Solid–Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System
Abstract
:1. Introduction
2. Interaction of Selenium with Fe(II)-Containing Oxides and Hydroxides
Oxygen Conditions | Material | Experimental Conditions | Methods | Corrosion Products | Literature |
---|---|---|---|---|---|
Anoxic conditions | Copper-coated steel | Anoxic and aerated-to-anoxic conditions in 3 mol⋅L−1 NaCl | SEM, SEM-EDS, and Raman spectroscopy | Maghemite, akaganeite, lepidocrocite and goethite | Standish et al. [76] |
Carbon steel | Na2CO3 ∕ NaHCO3, Na2SO4, and NaCl solutions simulating concentrated groundwaters at pH 8.9 on the composition of the corrosion products formed on carbon steel at room temperature | in-situ Raman spectroscopy | Iron carbide, carbonate-containing, and to a lesser degree, sulfate-containing green rusts, and magnetite | Lee et al. [19] | |
Carbon steel | Artificial Swedish granitic groundwater (diluted sodium/calcium chloride solutions) at pH 8, temperatures in the range of 30–85 °C and pressures at 1, 10, and 100 atm | XRD | Iron oxides (magnetite) | Smart et al. [26] | |
Oxic conditions | Low-carbon steel | Chloride, and sulfate ions in bicarbonate and phosphate aqueous solutions | Micro-Raman spectroscopy | Green rust generated in bicarbonate or phosphate solution containing chloride and/or sulfate ions | Simard et al. [77] and [78] |
Various atmospheres | Carbon steel and weathering steel e | A tmospheric exposure | XRD and Raman spectroscopy | Lepidocrocite, goethite, and magnetite | Antunes et al. [79] |
Oxic conditions | Carbon steel | Exposed to weathering | SEM, SEM-EDS, FTIR | Goethite | Costa et al. [80] |
3. Interaction of Selenium with Ferrous Sulfides
4. Interaction of Selenium with Ferrous Carbonates
5. Practical Implications of Ferrous Minerals for Selenium Removal
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagarová, I.; Nemček, L. Selenium in Blood Serum of Healthy European Population. Chem. Listy 2020, 114, 329–335. [Google Scholar]
- Hagarová, I.; Žemberyová, M. Determination of selenium in blood serum of children by electrothermal atomic absorption spectrometry. Chem. Listy 2005, 99, 34–39. [Google Scholar]
- Hagarová, I.; Žemberyová, M.; Bajčan, D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005, 59, 93–98. [Google Scholar]
- Zhang, L.; Song, H.; Guo, Y.; Fan, B.; Huang, Y.; Mao, X.; Liang, K.; Hu, Z.; Sun, X.; Fang, Y.; et al. Benefit–risk assessment of dietary selenium and its associated metals intake in China (2017–2019): Is current selenium-rich agro-food safe enough? J. Hazard. Mater. 2020, 398, 123224. [Google Scholar] [CrossRef] [PubMed]
- Farkasovska, I.; Zemberyova, M. Determination and speciation by AAS techniques of selenium in environmental and biological samples. Chem. Listy 1999, 93, 633–638. [Google Scholar]
- Matulová, M.; Bujdoš, M.; Miglierini, M.B.; Mitróová, Z.; Kubovčíková, M.; Urík, M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface—A three-step process with an unexpected desorption phase. Chem. Geol. 2020, 556, 119852. [Google Scholar] [CrossRef]
- Matulová, M.; Bujdoš, M.; Miglierini, M.B.; Cesnek, M.; Duborská, E.; Mosnáčková, K.; Vojtková, H.; Kmječ, T.; Dekan, J.; Matúš, P.; et al. The effect of high selenite and selenate concentrations on ferric oxyhydroxides transformation under alkaline conditions. Int. J. Mol. Sci. 2021, 22, 9955. [Google Scholar] [CrossRef]
- Matulová, M.; Urík, M.; Bujdoš, M.; Duborská, E.; Cesnek, M.; Miglierini, M.B. Selenite sorption onto goethite: Isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem. Pap. 2019, 73, 2975–2985. [Google Scholar] [CrossRef]
- Fernández-Martínez, A.; Charlet, L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Bio/Technol. 2009, 8, 81–110. [Google Scholar] [CrossRef]
- Bujdoš, M.; Mul’ová, A.; Kubová, J.; Medved, J. Selenium fractionation and speciation in rocks, soils, waters and plants in polluted surface mine environment. Environ. Geol. 2005, 47, 353–360. [Google Scholar] [CrossRef]
