Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations
Abstract
:1. Introduction
2. Results
2.1. An Intermediate State between Inward and Outward Conformations of MdfA
2.2. Flexibilities and pKas of MdfA
2.3. MdfAinward and MdfAoutward Had Altered Interactions with Water and Membrane
2.4. Reduced Ionic Interactions at the Cytoplasmic Side Were Crucial for MdfA’s Activation
2.5. MdfAinward Had Secondary Structure Changes in the Central Helix
3. Discussion
3.1. Two States of MdfA
3.2. Transition from Outward to Inward
3.3. Transition from Inward to Outward
4. Materials and Methods
4.1. Structures and Software
4.2. Molecular Dynamics
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porco, T.C.; Gao, D.; Scott, J.C.; Shim, E.; Enanoria, W.T.; Galvani, A.P.; Lietman, T.M. When Does Overuse of Antibiotics Become a Tragedy of the Commons? PLoS ONE 2012, 7, e46505. [Google Scholar] [CrossRef]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The Role of the Natural Environment in the Emergence of Antibiotic Resistance in Gram-negative Bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Nikaido, H. Multiple Antibiotic Resistance and Efflux. Curr. Opin. Microbiol. 1998, 1, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.; Richmond, G.E.; Piddock, L.J. Multidrug Efflux Pumps in Gram-Negative Bacteria and Their Role in Antibiotic Resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Delmar, J.A.; Yu, E.W. The AbgT Family: A Novel Class of Antimetabolite Transporters: AbgT Family of Antimetabolite Transporters. Prot. Sci. 2016, 25, 322–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, K.A.; Liu, Q.; Elbourne, L.D.H.; Ahmad, I.; Sharples, D.; Naidu, V.; Chan, C.L.; Li, L.; Harborne, S.P.D.; Pokhrel, A.; et al. Pacing across the Membrane: The Novel PACE Family of Efflux Pumps Is Widespread in Gram-negative Pathogens. Res. Microbiol. 2018, 169, 450–454. [Google Scholar] [CrossRef]
- Marger, M.D.; Saier, M.H. A Major Superfamily of Transmembrane Facilitators That Catalyse Uniport, Symport and Antiport. Trends Biochem. Sci. 1993, 18, 13–20. [Google Scholar] [CrossRef]
- Sigal, N.; Lewinson, O.; Wolf, S.G.; Bibi, E. E. coli Multidrug Transporter MdfA is a Monomer. Biochemistry 2007, 46, 5200–5208. [Google Scholar] [CrossRef]
- Li, Y.; Wen, H.; Ge, X. Hormesis Effect of Berberine against Klebsiella pneumoniae is Mediated by Up-Regulation of the Efflux Pump KmrA. J. Nat. Prod. 2021, 84, 2885–2892. [Google Scholar] [CrossRef]
- Villagra, N.A.; Hidalgo, A.A.; Santiviago, C.A.; Saavedra, C.P.; Mora, G.C. SmvA, and Not AcrB, Is the Major Efflux Pump for Acriflavine and Related Compounds in Salmonella Enterica Serovar Typhimurium. J. Antimicrob. Chemother. 2008, 62, 1273–1276. [Google Scholar] [CrossRef]
- Nag, A.; Mehra, S. A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl. Environ. Microbiol. 2021, 87, e02238-20. [Google Scholar] [CrossRef] [PubMed]
- Naaz, F.; Khan, A.; Kumari, A.; Ali, I.; Ahmad, F.; Ahmad Lone, B.; Ahmad, N.; Ali Khan, I.; Rajput, V.S.; Grover, A.; et al. 1,3,4-Oxadiazole Conjugates of Capsaicin as Potent NorA Efflux Pump Inhibitors of Staphylococcus aureus. Bioorg. Chem. 2021, 113, 105031. [Google Scholar] [CrossRef]
- Yamane, K.; Wachino, J.; Suzuki, S.; Kimura, K.; Shibata, N.; Kato, H.; Shibayama, K.; Konda, T.; Arakawa, Y. New Plasmid-Mediated Fluoroquinolone Efflux Pump, QepA, Found in an Escherichia coli Clinical Isolate. Antimicrob. Agents Chemother. 2007, 51, 3354–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranaweera, I.; Shrestha, U.; Ranjana, K.C.; Kakarla, P.; Willmon, T.M.; Hernandez, A.J.; Mukherjee, M.M.; Barr, S.R.; Varela, M.F. Structural Comparison of Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily. Trends Cell Mol. Biol. 2015, 10, 131–140. [Google Scholar] [PubMed]
