; Searles, C.D. Platelets Confound the Measurement of Extracellular MiRNA in Archived Plasma. Sci. Rep. 2016, 6, 32651. [Google Scholar] [CrossRef] [Green Version]
- Köberle, V.; Pleli, T.; Schmithals, C.; Alonso, E.A.; Haupenthal, J.; Bönig, H.; Peveling-Oberhag, J.; Biondi, R.M.; Zeuzem, S.; Kronenberger, B.; et al. Differential Stability of Cell-Free Circulating MicroRNAs: Implications for Their Utilization as Biomarkers. PLoS ONE 2013, 8, e75184. [Google Scholar] [CrossRef] [Green Version]
- Farina, N.H.; Wood, M.E.; Perrapato, S.D.; Francklyn, C.S.; Stein, G.S.; Stein, J.L.; Lian, J.B. Standardizing Analysis of Circulating MicroRNA: Clinical and Biological Relevance. J. Cell. Biochem. 2014, 115, 805–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Khoury, V.; Pierson, S.; Kaoma, T.; Bernardin, F.; Berchem, G. Assessing Cellular and Circulating MiRNA Recovery: The Impact of the RNA Isolation Method and the Quantity of Input Material. Sci. Rep. 2016, 6, 19529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarry, J.; Schadendorf, D.; Greenwood, C.; Spatz, A.; van Kempen, L.C. The Validity of Circulating MicroRNAs in Oncology: Five Years of Challenges and Contradictions. Mol. Oncol. 2014, 8, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Grillone, K.; Riillo, C.; Scionti, F.; Rocca, R.; Tradigo, G.; Guzzi, P.H.; Alcaro, S.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. Non-Coding RNAs in Cancer: Platforms and Strategies for Investigating the Genomic “Dark Matter”. J. Exp. Clin. Cancer Res. 2020, 39, 117. [Google Scholar] [CrossRef] [PubMed]
- Git, A.; Dvinge, H.; Salmon-Divon, M.; Osborne, M.; Kutter, C.; Hadfield, J.; Bertone, P.; Caldas, C. Systematic Comparison of Microarray Profiling, Real-Time PCR, and next-Generation Sequencing Technologies for Measuring Differential MicroRNA Expression. RNA 2010, 16, 991–1006. [Google Scholar] [CrossRef] [Green Version]
- Mestdagh, P.; Hartmann, N.; Baeriswyl, L.; Andreasen, D.; Bernard, N.; Chen, C.; Cheo, D.; D’Andrade, P.; DeMayo, M.; Dennis, L.; et al. Evaluation of Quantitative MiRNA Expression Platforms in the MicroRNA Quality Control (MiRQC) Study. Nat. Methods 2014, 11, 809–815. [Google Scholar] [CrossRef]
- Darvasi, O.; Szabo, P.M.; Nemeth, K.; Szabo, K.; Spisak, S.; Liko, I.; Czirjak, S.; Racz, K.; Igaz, P.; Patocs, A.; et al. Limitations of High Throughput Methods for MiRNA Expression Profiles in Non-Functioning Pituitary Adenomas. Pathol. Oncol. Res. 2019, 25, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Marabita, F.; de Candia, P.; Torri, A.; Tegnér, J.; Abrignani, S.; Rossi, R.L. Normalization of Circulating MicroRNA Expression Data Obtained by Quantitative Real-Time RT-PCR. Brief. Bioinform. 2016, 17, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Munro, S.A.; Lund, S.P.; Pine, P.S.; Binder, H.; Clevert, D.-A.; Conesa, A.; Dopazo, J.; Fasold, M.; Hochreiter, S.; Hong, H.; et al. Assessing Technical Performance in Differential Gene Expression Experiments with External Spike-in RNA Control Ratio Mixtures. Nat. Commun. 2014, 5, 5125. [Google Scholar] [CrossRef]
- Chevillet, J.R.; Lee, I.; Briggs, H.A.; He, Y.; Wang, K. Issues and Prospects of MicroRNA-Based Biomarkers in Blood and Other Body Fluids. Molecules 2014, 19, 6080–6105. [Google Scholar] [CrossRef]
- Faraldi, M.; Gomarasca, M.; Sansoni, V.; Perego, S.; Banfi, G.; Lombardi, G. Normalization Strategies Differently Affect Circulating MiRNA Profile Associated with the Training Status. Sci. Rep. 2019, 9, 1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Documents Download Module. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b4d1470d&appId=PPGMS (accessed on 19 March 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butz, H. Circulating Noncoding RNAs in Pituitary Neuroendocrine Tumors—Two Sides of the Same Coin. Int. J. Mol. Sci. 2022, 23, 5122. https://doi.org/10.3390/ijms23095122
Butz H. Circulating Noncoding RNAs in Pituitary Neuroendocrine Tumors—Two Sides of the Same Coin. International Journal of Molecular Sciences. 2022; 23(9):5122. https://doi.org/10.3390/ijms23095122
Chicago/Turabian StyleButz, Henriett. 2022. "Circulating Noncoding RNAs in Pituitary Neuroendocrine Tumors—Two Sides of the Same Coin" International Journal of Molecular Sciences 23, no. 9: 5122. https://doi.org/10.3390/ijms23095122
APA StyleButz, H. (2022). Circulating Noncoding RNAs in Pituitary Neuroendocrine Tumors—Two Sides of the Same Coin. International Journal of Molecular Sciences, 23(9), 5122. https://doi.org/10.3390/ijms23095122