- Ni, R.; Luo, K.; Tian, X.; Yan, S.; Zhong, J.; Liu, M. Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province, China. Environ. Geochem. Health 2016, 38, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Bujdoš, M.; Kubová, J.; Streško, V. Problems of selenium fractionation in soils rich in organic matter. Anal. Chim. Acta 2000, 408, 103–109. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Tamoto, S.; Tabelin, C.B.; Igarashi, T.; Ito, M.; Hiroyoshi, N. Short and long term release mechanisms of arsenic, selenium and boron from a tunnel-excavated sedimentary rock under in situ conditions. J. Contam. Hydrol. 2015, 175–176, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Etteieb, S.; Magdouli, S.; Zolfaghari, M.; Brar, S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Sci. Total Environ. 2020, 698, 134339. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Liu, X.; Iris, K.; Wang, L.; Zhou, J.; Sun, X.; Rinklebe, J.; Shaheen, S.M.; Ok, Y.S.; Lin, Z. Potentially toxic elements in solid waste streams: Fate and management approaches. Environ. Pollut. 2019, 253, 680–707. [Google Scholar] [CrossRef]
- Grambow, B.; Smailos, E.; Geckeis, H.; Müller, R.; Hentschel, H. Sorption and Reduction of Uranium(VI) on Iron Corrosion Products under Reducing Saline Conditions. Radiochim. Acta 1996, 74, 149–154. [Google Scholar] [CrossRef]
- Savoye, S.; Legrand, L.; Sagon, G.; Lecomte, S.; Chausse, A.; Messina, R.; Toulhoat, P. Experimental investigations on iron corrosion products formed in bicarbonate/carbonate-containing solutions at 90 °C. Corros. Sci. 2001, 43, 2049–2064. [Google Scholar] [CrossRef]
- Lee, C.T.; Odziemkowski, M.S.; Shoesmith, D.W. An in situ Raman-Electrochemical Investigation of Carbon Steel Corrosion in Na2CO3∕NaHCO3, Na2SO4, and NaCl Solutions. J. Electrochem. Soc. 2006, 153, B33. [Google Scholar] [CrossRef]
- Park, C.-K.; Park, T.-J.; Lee, S.-Y.; Lee, J.-K. Sorption characteristics of iodide on chalcocite and mackinawite under pH variations in alkaline conditions. Nucl. Eng. Technol. 2019, 51, 1041–1046. [Google Scholar] [CrossRef]
- Bossart, P.; Bernier, F.; Birkholzer, J.; Bruggeman, C.; Connolly, P.; Dewonck, S.; Fukaya, M.; Herfort, M.; Jensen, M.; Matray, J.-M.; et al. Mont Terri rock laboratory, 20 years of research: Introduction, site characteristics and overview of experiments. Swiss J. Geosci. 2017, 110, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, M.L.; Bataillon, C.; Benhamida, K.; Blanc, C.; Menut, D.; Lacour, J.-L. Metal corrosion and argillite transformation at the water-saturated, high-temperature iron–clay interface: A microscopic-scale study. Appl. Geochem. 2008, 23, 2619–2633. [Google Scholar] [CrossRef]
- Schlegel, M.L.; Bataillon, C.; Blanc, C.; Prêt, D.; Foy, E. Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: Characterization of the corrosion interface. Environ. Sci. Technol. 2010, 44, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Pandarinathan, V.; Lepková, K.; van Bronswijk, W. Chukanovite (Fe2(OH)2CO3) identified as a corrosion product at sand-deposited carbon steel in CO2-saturated brine. Corros. Sci. 2014, 85, 26–32. [Google Scholar] [CrossRef]
- Spadini, L.; Bott, M.; Wehrli, B.; Manceau, A. Analysis of the major Fe bearing mineral phases in recent lake sediments by EXAFS spectroscopy. Aquat. Geochem. 2003, 9, 1–17. [Google Scholar] [CrossRef]
- Smart, N.R.; Blackwood, D.J.; Werme, L. Anaerobic Corrosion of Carbon Steel and Cast Iron in Artificial Groundwaters: Part 2—Gas Generation. Corrosion 2002, 58, 627–637. [Google Scholar] [CrossRef]
- Diener, A.; Neumann, T.; Kramar, U.; Schild, D. Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses. J. Contam. Hydrol. 2012, 133, 30–39. [Google Scholar] [CrossRef]
- Pavón, S.; Martínez, M.; Giménez, J.; de Pablo, J. Se(IV) Immobilization onto Natural Siderite: Implications for High-Level Nuclear Waste Repositories. Chem. Eng. Technol. 2021, 44, 1160–1167. [Google Scholar] [CrossRef]
- Pašteka, L.; Bujdoš, M.; Miglierini, M. Application of mössbauer spectrometry in the study of iron polymorph compounds. Chem. Listy 2018, 112, 86–92. [Google Scholar]
- Goberna-Ferrón, S.; Asta, M.P.; Zareeipolgardani, B.; Bureau, S.; Findling, N.; Simonelli, L.; Greneche, J.-M.; Charlet, L.; Fernández-Martínez, A. Influence of Silica Coatings on Magnetite-Catalyzed Selenium Reduction. Environ. Sci. Technol. 2021, 55, 3021–3031. [Google Scholar] [CrossRef]
- King, F. Status of the Understanding of Used Fuel Container Corrosion Processes—Summary of Current Knowledge and Gap Analysis; NWMO TR-2007-09; Nuclear Waste Management Organization: Toronto, ON, Canada, 2007. [Google Scholar]
- Ma, H.; Cheng, X.; Li, G.; Chen, S.; Quan, Z.; Zhao, S.; Niu, L. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros. Sci. 2000, 42, 1669–1683. [Google Scholar] [CrossRef]
- Enning, D.; Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curti, E.; Puranen, A.; Grolimund, D.; Jädernas, D.; Sheptyakov, D.; Mesbah, A. Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability. Environ. Sci. Process. Impacts 2015, 17, 1760–1768. [Google Scholar] [CrossRef]