- Wu, H.-H.; Symersky, J.; Lu, M. Structure of an Engineered Multidrug Transporter MdfA Reveals the Molecular Basis for Substrate Recognition. Commun. Biol. 2019, 2, 210. [Google Scholar] [CrossRef] [Green Version]
- Ural-Blimke, Y.; Flayhan, A.; Strauss, J.; Rantos, V.; Bartels, K.; Nielsen, R.; Pardon, E.; Steyaert, J.; Kosinski, J.; Quistgaard, E.M.; et al. Structure of Prototypic Peptide Transporter DtpA from E. coli in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. J. Am. Chem. Soc. 2019, 141, 2404–2412. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wen, H.; Ge, X. Opposite Motion of the Central Helices of Efflux Pump KmrA is Important for Its Export Efficiency. Microb. Pathog. 2022, 167, 105570. [Google Scholar] [CrossRef]
- Jiang, D.; Zhao, Y.; Wang, X.; Fan, J.; Heng, J.; Liu, X.; Feng, W.; Kang, X.; Huang, B.; Liu, J.; et al. Structure of the YajR Transporter Suggests a Transport Mechanism Based on the Conserved Motif A. Proc. Natl. Acad. Sci. USA 2013, 110, 14664–14669. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ge, X. Discovering Interrelated Natural Mutations of Efflux Pump KmrA from Klebsiella pneumoniae That Confer Increased Multidrug Resistance. Prot. Sci. 2022, 31, e4323. [Google Scholar] [CrossRef]
- Palazzotti, D.; Bissaro, M.; Bolcato, G.; Astolfi, A.; Felicetti, T.; Sabatini, S.; Sturlese, M.; Cecchetti, V.; Barreca, M.L.; Moro, S. Deciphering the Molecular Recognition Mechanism of Multidrug Resistance Staphylococcus aureus NorA Efflux Pump Using a Supervised Molecular Dynamics Approach. Int. J. Mol. Sci. 2019, 20, 4041. [Google Scholar] [CrossRef]
- Bhaskar, B.V.; Babu, T.M.C.; Reddy, N.V.; Rajendra, W. Homology Modeling, Molecular Dynamics, and Virtual Screening of NorA Efflux Pump Inhibitors of Staphylococcus aureus. Drug Des. Dev. Ther. 2016, 10, 3237–3252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Z.; Chen, W.; Zgurskaya, H.I.; Shen, J. Constant pH Molecular Dynamics Reveals How Proton Release Drives the Conformational Transition of a Transmembrane Efflux Pump. J. Chem. Theory Comput. 2017, 13, 6405–6414. [Google Scholar] [CrossRef] [PubMed]
- Jewel, Y.; Liu, J.; Dutta, P. Coarse-Grained Simulations of Conformational Changes in the Multidrug Efflux Transporter AcrB. Mol. BioSyst. 2017, 13, 2006–2014. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, V.; Karplus, M. Analysis and Elimination of a Bias in Targeted Molecular Dynamics Simulations of Conformational Transitions: Application to Calmodulin. J. Phys. Chem. B 2012, 116, 8584–8603. [Google Scholar] [CrossRef] [Green Version]
- Al-Qattan, M.N.; Deb, P.K.; Tekade, R.K. Molecular Dynamics Simulation Strategies for Designing Carbon-Nanotube-Based Targeted Drug Delivery. Drug Discov. Today 2018, 23, 235–250. [Google Scholar] [CrossRef]
- Raczyński, P.; Górny, K.; Bełdowski, P.; Yuvan, S.; Marciniak, B.; Dendzik, Z. Steered Molecular Dynamics of Lipid Membrane Indentation by Carbon and Silicon-Carbide Nanotubes-The Impact of Indenting Angle Uncertainty. Sensors 2021, 21, 7011. [Google Scholar] [CrossRef]
- Heng, J.; Zhao, Y.; Liu, M.; Liu, Y.; Fan, J.; Wang, X.; Zhao, Y.; Zhang, X.C. Substrate-Bound Structure of the E. coli Multidrug Resistance Transporter MdfA. Cell Res. 2015, 25, 1060–1073. [Google Scholar] [CrossRef]
- Nagarathinam, K.; Nakada-Nakura, Y.; Parthier, C.; Terada, T.; Juge, N.; Jaenecke, F.; Liu, K.; Hotta, Y.; Miyaji, T.; Omote, H.; et al. Outward Open Conformation of a Major Facilitator Superfamily Multidrug/H+ Antiporter Provides Insights into Switching Mechanism. Nat. Commun. 2018, 9, 4005. [Google Scholar] [CrossRef] [Green Version]
