Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption
Abstract
:1. Introduction
2. Results
2.1. Structure Characterization and Analysis
2.2. Electromagnetic Parameters and Microwave Absorption Properties
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of SiO2 Microspheres
4.3. Synthesis SiO2@NiFe LDH Composites
4.4. Material Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Z.; Liu, J.; Peng, W.; Zhu, Y.; Zhao, Y.; Jiang, K.; Peng, M.; Tan, Y. Highly Stable 3D Ti3C2Tx MXene-Based Foam Architectures toward High-Performance Terahertz Radiation Shielding. ACS Nano 2020, 14, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xue, H.; Xu, N.; Zhang, X.; Wang, Y.; He, R.; Huang, H.; Qiao, J. Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn-air batteries. Mater. Rep. Energy 2022, 2, 100090. [Google Scholar] [CrossRef]
- Wu, G.; Zhu, W.; He, Q.; Feng, Z.; Huang, T.; Zhang, L.; Schmidt, S.; Godfrey, A.; Huang, X. 2D and 3D orientation mapping in nanostructured metals: A review. Nano Mater. Sci. 2020, 2, 50–57. [Google Scholar] [CrossRef]
- Jiao, Z.; Huyan, W.; Yang, F.; Yao, J.; Tan, R.; Chen, P.; Tao, X.; Yao, Z.; Zhou, J.; Liu, P. Achieving Ultra-Wideband and Elevated Temperature Electromagnetic Wave Absorption via Constructing Lightweight Porous Rigid Structure. Nano-Micro Lett. 2022, 14, 173. [Google Scholar] [CrossRef] [PubMed]
- Mohammadabadi, F.H.; Masoudpanah, S.M.; Alamolhoda, S.; Koohdar, H.R. High-performance microwave absorbers based on (CoNiCuZn)(1-x)MnxFe2O4 spinel ferrites. J. Alloys Compd. 2022, 909, 164637. [Google Scholar] [CrossRef]
- Wang, D.; Mukhtar, A.; Humayun, M.; Wu, K.; Du, Z.; Wang, S.; Zhang, Y. A Critical Review on Nanowire-Motors: Design, Mechanism and Applications. Chem. Rec. 2022, 22, e202200016. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Y.; Zong, M.; Ding, X.; Li, S.P.; Wang, M.Y. Synthesis of core-shell ZnFe2O4@SiO2 hollow microspheres/reduced graphene oxides for a high-performance EM wave absorber. Ceram. Int. 2016, 42, 18879–18886. [Google Scholar] [CrossRef]
- Kuang, P.; Ni, Z.; Yu, J.; Low, J. New progress on MXenes-based nanocomposite photocatalysts. Mater. Rep. Energy 2022, 2, 100081. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Ng, V.M.H.; Zhou, J.; Kong, L.B.; Yue, K. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A-Appl. Sci. Manuf. 2018, 115, 371–382. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, H.-W.; Jin, C.; Yang, B.; Xu, C.; Pei, K.; Zhang, H.; Yang, Z.; Che, R. Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Adv. Mater. 2022, 34, 2107538. [Google Scholar] [CrossRef]
- Badmus, M.; Liu, J.; Wang, N.; Radacsi, N.; Zhao, Y. Hierarchically electrospun nanofibers and their applications: A review. Nano Mater. Sci. 2021, 2, 213–232. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Ding, X.; Liu, P.B.; Zong, M. Ternary nanocomposites of graphene@SiO2@NiO nanoflowers: Synthesis and their microwave electromagnetic properties. Micro Nano Lett. 2013, 8, 391–394. [Google Scholar] [CrossRef]
- Qiao, M.T.; Wei, D.; He, X.W.; Lei, X.F.; Wei, J.; Zhang, Q.Y. Novel yolk-shell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application. J. Mater. Sci. 2021, 56, 1312–1327. [Google Scholar] [CrossRef]
- Huang, B.; Hu, H.L.; Lim, S.; Tang, X.Z.; Huang, X.Z.; Liu, Y.; Yue, J.L. Gradient FeNi-SiO2 films on SiC fiber for enhanced microwave absorption performance. J. Alloys Compd. 2022, 897, 163204. [Google Scholar] [CrossRef]