- Dardenne, K.; González-Robles, E.; Rothe, J.; Müller, N.; Christill, G.; Lemmer, D.; Praetorius, R.; Kienzler, B.; Metz, V.; Roth, G.; et al. XAS and XRF investigation of an actual HAWC glass fragment obtained from the Karlsruhe vitrification plant (VEK). J. Nucl. Mater. 2015, 460, 209–215. [Google Scholar] [CrossRef]
- Singh, B.K.; Hafeez, M.A.; Kim, H.; Hong, S.; Kang, J.; Um, W. Inorganic Waste Forms for Efficient Immobilization of Radionuclides. ACS ES&T Eng. 2021, 1, 1149–1170. [Google Scholar] [CrossRef]
- Matulová, M.; Bujdoš, M. Radiometric methods and mass spectrometric methods for determination of long-lived fission products of uranium. Chem. Listy 2020, 114, 753–759. [Google Scholar]
- Usman, M.; Byrne, J.M.; Chaudhary, A.; Orsetti, S.; Hanna, K.; Ruby, C.; Kappler, A.; Haderlein, S.B. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chem. Rev. 2018, 118, 3251–3304. [Google Scholar] [CrossRef]
- Canfield, D.; Kristensen, E.; Thamdrup, B. Thermodynamics and Microbial Metabolism. Adv. Mar. Biol. 2005, 48, 65–94. [Google Scholar] [CrossRef]
- Cheng, W.; Marsac, R.; Hanna, K. Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants. Environ. Sci. Technol. 2018, 52, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Gorski, C.A.; Scherer, M.M. Influence of Magnetite Stoichiometry on FeII Uptake and Nitrobenzene Reduction. Environ. Sci. Technol. 2009, 43, 3675–3680. [Google Scholar] [CrossRef]
- White, A.F.; Peterson, M.L.; Hochella, M.F. Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim. Cosmochim. Acta 1994, 58, 1859–1875. [Google Scholar] [CrossRef]
- Thamdrup, B. Bacterial Manganese and Iron Reduction in Aquatic Sediments. In Advances in Microbial Ecology; Schink, B., Ed.; Springer: Boston, MA, USA, 2000; pp. 41–84. [Google Scholar]
- Sander, M.; Hofstetter, T.B.; Gorski, C.A. Electrochemical Analyses of Redox-Active Iron Minerals: A Review of Nonmediated and Mediated Approaches. Environ. Sci. Technol. 2015, 49, 5862–5878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorski, C.A.; Nurmi, J.T.; Tratnyek, P.G.; Hofstetter, T.B.; Scherer, M.M. Redox behavior of magnetite: Implications for contaminant reduction. Environ. Sci. Technol. 2010, 44, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.A.; Vago, E.R.; Calvo, E.J. Surface electrochemical transformations on spinel iron oxide electrodes in aqueous solutions. J. Chem. Soc. Faraday Trans. 1996, 92, 3371–3379. [Google Scholar] [CrossRef]
- Saxena, R.; Lochab, A.; Saxena, M. Magnetite Carbon Nanomaterials for Environmental Remediation. In Environmental Remediation through Carbon Based Nano Composites. Green Energy and Technology; Jawaid, M., Ahmad, A., Ismail, N., Rafatullah, M., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Latta, D.E.; Gorski, C.A.; Boyanov, M.I.; O’Loughlin, E.J.; Kemner, K.M.; Scherer, M.M. Influence of Magnetite Stoichiometry on UVI Reduction. Environ. Sci. Technol. 2012, 46, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huang, Y. Kinetics and mechanism of selenite reduction by zero valent iron under anaerobic condition activated and enhanced by dissolved Fe(II). Sci. Total Environ. 2019, 664, 698–706. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, H.; Yao, J.; He, Q.; Ma, J.; Yang, J.; Liu, C.; Chen, Y.; Huangfu, X.; Liu, H. A critical review on sulfur reduction of aqueous selenite: Mechanisms and applications. J. Hazard. Mater. 2022, 422, 126852. [Google Scholar] [CrossRef] [PubMed]
- Séby, F.; Potin-Gautier, M.; Giffaut, E.; Borge, G.; Donard, O.F.X. A critical review of thermodynamic data for selenium species at 25 °C. Chem. Geol. 2001, 171, 173–194. [Google Scholar] [CrossRef]
- Herbel, M.J.; Blum, J.S.; Oremland, R.S.; Borglin, S.E. Reduction of Elemental Selenium to Selenide: Experiments with Anoxic Sediments and Bacteria that Respire Se-Oxyanions. Geomicrobiol. J. 2003, 20, 587–602. [Google Scholar] [CrossRef]
- Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl. Environ. Microbiol. 2004, 70, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Herbel, M.J.; Blum, J.; Borglin, S.; Oremland, R. Microbial Reduction of Elemental Selenium to Selenide in Anoxic Sediments—A XANES Study. AGU Fall Meeting Abstracts; Abstract Id. V51A-1234. 2002. Available online: https://escholarship.org/content/qt9rr4c1vg/qt9rr4c1vg_noSplash_0ed4887e5b11d83cf16072f48cab54fc.pdf (accessed on 15 September 2022).
