Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease
Abstract
:1. Introduction
2. NCC Is Regulated by a Variety of Kinases and Proteins
2.1. WNK
2.2. Ubiquitination
2.3. Regulation by Several Other Proteins and Kinases
3. Ion Regulation
3.1. K
3.2. Mg
3.3. Ca
4. NCC Is Affected by Drugs
5. Other Adjustments
5.1. Sympathetic Nervous System
5.2. Immune System
5.3. Hormones
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP-3 | Adaptor protein complex 3 |
ARB | Angiotensin II receptor blocker |
ASDN | Aldosterone-sensitive distal nephron |
BP | Blood pressure |
CaMKII | Ca2+/calmodulin-dependent protein kinase II |
cAMP | Cyclic adenosine monophosphate |
CaN | Calcineurin inhibitor |
CaSR | Calcium-sensing receptors |
CCD | Cortical collecting duct |
CD | Collecting duct |
CNT | Connecting tubule |
CUL3 | Cullin 3 |
DCT | Distal convoluted tubule |
DOCA | Deoxycorticosterone acetate |
E2 | Estradiol |
ENaC | Epithelial sodium channel |
GR | Glucocorticoid receptor |
HCTZ | Hydrochlorothiazide |
Hsd11b2 | Corticosteroid 11-β-dehydrogenase isozyme 2 |
I1 | Protein phosphatase 1 inhibitor–1 |
KLHL3 | Kelch-like protein 3 |
KS-WNK1 | Kidney-specific WNK1 |
L-WNK1 | Long (kinase-active) WNK1 |
MEK | Mitogen-activated protein kinase kinase |
MR | Mineralocorticoid receptor |
NCC | Na-Cl cotransporter |
Nedd4-2 | Neural precursor cell expressed developmentally downregulated gene 4-like |
NKCC | Na-K-Cl cotransporter |
P4 | Progesterone |
PHAII | Pseudohypoaldosteronism Type II |
PKA | Protein kinase A |
PKC | Protein kinase C |
pNCC | Phosphorylation NCC |
PP1 | Protein phosphatase 1 |
PRL | Prolactin |
RAAS | Renin–angiotensin system |
Rac1 | Ras-related C3 botulinum toxin substrate 1 |
Renal SNS | Renal sympathetic nervous system |
ROMK | Renal outer medullary potassium channel |
SGK1 | Serum and glucocorticoid-regulated kinase 1 |
SPAK | Ste20-related Proline Alanine rich Kinase |
Tac | Tacrolimus |
TALH | The thick ascending limp of the loop of Henle |
tNCC | Total NCC |
Ub | Ubiquitin |
uEVs | Urinary extracellular vesicles |
UMOD | Uromodulin |
WNK | With-no-lysine kinase |
β2-AR | β2 adrenergic receptor |
References
- Kalaitzidis, R.G.; Elisaf, M.S. Treatment of Hypertension in Chronic Kidney Disease. Curr. Hypertens. Rep. 2018, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W. Renal Volume, Renin-Angiotensin-Aldosterone System, Hypertension, and Left Ventricular Hypertrophy in Patients with Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2009, 20, 1888–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrahian, S.M. Management of Hypertension in Patients with Chronic Kidney Disease. Curr. Hypertens. Rep. 2017, 19, 43. [Google Scholar] [CrossRef] [PubMed]
- Bilous, R. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am. J. Kidney Dis. 2012, 60, 850–886. [Google Scholar] [CrossRef]
- Bovée, D.M.; Cuevas, C.A.; Zietse, R.; Danser, A.H.J.; Colafella, K.M.M.; Hoorn, E.J. Salt-Sensitive Hypertension in Chronic Kidney Disease: Distal Tubular Mechanisms. Am. J. Physiol. Physiol. 2020, 319, F729–F745. [Google Scholar] [CrossRef]