- Ma, M.; Li, W.; Tong, Z.; Ma, Y.; Bi, Y.; Liao, Z.; Zhou, J.; Wu, G.; Li, M.; Yue, J.; et al. NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J. Colloid Interface Sci. 2020, 578, 58–68. [Google Scholar] [CrossRef]
- Dai, X.; Yi, W.; Yin, C.; Li, K.; Feng, L.; Zhou, Q.; Yi, Z.; Zhang, X.; Wang, Y.; Yu, Y.; et al. 2D-3D magnetic NiFe layered double hydroxide decorated diatomite as multi-function material for anionic, cationic dyes, arsenate, and arsenite adsorption. Appl. Clay Sci. 2022, 229, 106664. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, M.; Wang, Y.; Chen, Z.; Yan, K. Facile synthesis of defect-rich ultrathin NiCo-LDHs, NiMn-LDHs and NiCoMn-LDHs nanosheets on Ni foam for enhanced oxygen evolution reaction performance. J. Alloys Compd. 2021, 852, 156949. [Google Scholar] [CrossRef]
- Zhou, Q.; Dai, X.; Li, K.; Zhang, C.; Zhang, X.; Du, Z.; Yi, S.; Yang, P.; Rao, J.; Zhang, Y. Facile synthesis of a 2D multilayer core-shell MnO2@LDH@MMT composite with a nanoflower shape for electromagnetic wave absorption. Crystengcomm 2022, 24, 6546–6557. [Google Scholar] [CrossRef]
- Feng, X.; Jiao, Q.; Chen, W.; Dang, Y.; Dai, Z.; Suib, S.L.; Zhang, J.; Zhao, Y.; Li, H.; Feng, C. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B: Environ. 2021, 286, 119869. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, P.G.; Li, Y.H.; Wen, D.D.; Luo, J.S.; Wang, S.H.; Wu, F.; Fang, L.; Pang, Y. A Facile Synthesis of NiFe-Layered Double Hydroxide and Mixed Metal Oxide with Excellent Microwave Absorption Properties. Molecules 2021, 26, 5046. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jian, X.; Zhang, L.; Mu, C.; Yin, L.; Xie, J.; Mahmood, N.; Dou, S.; Che, R.; Deng, L. Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 2020, 384, 123371. [Google Scholar] [CrossRef]
- Bhattacharjee, Y.; Bose, S. Core-Shell Nanomaterials for Microwave Absorption and Electromagnetic Interference Shielding: A Review. ACS Appl. Nano Mater. 2021, 4, 949–972. [Google Scholar] [CrossRef]
- Gu, W.H.; Chen, J.B.; Zhao, Y.; Wang, G.H.; Wang, F.; Zhang, T.Z.; Zhang, B.S. Extending effective microwave absorbing bandwidth of CoNi bimetallic alloy derived from binary hydroxides. Sci. Rep. 2020, 10, 19196. [Google Scholar] [CrossRef]
- Shen, X.; Yang, S.H.; Yin, P.G.; Li, C.Q.; Ye, J.R.; Wang, G.S. Enhancement in microwave absorption properties by adjusting the sintering conditions and carbon shell thickness of Ni@C submicrospheres. Crystengcomm 2022, 24, 765–774. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Du, Y.; Bai, J.; Fan, H.; Zhang, H.; Peng, Y.; Li, F. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 2015, 3, 5535–5546. [Google Scholar] [CrossRef]
- Gupta, T.K.; Singh, B.P.; Singh, V.N.; Teotia, S.; Singh, A.P.; Elizabeth, I.; Dhakate, S.R.; Dhawan, S.K.; Mathur, R.B. MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2014, 2, 4256–4263. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Q.; Hou, Y.H.; Li, L.C. Synthesis of the SiO2@C composites with high-performance electromagnetic wave absorption. Powder Technol. 2019, 343, 129–136. [Google Scholar] [CrossRef]
- Jiang, D.B.; Jing, C.; Yuan, Y.; Feng, L.; Liu, X.; Dong, F.; Dong, B.; Zhang, Y.X. 2D-2D growth of NiFe LDH nanoflakes on montmorillonite for cationic and anionic dye adsorption performance. J. Colloid Interface Sci. 2019, 540, 398–409. [Google Scholar] [CrossRef]