- Sumoondur, A.; Shaw, S.; Ahmed, I.; Benning, L.G. Green rust as a precursor for magnetite: An in situ synchrotron based study. Mineral. Mag. 2018, 72, 201–204. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; Wiley: Hoboken, NJ, USA, 2003; pp. 491–508. [Google Scholar]
- Shi, Y.; Wang, L.; Chen, Y.; Xu, D. Research on removing selenium from raw water by using Fe/Se co-precipitation system. J. Water Supply Res. Technol.-AQUA 2009, 58, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Finck, N.; Dardenne, K. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study. J. Contam. Hydrol. 2016, 188, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.; Kasem, N.; Ciblak, A.; Vesper, D.; Padilla, I.; Alshawabkeh, A.N. Electrochemical Removal of Selenate from Aqueous Solutions. J. Chem. Eng. 2013, 215–216, 678–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouroushian, M. Electrochemistry of the Chalcogens. In Electrochemistry of Metal Chalcogenides; Bouroushian, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 57–75. [Google Scholar]
- Missana, T.; Alonso, U.; Scheinost, A.C.; Granizo, N.; García-Gutiérrez, M. Selenite retention by nanocrystalline magnetite: Role of adsorption, reduction and dissolution/co-precipitation processes. Geochim. Cosmochim. Acta 2009, 73, 6205–6217. [Google Scholar] [CrossRef]
- Charlet, L.; Scheinost, A.; Tournassat, C.; Greneche, J.-M.; Géhin, A.; Fernández-Martı, A.; Coudert, S.; Tisserand, D.; Brendle, J. Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochim. Cosmochim. Acta 2007, 71, 5731–5749. [Google Scholar] [CrossRef] [Green Version]
- Scheinost, A.C.; Charlet, L. Selenite Reduction by Mackinawite, Magnetite and Siderite: XAS Characterization of Nanosized Redox Products. Environ. Sci. Technol. 2008, 42, 1984–1989. [Google Scholar] [CrossRef]
- Zingaro, R.A. Reduction of oxoselenium anions by iron(II) hydroxide. Environ. Int. 1997, 23, 299–304. [Google Scholar] [CrossRef]
- Murphy, A.P. Removal of selenate from water by chemical reduction. Ind. Eng. Chem. Res. 1988, 27, 187–191. [Google Scholar] [CrossRef]
- Scheidegger, A.; Grolimund, D.; Cui, D.; Devoy, J.; Spahiu, K.; Wersin, P.; Bonhoure, I.; Janousch, M. Reduction of selenite on iron surfaces: A micro-spectroscopic study. J. Phys. IV 2003, 104, 417–420. [Google Scholar] [CrossRef]
- Onoguchi, A.; Granata, G.; Haraguchi, D.; Hayashi, H.; Tokoro, C. Kinetics and mechanism of selenate and selenite removal in solution by green rust-sulfate. R. Soc. Open Sci. 2019, 6, 182147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myneni, S.C.B.; Tokunaga, T.K.; Brown, G. Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science 1997, 278, 1106–1109. [Google Scholar] [CrossRef] [Green Version]
- Yoon, I.-H.; Bang, S.; Kim, K.-W.; Kim, M.G.; Park, S.Y.; Choi, W.-K. Selenate removal by zero-valent iron in oxic condition: The role of Fe (II) and selenate removal mechanism. Environ. Sci. Pollut. Res. 2016, 23, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Truong, H.-Y.T.; Belzile, N. Abiotic formation of elemental selenium and role of iron oxide surfaces. Chemosphere 2009, 74, 1079–1084. [Google Scholar] [CrossRef]
- Olin, A.; Noläng, B.; Osadchii, E.G.; Öhman, L.-O.; Rosén, E. Chemical Thermodynamics of Selenium; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Schellenger, A.E.; Larese-Casanova, P. Oxygen isotope indicators of selenate reaction with Fe(II) and Fe(III) hydroxides. Environ. Sci. Technol. 2013, 47, 6254–6262. [Google Scholar] [CrossRef]
- Johnson, T.M.; Bullen, T.D. Selenium isotope fractionation during reduction by Fe(II)-Fe(III) hydroxide-sulfate (green rust). Geochim. Cosmochim. Acta 2003, 67, 413–419. [Google Scholar] [CrossRef]
- Refait, P.; Simon, L.; Génin, J.-M. Reduction of SeO42− Anions and Anoxic Formation of Iron(II)−Iron(III) Hydroxy-Selenate Green Rust. Environ. Sci. Technol. 2000, 34, 819–825. [Google Scholar] [CrossRef]