- Duni, A.; Liakopoulos, V.; Rapsomanikis, K.-P.; Dounousi, E. Chronic Kidney Disease and Disproportionally Increased Cardiovascular Damage: Does Oxidative Stress Explain the Burden? Oxidative Med. Cell. Longev. 2017, 2017, 9036450. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.; Hoover, R.S. Molecular Physiology of the Thiazide-Sensitive Sodium–Chloride Cotransporter. Curr. Opin. Nephrol. Hypertens. 2009, 18, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Gamba, G. The Thiazide-Sensitive Na+-Cl− Cotransporter: Molecular Biology, Functional Properties, and Regulation by WNKs. Am. J. Physiol. Physiol. 2009, 297, F838–F848. [Google Scholar] [CrossRef] [Green Version]
- Susa, K.; Sohara, E.; Isobe, K.; Chiga, M.; Rai, T.; Sasaki, S.; Uchida, S. WNK-OSR1/SPAK-NCC Signal Cascade Has Circadian Rhythm Dependent on Aldosterone. Biochem. Biophys. Res. Commun. 2012, 425, 456–461. [Google Scholar] [CrossRef]
- Hossain Khan, M.Z.; Sohara, E.; Ohta, A.; Chiga, M.; Inoue, Y.; Isobe, K.; Wakabayashi, M.; Oi, K.; Rai, T.; Sasaki, S.; et al. Phosphorylation of Na–Cl Cotransporter by OSR1 and SPAK Kinases Regulates Its Ubiquitination. Biochem. Biophys. Res. Commun. 2012, 425, 456–461. [Google Scholar] [CrossRef]
- Loffing, J.; Kaissling, B. Sodium and Calcium Transport Pathways along the Mammalian Distal Nephron: From Rabbit to Human. Am. J. Physiol. Physiol. 2003, 284, F628–F643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GUH, J.-Y. Proteinuria versus Albuminuria in Chronic Kidney Disease. Nephrology 2010, 15, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.E.; English, J.M.; Wilsbacher, J.L.; Stippec, S.; Goldsmith, E.J.; Cobb, M.H. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J. Biol. Chem. 2000, 275, 16795–16801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, J.A.; Ellison, D.H. The WNKs: Atypical Protein Kinases with Pleiotropic Actions. Physiol. Rev. 2011, 91, 177–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San-Cristobal, P.; Pacheco-Alvarez, D.; Richardson, C.; Ring, A.M.; Vazquez, N.; Rafiqi, F.H.; Chari, D.; Kahle, K.T.; Leng, Q.; Bobadilla, N.A.; et al. Angiotensin II Signaling Increases Activity of the Renal Na-Cl Cotransporter through a WNK4-SPAK-Dependent Pathway. Proc. Natl. Acad. Sci. USA 2009, 106, 4384–4389. [Google Scholar] [CrossRef] [Green Version]
- Argaiz, E.R.; Chavez-Canales, M.; Ostrosky-Frid, M.; Rodríguez-Gama, A.; Vázquez, N.; Gonzalez-Rodriguez, X.; Garcia-Valdes, J.; Hadchouel, J.; Ellison, D.; Gamba, G. Kidney-Specific WNK1 Isoform (KS-WNK1) Is a Potent Activator of WNK4 and NCC. Am. J. Physiol. Physiol. 2018, 315, F734–F745. [Google Scholar] [CrossRef]
- Castañeda-Bueno, M.; Ellison, D.H.; Gamba, G. Molecular Mechanisms for the Modulation of Blood Pressure and Potassium Homeostasis by the Distal Convoluted Tubule. EMBO Mol. Med. 2021, 14, e14273. [Google Scholar] [CrossRef]
- Yang, C.-L.; Zhu, X.; Ellison, D.H. The Thiazide-Sensitive Na-Cl Cotransporter Is Regulated by a WNK Kinase Signaling Complex. J. Clin. Investig. 2007, 117, 3403–3411. [Google Scholar] [CrossRef]
- Subramanya, A.R.; Liu, J.; Ellison, D.H.; Wade, J.B.; Welling, P.A. WNK4 Diverts the Thiazide-Sensitive NaCl Cotransporter to the Lysosome and Stimulates AP-3 Interaction. J. Biol. Chem. 2009, 284, 18471–18480. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.; Shimosawa, T.; Ogura, S.; Wang, H.; Uetake, Y.; Kawakami-Mori, F.; Marumo, T.; Yatomi, Y.; Geller, D.S.; Tanaka, H.; et al. Epigenetic Modulation of the Renal β-Adrenergic–WNK4 Pathway in Salt-Sensitive Hypertension. Nat. Med. 2011, 17, 573–580. [Google Scholar] [CrossRef]
