CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
Abstract
:1. Introduction
2. Results
2.1. Target Gene Structure Analysis and LFY-Editing Vector Construction
2.2. Selection of Tentative LFY-Edited Chinese Cabbage Lines Using PCR Analysis
2.3. Identification of CRISPR/Cas9-Mediated Mutagenesis of the BrLFY Paralogs
2.4. Observation of the Bolting Time of the Inbred Line, ‘CT001’, and E0 LFY-Edited Lines
2.5. T-DNA Copy Number and Site Analysis of the E0 LFY-Edited Lines
2.6. Inheritance of Base Mutation in the E1 T-DNA-Free LFY-Edited Lines
2.7. Delayed Bolting in the E1 T-DNA-Free LFY-Edited Lines
3. Discussion
4. Materials and Methods
4.1. Design of Efficient sgRNA and Construction of the Gene Editing Vector
4.2. Production of the LFY-Edited Chinese Cabbage Lines and Selection Using PCR Analysis
4.3. Analysis of Mutagenesis and Expression Levels of the Target Gene
4.4. Bolting Time Observation of the Inbred Line, ‘CT001’, and LFY-Edited Lines
4.5. Identification of the Number of T-DNA Copies and Insertion Position
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, Z.; Mohanty, D.; Giri, M.K.; Venables, B.J.; Chaturvedi, R.; Chao, A.; Petros, R.A.; Shah, J. Dehydroabietinal promotes flowering time and plant defense in Arabidopsis via the autonomous pathway genes FLOWERING LOCUS D, FVE, and RELATIVE OF EARLY FLOWERING 6. J. Exp. Bot. 2020, 71, 4903–4913. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Fang, X.; Zhu, D.; Dean, C. Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism. Plant Physiol. 2020, 182, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.L.; Singh, V. Systems scale characterization of circadian rhythm pathway in Camellia sinensis. Comput. Struct. Biotechnol. J. 2022, 20, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Preston, J.C. Evolutionary genetics of core eudicot inflorescence and flower development. Int. J. Plant Dev. Biol. 2010, 4, 17–29. [Google Scholar]
- Goslin, K.; Zheng, B.; Serrano-Mislata, A.; Rae, L.; Ryan, P.T.; Kwaśniewska, K.; Thomson, B.; Ó’Maoiléidigh, D.S.; Madueño, F.; Wellmer, F.; et al. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol. 2017, 174, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Huala, E.; Sussex, I. LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 1992, 4, 901–913. [Google Scholar] [CrossRef]
- Tao, L.; Wang, X.L.; Guo, M.H.; Zhang, Y.W. Analysis of genomic DNA methylation and gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis) after continuous seedling breeding. Russ. J. Genet. 2015, 51, 774–782. [Google Scholar] [CrossRef]
- Afroza, B.; Wani, K.P.; Khan, S.H.; Jabeen, N.; Hussain, K.; Mufti, S.; Amit, A. Various technological interventions to meet vegetable production challenges in view of climate change. Asian J. Hort. 2010, 5, 523529. [Google Scholar]
- Spaldon, S.; Samnotra, R.K.; Chopra, S. Climate resilient technologies to meet the challenges in vegetable production. Int. J. Curr. Res. Acad. Rev. 2015, 3, 28–47. [Google Scholar]
- Wi, S.H.; Song, E.Y.; Oh, S.J.; Son, I.C.; Lee, S.G.; Lee, H.J.; Mun, B.H.; Cho, Y.Y. Estimation of optimum period for spring cultivation of ‘Chunkwang’ Chinese cabbage based on growing degree days in Korea. Korean J. Agric. For. Meteorol. 2018, 20, 175–182. [Google Scholar]
- Shea, D.J.; Itabashi, E.; Takada, S.; Fukai, E.; Kakizaki, T.; Fujimoto, R.; Okazaki, K. The role of FLOWERING LOCUS C in vernalization of Brassica: The importance of vernalization research in the face of climate change. Crop Pasture Sci. 2017, 69, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.K.; Suh, E.J.; Park, S.R.; Park, J.; Lee, Y.H. Multiplex CRISPR/Cas9 Mutagenesis of BrVRN1 Delays Flowering Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Agriculture 2021, 11, 1286. [Google Scholar] [CrossRef]
- Jung, H.; Lee, A.; Jo, S.H.; Park, H.J.; Jung, W.Y.; Kim, H.S.; Lee, H.J.; Jeong, S.G.; Kim, Y.S.; Cho, H.S. Nitrogen signaling genes and SOC1 determine the flowering time in a reciprocal negative feedback loop in Chinese cabbage (Brassica rapa L.) based on CRISPR/Cas9-mediated mutagenesis of multiple BrSOC1 homologs. Int. J. Mol. Sci. 2021, 22, 4631. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in genome editing and neyond. Annu. Rev. Biochem. 2016, 85, 227–264. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Ueta, R.; Osakabe, Y.; Osakabe, K. Precision genome editing in plants: State-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 2020, 20, 234. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, C.; Mushtaq, M.; Singh, A.K.; Mukhtar, S.; Shah, A.A. Genome editing using Crispr/Cas system: New era genetic technology in agriculture to boost crop output. Eur. Exp. Biol. 2017, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.; Meyerowitz, E.M. S PLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr. Biol. 2002, 12, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Ahn, J.H. Regulation of flowering time by ambient temperature: Repressing the repressors and activating the activators. New Phytol. 2021, 230, 938–942. [Google Scholar] [CrossRef]