- Skovbjerg, L.; Stipp, S.L.S. Garnet growth in the Zermatt-Saas Fee eclogites Investigation of the interaction between green rust sodium sulfate and aqueous selenium. Geochim. Cosmochim. Acta Suppl. 2007, 71, 3592. [Google Scholar]
- Standish, T.; Chen, J.; Jacklin, R.; Jakupi, P.; Ramamurthy, S.; Zagidulin, D.; Keech, P.; Shoesmith, D. Corrosion of copper-coated shell high level nuclear waste containers under permanent disposal conditions. Electrochim. Acta 2016, 211, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Simard, S.; Odziemkowski, M.; Irish, D.E.; Brossard, L.; Ménard, H. In situ micro-Raman spectroscopy to investigate pitting corrosion product of 1024 mild steel in phosphate and bicarbonate solutions containing chloride and sulfate ions. J. Appl. Electrochem. 2001, 31, 913–920. [Google Scholar] [CrossRef]
- Simard, S.; Drogowska, M.; Me´Nard, H.; Brossard, L. Electrochemical behaviour of 1024 mild steel in slightly alkaline bicarbonate solutions. J. Appl. Electrochem. 1997, 27, 317–324. [Google Scholar] [CrossRef]
- Antunes, R.A.; Costa, I.; de Faria, D.L.A. Characterization of corrosion products formed on steels in the first months of atmospheric exposure. Mater. Res. 2003, 6, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Costa, T.G.; Cunha Ostroski, V.W.; de Souza, F.S. “Self arranged Cactis” as new goethite morphology from the natural corrosion process of SAE 1020 carbon steel. Heliyon 2019, 5, e02771. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Kanie, K.; Shinoda, K.; Muramatsu, A.; Suzuki, S.; Sasaki, H. pH-dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III) hydroxysulfate compound, green rust. Chemosphere 2009, 76, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Börsig, N.; Scheinost, A.; Shaw, S.; Schild, D.; Neumann, T. Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(II) hydroxide and green rust. Dalton Trans. 2018, 47, 11002–11015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Yuan, K.; Ellis, B.R.; Becker, U. Redox reactions of selenium as catalyzed by magnetite: Lessons learned from using electrochemistry and spectroscopic methods. Geochim. Cosmochim. Acta 2017, 199, 304–323. [Google Scholar] [CrossRef]
- Iida, Y.; Yamaguchi, T.; Tanaka, T. Sorption behavior of hydroselenide (HSe−) onto iron-containing minerals. J. Nucl. Sci. Technol. 2014, 51, 305–322. [Google Scholar] [CrossRef]
- Jung, B.; Safan, A.; Batchelor, B.; Abdel-Wahab, A. Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide. Chemosphere 2016, 163, 351–358. [Google Scholar] [CrossRef]
- Millero, F.J. The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Mar. Chem. 1986, 18, 121–147. [Google Scholar] [CrossRef]
- Kharma, A.; Grman, M.; Misak, A.; Domínguez-Álvarez, E.; Nasim, M.J.; Ondrias, K.; Chovanec, M.; Jacob, C. Inorganic polysulfides and related reactive sulfur selenium species from the perspective of chemistry. Molecules 2019, 24, 1359. [Google Scholar] [CrossRef] [Green Version]
- Truong, H.-Y.T.; Chen, Y.-W.; Belzile, N. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Sci. Total Environ. 2013, 449, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, N.; Demopoulos, G.P. The elimination of selenium(IV) from aqueous solution by precipitation with sodium sul-fide. J. Hazard. Mater. 2011, 185, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Pettine, M.; Gennari, F.; Campanella, L.; Casentini, B.; Marani, D. The reduction of selenium(IV) by hydrogen sulfide in aqueous solutions. Geochim. Cosmochim. Acta 2012, 83, 37–47. [Google Scholar] [CrossRef]
- Zehr, J.P.; Oremland, R.S. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol. 1987, 53, 1365–1369. [Google Scholar] [CrossRef] [Green Version]
- Oremland, R.S.; Hollibaugh, J.T.; Maest, A.S.; Presser, T.S.; Miller, L.G.; Culbertson, C.W. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 1989, 55, 2333–2343. [Google Scholar] [CrossRef] [Green Version]