- Li, K.; Hu, Z.; Zhao, R.; Zhou, J.; Jing, C.; Sun, Q.; Rao, J.; Yao, K.; Dong, B.; Liu, X.; et al. A multidimensional rational design of nickel-iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. J. Colloid Interface Sci. 2021, 603, 799–809. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, R.; Wang, D.; Li, K.; Sun, Q.; Xiao, Y.; Teng, H.; Huang, X.; Sun, T.; Liu, Z.; et al. Lightweight, Low-Cost Co2SiO4@diatomite Core-Shell Composite Material for High-Efficiency Microwave Absorption. Molecules 2022, 27, 1055. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, S.; Guo, R.; Ma, B.; Xiong, Y.; Luo, H.; Cheng, Y.; Wang, X.; Gong, R. 1D magnetic nitrogen doped carbon-based fibers derived from NiFe Prussian blue analogues embedded polyacrylonitrile via electrospinning with tunable microwave absorption. Compos. Part B-Eng. 2021, 224, 109161. [Google Scholar] [CrossRef]
- Yu, M.; Liu, P.-R.; Liu, J.-H.; Li, S.-M.; Wang, C.; Sun, Y.-J. Fabrication and Electromagnetic Microwave Absorbing Properties of NiFe2O4/T-ZnOw Composites. Chin. J. Inorg. Chem. 2011, 27, 1743–1747. [Google Scholar]
- Yang, X.; Shu, T.; Yang, X.; Qiao, M.; Wang, D.; Li, X.; Rao, J.; Liu, Z.; Zhang, Y.; Yang, P.; et al. MOFs-Derived Three-Phase Microspheres: Morphology Preservation and Electromagnetic Wave Absorption. Molecules 2022, 27, 4773. [Google Scholar] [CrossRef]
- Cai, R.; Zheng, W.; Yang, P.; Rao, J.; Huang, X.; Wang, D.; Du, Z.; Yao, K.; Zhang, Y. Microstructure, Electromagnetic Properties, and Microwave Absorption Mechanism of SiO2-MnO-Al2O3 Based Manganese Ore Powder for Electromagnetic Protection. Molecules 2022, 27, 3758. [Google Scholar] [CrossRef]
- Yang, P.-A.; Huang, Y.; Li, R.; Huang, X.; Ruan, H.; Shou, M.; Li, W.; Zhang, Y.; Li, N.; Dong, L. Optimization of Fe@Ag core-shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878. [Google Scholar] [CrossRef]
- Jia, H.; Yang, X.; Kong, Q.-Q.; Xie, L.-J.; Guo, Q.-G.; Song, G.; Liang, L.-L.; Chen, J.-P.; Li, Y.; Chen, C.-M. Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. J. Mater. Chem. A 2021, 9, 1180–1191. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Zhao, Y.; Zhao, Y.; Yan, J.; Deng, Z.; Zhang, H.; Zhao, W.; Tian, J.; Yun, J.; et al. NiO/NiFe2O4@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: Experimental and theoretical study. Chem. Eng. J. 2022, 430, 132814. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, W.; Jia, C.; Zhao, R.; Schmidt, W.; Wan, Y. Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4. Chem. Commun. 2011, 47, 5337–5339. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Y.; Di, X.; Wang, N.; Cheng, R.; Yang, L. Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption. Carbon 2022, 197, 466–475. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, W. Removal of borate by layered double hydroxides prepared through microwave-hydrothermal method. J. Water Process Eng. 2017, 17, 271–276. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, Z.; Wu, G. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci. 2020, 566, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Nie, X.; Li, Y.; Pu, Y.; Sun, X.; Yu, R.; Liu, X.; Shui, J. A layered double hydroxide-derived exchange spring magnet array grown on graphene and its application as an ultrathin electromagnetic wave absorbing material. J. Mater. Chem. C 2019, 7, 12270–12277. [Google Scholar] [CrossRef]