- O’Reilly, M.; Marshall, E.; MacGillivray, T.; Mittal, M.; Xue, W.; Kenyon, C.J.; Brown, R.W. Dietary Electrolyte–Driven Responses in the Renal WNK Kinase PathwayIn Vivo. J. Am. Soc. Nephrol. 2006, 17, 2402–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verissimo, F.; Jordan, P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 2001, 20, 5562–5569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinehart, J.; Kahle, K.T.; de Los Heros, P.; Vazquez, N.; Meade, P.; Wilson, F.H.; Hebert, S.C.; Gimenez, I.; Gamba, G.; Lifton, R.P. WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl− cotransporters required for normal blood pressure homeostasis. Proc. Natl. Acad. Sci. USA 2005, 102, 16777–16782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoorn, E.J.; Nelson, J.H.; McCormick, J.A.; Ellison, D.H. The WNK Kinase Network Regulating Sodium, Potassium, and Blood Pressure. J. Am. Soc. Nephrol. 2011, 22, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Boyd-Shiwarski, C.R.; Shiwarski, D.J.; Roy, A.; Namboodiri, H.N.; Nkashama, L.J.; Xie, J.; McClain, K.L.; Marciszyn, A.; Kleyman, T.R.; Tan, R.J.; et al. Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol. Biol. Cell 2018, 29, 499–509. [Google Scholar] [CrossRef]
- Thomson, M.N.; Cuevas, C.A.; Bewarder, T.M.; Dittmayer, C.; Miller, L.N.; Si, J.; Cornelius, R.J.; Su, X.T.; Yang, C.L.; McCormick, J.A.; et al. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Am. J. Physiol.-Ren. Physiol. 2020, 318, F216–F228. [Google Scholar] [CrossRef]
- Ishizawa, K.; Xu, N.; Loffing, J.; Lifton, R.P.; Fujita, T.; Uchida, S.; Shibata, S. Potassium depletion stimulates Na-Cl cotransporter via phosphorylation and inactivation of the ubiquitin ligase Kelch-like 3. Biochem. Biophys. Res. Commun. 2016, 480, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Penton, D.; Moser, S.; Wengi, A.; Czogalla, J.; Rosenbaek, L.L.; Rigendinger, F.; Faresse, N.; Martins, J.R.; Fenton, R.A.; Loffing-Cueni, D.; et al. Protein Phosphatase 1 Inhibitor–1 Mediates the CAMP-Dependent Stimulation of the Renal NaCl Cotransporter. J. Am. Soc. Nephrol. 2019, 30, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Ronzaud, C.; Loffing-Cueni, D.; Hausel, P.; Debonneville, A.; Malsure, S.R.; Fowler-Jaeger, N.; Boase, N.A.; Perrier, R.; Maillard, M.; Yang, B.; et al. Renal Tubular NEDD4-2 Deficiency Causes NCC-Mediated Salt-Dependent Hypertension. J. Clin. Investig. 2013, 123, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Nishimoto, M.; Hirohama, D.; Ayuzawa, N.; Kawarazaki, W.; Watanabe, A.; Shimosawa, T.; Loffing, J.; Zhang, M.-Z.; Marumo, T.; et al. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension. Hypertension 2017, 70, 111–118. [Google Scholar] [CrossRef]