- Hockin, S.L.; Gadd, G.M. Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl. Environ. Microbiol. 2003, 69, 7063–7072. [Google Scholar] [CrossRef]
- Xu, H.; Barton, L.L. Se-Bearing Colloidal Particles Produced by Sulfate-Reducing Bacteria and Sulfide-Oxidizing Bacteria: TEM Study. Adv. Microbiol. 2013, 3, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Belzile, N.; Chen, Y.-W.; Cai, M.-F.; Li, Y. A review on pyrrhotite oxidation. J. Geochem. Explor. 2004, 84, 65–76. [Google Scholar] [CrossRef]
- Ma, B.; Kang, M.; Zheng, Z.; Chen, F.; Xie, J.; Charlet, L.; Liu, C. The reductive immobilization of aqueous Se(IV) by natural pyrrhotite. J. Hazard. Mater. 2014, 276, 422–432. [Google Scholar] [CrossRef]
- Han, D.S.; Batchelor, B.; Abdel-Wahab, A. XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS). Environ. Prog. Sustain. Energy 2013, 32, 84–93. [Google Scholar] [CrossRef]
- Naveau, A.; Monteil-Rivera, F.; Guillon, E.; Dumonceau, J. Interactions of Aqueous Selenium (−II) and (IV) with Metallic Sulfide Surfaces. Environ. Sci. Technol. 2007, 41, 5376–5382. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, L.; Li, S.; Wang, J.; Zhang, J.; Zeng, H. Probing the in situ Redox Behavior of Selenium on a Pyrite Surface by Scanning Electrochemical Microscopy. J. Phys. Chem. C 2021, 125, 3018–3026. [Google Scholar] [CrossRef]
- Charlet, L.; Kang, M.; Bardelli, F.; Kirsch, R.; Géhin, A.; Grenèche, J.-M.; Chen, F. Nanocomposite pyrite–greigite reactivity toward Se(IV)/Se(VI). Environ. Sci. Technol. 2012, 46, 4869–4876. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Chen, F.; Wu, S.; Yang, Y.; Bruggeman, C.; Charlet, L. Effect of pH on aqueous Se(IV) reduction by pyrite. Environ. Sci. Technol. 2011, 45, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Finck, N.; Dardenne, K.; Bosbach, D.; Geckeis, H. Selenide Retention by Mackinawite. Environ. Sci. Technol. 2012, 46, 10004–10011. [Google Scholar] [CrossRef]
- Liu, X.; Fattahi, M.; Montavon, G.; Grambow, B. Selenide retention onto pyrite under reducing conditions. Radiochim. Acta 2008, 96, 473–479. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Li, H.; Zhao, J.; Yang, J.; Qu, W.; Shih, K. Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas. Chem. Eng. J. 2020, 398, 125611. [Google Scholar] [CrossRef]
- Diener, A.; Neumann, T.A. Synthesis and incorporation of selenide in pyrite and mackinawite. Radiochim. Acta 2011, 99, 791–798. [Google Scholar] [CrossRef]
- Wolthers, M.; Charlet, L.; van Der Linde, P.R.; Rickard, D.; van Der Weijden, C.H. Surface chemistry of disordered macki-nawite (FeS). Geochim. Cosmochim. Acta 2005, 69, 3469–3481. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, J.; Xu, L.; Guo, X.; Fang, P.; Du, K.; Shen, C.; Sheng, G. Decorating nanoscale FeS onto metal-organic framework for the decontamination performance and mechanism of Cr(VI) and Se(IV). Colloids Surfaces A Physicochem. Eng. Asp. 2021, 625, 126887. [Google Scholar] [CrossRef]
- Chiriţă, P.; Schlegel, M.L. Oxidative dissolution of iron monosulfide (FeS) in acidic conditions: The effect of solid pretreatment. Int. J. Miner. Process. 2015, 135, 57–64. [Google Scholar] [CrossRef]
- Smyth, J.R.; Ahrens, T.J. The crystal structure of calcite III. Geophys. Res. Lett. 1997, 24, 1595–1598. [Google Scholar] [CrossRef] [Green Version]
- Heberling, F.; Trainor, T.P.; Lützenkirchen, J.; Eng, P.; Denecke, M.A.; Bosbach, D. Structure and reactivity of the calcite-water interface. J. Colloid Interface Sci. 2011, 354, 843–857. [Google Scholar] [CrossRef]
- Fenter, P.; Sturchio, N. Calcite (1 0 4)–water interface structure, revisited. Geochim. Cosmochim. Acta 2012, 97, 58–69. [Google Scholar] [CrossRef]
- Ma, B.; Charlet, L.; Fernandez-Martinez, A.; Kang, M.; Madé, B. A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems. Appl. Geochem. 2019, 100, 414–431. [Google Scholar] [CrossRef]