- Zomot, E.; Yardeni, E.H.; Vargiu, A.V.; Tam, H.-K.; Malloci, G.; Ramaswamy, V.K.; Perach, M.; Ruggerone, P.; Pos, K.M.; Bibi, E. A New Critical Conformational Determinant of Multidrug Efflux by an MFS Transporter. J. Mol. Biol. 2018, 430, 1368–1385. [Google Scholar] [CrossRef]
- Zhou, F.; Yao, D.; Rao, B.; Zhang, L.; Nie, W.; Zou, Y.; Zhao, J.; Cao, Y. Crystal Structure of a Bacterial Homolog to Human Lysosomal Transporter, Spinster. Sci. Bull. 2019, 64, 1310–1317. [Google Scholar] [CrossRef]
- Dastvan, R.; Rasouli, A.; Dehghani-Ghahnaviyeh, S.; Gies, S.; Tajkhorshid, E. Proton-Driven Alternating Access in a Spinster Lipid Transporter. Nat. Commun. 2022, 13, 5161. [Google Scholar] [CrossRef]
- Li, Y.; Ge, X. Enhanced Internal Ionic Interaction of MFS Efflux Pump MdfA Contributes to Its Elevated Antibiotic Export. Phys. Chem. Chem. Phys. 2023, 25, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-negative Bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamshidi, S.; Sutton, J.M.; Rahman, K.M. An Overview of Bacterial Efflux Pumps and Computational Approaches to Study Efflux Pump Inhibitors. Future Med. Chem. 2016, 8, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Yardeni, E.H.; Mishra, S.; Stein, R.A.; Bibi, E.; Mchaourab, H.S. The Multidrug Transporter MdfA Deviates from the Canonical Model of Alternating Access of MFS Transporters. J. Mol. Biol. 2020, 432, 5665–5680. [Google Scholar] [CrossRef] [PubMed]
- Alber, T.; Dao-pin, S.; Wilson, K.; Wozniak, J.A.; Cook, S.P.; Matthews, B.W. Contributions of Hydrogen Bonds of Thr 157 to the Thermodynamic Stability of Phage T4 Lysozyme. Nature 1987, 330, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Majumder, P.; Khare, S.; Athreya, A.; Hussain, N.; Gulati, A.; Penmatsa, A. Dissection of Protonation Sites for Antibacterial Recognition and Transport in QacA, a Multi-Drug Efflux Transporter. J. Mol. Biol. 2019, 431, 2163–2179. [Google Scholar] [CrossRef] [PubMed]
- Kapp, E.; Malan, S.F.; Joubert, J.; Sampson, S.L. Small Molecule Efflux Pump Inhibitors in Mycobacterium tuberculosis: A Rational Drug Design Perspective. Mini Rev. Med. Chem. 2017, 18, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Zilberstein, D.; Schuldiner, S.; Padan, E. Proton Electrochemical Gradient in Escherichia coli Cells and Its Relation to Active Transport of Lactose. Biochemistry 1979, 18, 669–673. [Google Scholar] [CrossRef]
- Hinchliffe, P.; Greene, N.P.; Paterson, N.G.; Crow, A.; Hughes, C.; Koronakis, V. Structure of the Periplasmic Adaptor Protein from a Major Facilitator Superfamily (MFS) Multidrug Efflux Pump. FEBS Lett. 2014, 588, 3147–3153. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, T.; Xu, P.; Xu, X.; Ji, S.; Gao, W.; Shi, L. Role of Efflux Pumps in the in Vitro Development of Ciprofloxacin Resistance in Listeria monocytogenes. Front. Microbiol. 2018, 9, 2350. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; He, G.; Kakarla, P.; Shrestha, U.; Kc, R.; Ranaweera, I.; Willmon, T.M.; Barr, S.R.; Hernandez, A.J.; Varela, M.F. Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation. Infect. Disord. Drug Targets 2016, 16, 28–43. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ge, X. Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations. Int. J. Mol. Sci. 2023, 24, 356. https://doi.org/10.3390/ijms24010356
Li Y, Ge X. Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations. International Journal of Molecular Sciences. 2023; 24(1):356. https://doi.org/10.3390/ijms24010356
Chicago/Turabian StyleLi, Ying, and Xizhen Ge. 2023. "Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations" International Journal of Molecular Sciences 24, no. 1: 356. https://doi.org/10.3390/ijms24010356
APA StyleLi, Y., & Ge, X. (2023). Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations. International Journal of Molecular Sciences, 24(1), 356. https://doi.org/10.3390/ijms24010356