- Gholam, M.F.; Ko, B.; Ghazi, Z.M.; Hoover, R.S.; Alli, A.A. The Pharmacological Inhibition of CaMKII Regulates Sodium Chloride Cotransporter Activity in MDCT15 Cells. Biology 2021, 10, 1335. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, N.; Takata, T.; Beyeler, J.; Ehrbar, I.; Yoshifuji, A.; Christensen, E.I.; Loffing, J.; Devuyst, O.; Olinger, E.G. Uromodulin Is Expressed in the Distal Convoluted Tubule, Where It Is Critical for Regulation of the Sodium Chloride Cotransporter NCC. Kidney Int. 2018, 94, 701–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalioti, M.D.; Zhang, J.; Volkman, H.M.; Kahle, K.T.; Hoffmann, K.E.; Toka, H.R.; Nelson-Williams, C.; Ellison, D.H.; Flavell, R.; Booth, C.J.; et al. Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat. Genet. 2006, 38, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Loffing, J.; Le Hir, M.; Kaissling, B. Modulation of salt transport rate affects DNA synthesis in vivo in rat renal tubules. Kidney Int. 1995, 47, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Ying, S.; Yang, Y. Sodium-Chloride Cotransporter Activity Regulated by Extracellular Potassium. J. Integr. Nephrol. Androl. 2017, 4, 75. [Google Scholar] [CrossRef]
- Vitzthum, H.; Seniuk, A.; Schulte, L.H.; Müller, M.L.; Hetz, H.; Ehmke, H. Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice. J. Physiol. 2014, 592, 1139–1157. [Google Scholar] [CrossRef]
- Taniyama, Y.; Sato, K.; Sugawara, A.; Uruno, A.; Ikeda, Y.; Kudo, M.; Ito, S.; Takeuchi, K. Renal Tubule-Specific Transcription and Chromosomal Localization of Rat Thiazide-Sensitive Na-Cl Cotransporter Gene. J. Biol. Chem. 2001, 276, 26260–26268. [Google Scholar] [CrossRef] [Green Version]
- Ferdaus, M.Z.; Mukherjee, A.; Nelson, J.W.; Blatt, P.J.; Miller, L.N.; Terker, A.S.; Staub, O.; Lin, D.-H.; McCormick, J.A. Mg2+ Restriction Downregulates NCC through NEDD4-2 and Prevents Its Activation by Hypokalemia. Am. J. Physiol. Ren. Physiol. 2019, 317, F825–F838. [Google Scholar] [CrossRef]
- van der Wijst, J.; Hoenderop, J.G.J.; Bindels, R.J.M. Epithelial Mg2+ Channel TRPM6: Insight into the Molecular Regulation. Magnes. Res. 2009, 22, 127–132. [Google Scholar] [CrossRef]
- Bazúa-Valenti, S.; Rojas-Vega, L.; Castañeda-Bueno, M.; Barrera-Chimal, J.; Bautista, R.; Cervantes-Pérez, L.G.; Vázquez, N.; Plata, C.; Murillo-de-Ozores, A.R.; González-Mariscal, L.; et al. The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J. Am. Soc. Nephrol. 2018, 29, 1838–1848. [Google Scholar] [CrossRef]
- Zicha, J.; Hojná, S.; Vaňourková, Z.; Kopkan, L.; Vaněčková, I. Is Renal β-Adrenergic-WNK4-NCC Pathway Important in Salt Hypertension of Dahl Rats? Physiol. Res. 2019, 68, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Tutakhel, O.A.Z.; Moes, A.D.; Valdez-Flores, M.A.; Kortenoeven, M.L.A.; Vrie, M.v.D.; Jeleń, S.; Fenton, R.A.; Zietse, R.; Hoenderop, J.G.J.; Hoorn, E.J.; et al. NaCl Cotransporter Abundance in Urinary Vesicles Is Increased by Calcineurin Inhibitors and Predicts Thiazide Sensitivity. PLoS ONE 2017, 12, e0176220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulsen, S.B.; Cheng, L.; Penton, D.; Kortenoeven, M.L.A.; Matchkov, V.V.; Loffing, J.; Little, R.; Murali, S.K.; Fenton, R.A. Activation of the Kidney Sodium Chloride Cotransporter by the Β2-Adrenergic Receptor Agonist Salbutamol Increases Blood Pressure. Kidney Int. 2021, 100, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Kidoguchi, S.; Sugano, N.; Takane, K.; Takahashi, Y.; Morisawa, N.; Yarita, M.; Hayashi-Ishikawa, N.; Tokudome, G.; Yokoo, T. Azilsartan