- Heberling, F.; Bosbach, D.; Eckhardt, J.-D.; Fischer, U.; Glowacky, J.; Haist, M.; Kramar, U.; Loos, S.; Müller, H.S.; Neumann, T. Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering. Appl. Geochem. 2014, 45, 158–190. [Google Scholar] [CrossRef]
- Wijnja, H.; Schulthess, C.P. Effect of Carbonate on the Adsorption of Selenate and Sulfate on Goethite. Soil Sci. Soc. Am. J. 2002, 66, 1190–1197. [Google Scholar] [CrossRef]
- Sjöberg, E.L.; Rickard, D.T. Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence. Chem. Geol. 1984, 42, 119–136. [Google Scholar] [CrossRef]
- Appelo, T.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Press: London, UK, 2005. [Google Scholar]
- Ariyanti, D.; Handayani, N.A.; Hadiyanto, H. An overview of biocement production from microalgae. Int. J. Eng. Res. Generic Sci. 2011, 2, 30–33. [Google Scholar] [CrossRef]
- Mackenzie, F.T.; Andersson, A.J. The Marine Carbon System and Ocean Acidification during Phanerozoic Time. Geochemical Perspect. 2013, 2, 1–227. [Google Scholar] [CrossRef] [Green Version]
- Wajon, J.E.; Ho, G.-E.; Murphy, P.J. Rate of precipitation of ferrous iron and formation of mixed iron-calcium carbonates by naturally occurring carbonate materials. Water Res. 1985, 19, 831–837. [Google Scholar] [CrossRef]
- Henderson, T. Geochemistry of Ground-Water in Two Sandstone Aquifer Systems in the Northern Great Plains in Parts of Montana and Wyoming, North Dakota, and South Dakota; U.S. Geological Survey: Reston, VA, USA, 1985. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Sposito, G. ; The Chemistry of Soils; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Balistrieri, L.S.; Chao, T.T. Selenium Adsorption by Goethite. Soil Sci. Soc. Am. J. 1987, 51, 1145–1151. [Google Scholar] [CrossRef]
- Jiang, C.Z.; Tosca, N.J. Fe(II)-carbonate precipitation kinetics and the chemistry of anoxic ferruginous seawater. EPSL 2019, 506, 231–242. [Google Scholar] [CrossRef]
- Matthiesen, H.; Hilbert, L.R.; Gregory, D.J. Siderite as a Corrosion Product on Archaeological Iron from a Waterlogged Environment. Stud. Conserv. 2003, 48, 183–194. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bardelli, F.; Charlet, L. Reactivities of Fe(II) on Calcite: Selenium Reduction. Environ. Sci. Technol. 2010, 44, 1288–1294. [Google Scholar] [CrossRef]
- Badaut, V.; Schlegel, M.L.; Descostes, M.; Moutiers, G. In situ Time-Resolved X-ray Near-Edge Absorption Spectroscopy of Selenite Reduction by Siderite. Environ. Sci. Technol. 2012, 46, 10820–10826. [Google Scholar] [CrossRef]
- Essington, M.E. Estimation of the Standard Free Energy of Formation of Metal Arsenates, Selenates, and Selenites. Soil Sci. Soc. Am. J. 1988, 52, 1574–1579. [Google Scholar] [CrossRef]
- Hayes, K.F.; Roe, A.L.; Brown, G.E.; Hodgson, K.O.; Leckie, J.O.; Parks, G.A. In situ X-ray Absorption Study of Surface Complexes: Selenium Oxyanions on α-FeOOH. Science 1987, 238, 783–786. [Google Scholar] [CrossRef]
- Duc, M.; Lefevre, G.; Fedoroff, M.; Jeanjean, J.; Rouchaud, J.C.; Monteil-Rivera, F.; Dumonceau, J.; Milonjic, S. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J. Environ. Radioact. 2003, 70, 61–72. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Qin, H.-B.; Tanaka, M.; Takahashi, Y. The uptake of selenite in calcite revealed by X-ray absorption spec-troscopy and quantum chemical calculations. Sci. Total Environ. 2022, 802, 149221. [Google Scholar] [CrossRef]
- Pekov, I.V.; Perchiazzi, N.; Merlino, S.; Kalachev, V.N.; Merlini, M.; Zadov, A.E. Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino. Eur. J. Mineral. 2007, 19, 891–898. [Google Scholar] [CrossRef]
- Kirsch, R.; Fellhauer, D.; Altmaier, M.; Neck, V.; Rossberg, A.; Fanghänel, T.; Charlet, L.; Scheinost, A.C. Oxidation State and Local Structure of Plutonium Reacted with Magnetite, Mackinawite, and Chukanovite. Environ. Sci. Technol. 2011, 45, 7267–7274. [Google Scholar] [CrossRef] [PubMed]