- Luo, H.; Ma, B.; Chen, F.; Zhang, S.; Xiong, Y.; Cheng, Y.; Gong, R. Bimetallic Oxalate Rod-Derived NiFe/Fe3O4@C Composites with Tunable Magneto-dielectric Properties for High-Performance Microwave Absorption. J. Phys. Chem. C 2021, 125, 24540–24549. [Google Scholar] [CrossRef]
- Naidu, M.K.; Ramji, K.; Santhosi, B.V.S.R.N.; Murthy, K.K.; Subrahmanyam, C.; Satyanarayana, B. Influence of NiFe Alloy Nanopowder on Electromagnetic and Microwave Absorption Properties of MWCNT/Epoxy Composite. Adv. Polym. Technol. 2018, 37, 622–628. [Google Scholar] [CrossRef]
- Fu, H.H.; Guo, Y.; Yu, J.; Shen, Z.; Zhao, J.; Xie, Y.; Ling, Y.; Ouyang, S.; Li, S.Q.; Zhang, W. Tuning the shell thickness of core-shell alpha-Fe2O3@SiO2 nanoparticles to promote microwave absorption. Chin. Chem. Lett. 2022, 33, 957–962. [Google Scholar] [CrossRef]
- Gong, C.; Wang, X.; Zhang, X.; Zhao, X.; Meng, H.; Jia, Y.; Zhang, J.; Zhang, Z. Synthesis of Ni/SiO2 nanocomposites for tunable electromagnetic absorption. Mater. Lett. 2014, 121, 81–84. [Google Scholar] [CrossRef]
- Qu, X.H.; Zhou, Y.L.; Li, X.Y.; Javid, M.; Huang, F.R.; Zhang, X.F.; Dong, X.L.; Zhang, Z.D. Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber. Inorg. Chem. Front. 2020, 7, 1148–1160. [Google Scholar] [CrossRef]
- Park, K.-Y.; Han, J.-H.; Lee, S.-B.; Kim, J.-B.; Yi, J.-W.; Lee, S.-K. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Compos. Sci. Technol. 2009, 69, 1271–1278. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, S.; Jiao, P.; Li, J.; Lu, H.; Li, Y.; He, X.; Yuan, Y. Novel and effective strategy for producing NiFe alloy fibers with tunable microwave absorption performance. Materialia 2019, 8, 100495. [Google Scholar] [CrossRef]
Materials | Percentage (wt.%) | Absorption Peak (GHz) | Minimum RL (dB) | Effective Absorption Bandwidth (GHz) | Absorber Thickness (mm) | Reference |
---|---|---|---|---|---|---|
α-Fe2O3@SiO2 | - | 16.00 | −4.30 | - | 3 | [46] |
Ni/SiO2 nanocomposites | 50 | 12–16 | −20.00 | 4.00 | 2–4 | [47] |
graphene@SiO2@NiO nanoflowers | 25 | 11.30 | −20.50 | 5.00 | 3 | [13] |
MWCNTs/NiFe nanoparticles | 15 | 8.20 | −19.00 | 1.60 | 4 | [45] |
NiFe@NC nanoparticles | 40 | 11.96 | −46.89 | 4.10 | 2.2 | [48] |
SiO2@NiFe LDH-3 | 40 | 16.50 | −53.78 | 8.24 | 6.95 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Wang, D.; Zhang, X.; Yi, Z.; Tang, J.; Yang, P.; Cai, R.; Yi, S.; Rao, J.; Zhang, Y. Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption. Int. J. Mol. Sci. 2023, 24, 504. https://doi.org/10.3390/ijms24010504
Du Z, Wang D, Zhang X, Yi Z, Tang J, Yang P, Cai R, Yi S, Rao J, Zhang Y. Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption. International Journal of Molecular Sciences. 2023; 24(1):504. https://doi.org/10.3390/ijms24010504
Chicago/Turabian StyleDu, Zhilan, Dashuang Wang, Xinfang Zhang, Zhiyu Yi, Jihai Tang, Pingan Yang, Rui Cai, Shuang Yi, Jinsong Rao, and Yuxin Zhang. 2023. "Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption" International Journal of Molecular Sciences 24, no. 1: 504. https://doi.org/10.3390/ijms24010504
APA StyleDu, Z., Wang, D., Zhang, X., Yi, Z., Tang, J., Yang, P., Cai, R., Yi, S., Rao, J., & Zhang, Y. (2023). Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption. International Journal of Molecular Sciences, 24(1), 504. https://doi.org/10.3390/ijms24010504