Causes Natriuresis Due to Its Sympatholytic Action in Kidney Disease. Hypertens. Res. 2019, 42, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kawakami-Mori, F.; Kang, L.; Ayuzawa, N.; Ogura, S.; Koid, S.S.; Reheman, L.; Yeerbolati, A.; Liu, B.; Yatomi, Y.; et al. Low-Dose L-NAME Induces Salt Sensitivity Associated with Sustained Increased Blood Volume and Sodium-Chloride Cotransporter Activity in Rodents. Kidney Int. 2020, 98, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Puleo, F.; Kim, K.; Frame, A.A.; Walsh, K.R.; Ferdaus, M.Z.; Moreira, J.D.; Comsti, E.; Faudoa, E.; Nist, K.M.; Abkin, E.; et al. Sympathetic Regulation of the NCC (Sodium Chloride Cotransporter) in Dahl Salt–Sensitive Hypertension. Hypertension 2020, 76, 1461–1469. [Google Scholar] [CrossRef]
- Fujita, T. Mechanism of Salt-Sensitive Hypertension: Focus on Adrenal and Sympathetic Nervous Systems. J. Am. Soc. Nephrol. 2014, 25, 1148–1155. [Google Scholar] [CrossRef] [Green Version]
- Furusho, T.; Sohara, E.; Mandai, S.; Kikuchi, H.; Takahashi, N.; Fujimaru, T.; Hashimoto, H.; Arai, Y.; Ando, F.; Zeniya, M.; et al. Renal TNFα Activates the WNK Phosphorylation Cascade and Contributes to Salt-Sensitive Hypertension in Chronic Kidney Disease. Kidney Int. 2020, 97, 713–727. [Google Scholar] [CrossRef]
- Liu, Y.; Rafferty, T.M.; Rhee, S.W.; Webber, J.S.; Song, L.; Ko, B.; Hoover, R.S.; He, B.; Mu, S. CD8+ T Cells Stimulate Na-Cl Co-Transporter NCC in Distal Convoluted Tubules Leading to Salt-Sensitive Hypertension. Nat. Commun. 2017, 8, 14037. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Vaughn, D.A.; Fanestil, D.D. Influence of gender on renal thiazide diuretic receptor density and response. J. Am. Soc. Nephrol. 1994, 5, 1112–1119. [Google Scholar] [CrossRef]
- Rojas-Vega, L.; Reyes-Castro, L.A.; Ramírez, V.; Bautista-Pérez, R.; Rafael, C.; Castañeda-Bueno, M.; Meade, P.; de los Heros, P.; Arroyo-Garza, I.; Bernard, V.; et al. Ovarian Hormones and Prolactin Increase Renal NaCl Cotransporter Phosphorylation. Am. J. Physiol. Ren. Physiol. 2015, 308, F799–F808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapf, A.M.; Grimm, P.R.; Al-Qusairi, L.; Delpire, E.; Welling, P.A. Low Salt Delivery Triggers Autocrine Release of Prostaglandin E2 From the Aldosterone-Sensitive Distal Nephron in Familial Hyperkalemic Hypertension Mice. Front. Physiol. 2022, 12, 2273. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Shimosawa, T. Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease. Int. J. Mol. Sci. 2023, 24, 286. https://doi.org/10.3390/ijms24010286
Liang L, Shimosawa T. Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease. International Journal of Molecular Sciences. 2023; 24(1):286. https://doi.org/10.3390/ijms24010286
Chicago/Turabian StyleLiang, Lijuan, and Tatsuo Shimosawa. 2023. "Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease" International Journal of Molecular Sciences 24, no. 1: 286. https://doi.org/10.3390/ijms24010286
APA StyleLiang, L., & Shimosawa, T. (2023). Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease. International Journal of Molecular Sciences, 24(1), 286. https://doi.org/10.3390/ijms24010286