- Gui, M.; Papp, J.K.; Colburn, A.S.; Meeks, N.D.; Weaver, B.; Wilf, I.; Bhattacharyya, D. Engineered iron/iron oxide function-alized membranes for selenium and other toxic metal removal from power plant scrubber water. J. Membr. Sci. 2015, 488, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okonji, S.O.; Dominic, J.A.; Pernitsky, D.; Achari, G. Removal and recovery of selenium species from wastewater: Adsorption kinetics and co-precipitation mechanisms. J. Water Process. Eng. 2020, 38, 101666. [Google Scholar] [CrossRef]
- Börsig, N.; Scheinost, A.C.; Schild, D.; Neumann, T. Mechanisms of selenium removal by partially oxidized magnetite nanoparticles for wastewater remediation. Appl. Geochem. 2021, 132, 105062. [Google Scholar] [CrossRef]
- Zhang, N.; Lin, L.-S.; Gang, D. Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res. 2008, 42, 3809–3816. [Google Scholar] [CrossRef]
- Suzuki, T.; Sue, K.; Morotomi, H.; Niinae, M.; Yokoshima, M.; Nakata, H. Immobilization of selenium(VI) in artificially contaminated kaolinite using ferrous ion salt and magnesium oxide. J. Environ. Chem. Eng. 2019, 7, 102802. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, B.; Chuaicham, C.; Sasaki, K. Mechanism analysis of selenium(VI) immobilization using alkaline-earth metal oxides and ferrous salt. Chemosphere 2020, 248, 126123. [Google Scholar] [CrossRef]
- Malakootian, M.; Shahamat, Y.D.; Kannan, K.; Mahdizadeh, H. Degradation of p-nitroaniline from aqueous solutions using ozonation/Mg-Al layered double hydroxides integrated with the sequencing batch moving bed biofilm reactor. J. Taiwan Inst. Chem. Eng. 2020, 113, 241–252. [Google Scholar] [CrossRef]
- Malakootian, M.; Kannan, K.; Gharaghani, M.A.; Dehdarirad, A.; Nasiri, A.; Shahamat, Y.D.; Mahdizadeh, H. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. J. Environ. Chem. Eng. 2019, 7, 103457. [Google Scholar] [CrossRef]
- Prasad, K.; Rao, K.; Gladis, M.; Naidu, G.R.K.; Prasada Rao, T. Determination of selenium(IV) after co-precipitation with Fe-Ti layered double hydroxides. Chem. Anal. 2006, 51, 613–622. [Google Scholar]
Country | Examples of Canister Material for Spent Nuclear Fuel | Host Rock |
---|---|---|
Finland | Copper | Crystalline rock |
Sweden | Copper | Crystalline rock |
France | Steel | Clay |
Switzerland | Steel | Clay |
Canada | Copper clad steel | Crystalline rock, sediments |
Germany | Pollux | Not decided yet |
Belgium | Steel | Clay |
South Korea | Copper | Crystalline rock, sediments |
Czech Republic | Steel | Crystalline rock |
Compound | (kJ·mol–1) | (J·K–1·mol–1) | (J·K–1·mol–1) |
---|---|---|---|
δ-Fe0.875Se | |||
FeSe2 (cr) | − 108.7 ± 15.0 | 86.8 ± 1.0 | 72.9 ± 1.0 (c) |
β-Fe1.04Se | − 69.6 ± 4.0 | 72.1 ± 0.8 | 57.1 ± 0.7 (c) |
γ-Fe3Se4 | − 235.0 ± 30.0 | 279.8 ± 3.0 | 220.1 ± 2.0 |
α-Fe7Se8 | − 463.5 ± 20.0 | 613.8 ± 5.0 | 442.1 ± 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matulová, M.; Duborská, E.; Matúš, P.; Urík, M. Solid–Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System. Int. J. Mol. Sci. 2023, 24, 315. https://doi.org/10.3390/ijms24010315
Matulová M, Duborská E, Matúš P, Urík M. Solid–Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System. International Journal of Molecular Sciences. 2023; 24(1):315. https://doi.org/10.3390/ijms24010315
Chicago/Turabian StyleMatulová, Michaela, Eva Duborská, Peter Matúš, and Martin Urík. 2023. "Solid–Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System" International Journal of Molecular Sciences 24, no. 1: 315. https://doi.org/10.3390/ijms24010315
APA StyleMatulová, M., Duborská, E., Matúš, P., & Urík, M. (2023). Solid–Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System. International Journal of Molecular Sciences, 24(1), 315. https://doi.org/10.3390/ijms24010315