- Ahmar, S.; Zhai, Y.; Huang, H.; Yu, K.; Khan, M.H.U.; Shahid, M.; Samad, R.A.; Khan, S.U.; Amoo, O.; Fan, C.; et al. Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. Crop J. 2022, 10, 67–74. [Google Scholar] [CrossRef]
- Zhao, F.; Lyu, X.; Ji, R.; Liu, J.; Zhao, T.; Li, H.; Liu, B.; Pei, Y. CRISPR/Cas9-engineered mutation to identify the roles of phytochromes in regulating photomorphogenesis and flowering time in soybean. Crop J. 2022, 10, 1654–1664. [Google Scholar] [CrossRef]
- Hong-Xia, S.; Chao, F.; Li-Hui, Y.; Lei-Ping, H.; Xiao-Yong, X.; Mei-Lan, L. Cloning and expression analysis of LEAFY homologue in Pak Choi (Brassica rapa subsp. chinensis). Biotechnol. Biotechnol. Equip. 2015, 29, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Sessions, A.; Yanofsky, M.F.; Weigel, D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 2000, 289, 779–781. [Google Scholar] [CrossRef] [Green Version]
- Sayou, C.; Nanao, M.H.; Jamin, M.; Posé, D.; Thévenon, E.; Grégoire, L.; Tichtinsky, G.; Denay, G.; Ott, F.; Llobet, M.R.; et al. SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat. Commun. 2016, 7, 11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamès, C.; Ptchelkine, D.; Grimm, C.; Thevenon, E.; Moyroud, E.; Gérard, F.; Martiel, J.L.; Benlloch, R.; Parcy, F.; Müller, C.W. Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J. 2008, 27, 2628–2637. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, N.; Winter, C.M.; Wu, M.F.; Kanno, Y.; Yamaguchi, A.; Seo, M.; Wagner, D. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 2014, 344, 638–641. [Google Scholar] [CrossRef]
- Fukazawa, J.; Ohashi, Y.; Takahashi, R.; Nakai, K.; Takahashi, Y. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis. Plant Cell 2021, 33, 2258–2272. [Google Scholar] [CrossRef] [PubMed]
- Weigel, D.; Nilsson, O. A developmental switch sufficient for flower initiation in diverse plants. Nature 1995, 377, 495–500. [Google Scholar] [CrossRef]
- Xia, G.; He, Q.; Zhao, S. Physiological and biochemical properties analysis of late-bolting transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis). Am. J. Plant Sci. 2015, 25, 152–157. [Google Scholar]
- Sliwinski, M.K.; White, M.A.; Maizel, A.; Weigel, D.; Baum, D.A. Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leavenworthia crassa. Plant Mol. Biol. 2006, 62, 279–289. [Google Scholar] [CrossRef]
- Suchandra, D.R.; Mukesh, S.; Neera, B.S. Cloning and expression studies of a LFY cDNA from Brassica juncea. Adv. Biosci. Biotechnol. 2011, 2, 248–254. [Google Scholar]
- Wada, M.; Cao, Q.F.; Kotoda, N.; Soejima, J.I.; Masuda, T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol. Biol. 2002, 49, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Zou, D.M.; Li, H.; Zhang, Z.; Ma, Y. Isolation and expression analysis of LFY homologue from strawberry. Acta Hortic. Sin. 2012, 39, 861–868. [Google Scholar]
- Song, Y.H.; Ito, S.; Imaizumi, T. Flowering time regulation: Photoperiod-and temperature-sensing in leaves. Trends Plant Sci. 2013, 18, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Xiao, Z.; Jian, H.; Peng, L.; Qu, C.; Fu, M.; He, B.; Tie, L.; Liang, Y.; Xu, X.; et al. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci. Rep. 2016, 6, 36452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, G.; Park, J.I.; Kim, H.; Kang, K.K.; Cho, Y.G.; Nou, I.S. MADS-Box genes are associated with the petaloidy/sepaloidy of stamens in cytoplasmic male sterile Brassica. Plant Breed. Biotechnol. 2016, 4, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Petolino, J.F. Genome editing in plants via designed zinc finger nucleases. In Vitro Cell. Dev. Biol. Plant 2015, 51, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanove, A.J.; Voytas, D.F. TAL effectors: Customizable proteins for DNA targeting. Science 2011, 333, 1843–1846. [Google Scholar] [CrossRef]
- Khan, M.H.U.; Khan, S.U.; Muhammad, A.; Hu, L.; Yang, Y.; Fan, C. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. J. Cell. Physiol. 2018, 233, 4578–4594. [Google Scholar] [CrossRef]
- Tahir, T.; Ali, Q.; Rashid, M.S.; Malik, A. The journey of CRISPR-Cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biol. Clin. Sci. Res. J. 2020, 30, e017. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Jiang, Y.; Yan, T.; Fang, C.; Hou, Q.; Yan, T.; Fang, C.; Hou, Q.; Wu, S.; et al. Use of CRISPR/Cas9-based gene editing to simultaneously mutate multiple homologous genes required for pollen development and male fertility in maize. Cells. 2022, 11, 439. [Google Scholar] [CrossRef]
- Sun, B.; Zheng, A.; Jiang, M.; Xue, S.; Yuan, Q.; Jiang, L.; Chen, Q.; Li, M.; Wang, Y.; Zhang, Y.; et al. CRISPR/Cas9-mediated mutagenesis of homologous genes in Chinese kale. Sci. Rep. 2018, 8, 16786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Hao, M.; Wang, W.; Wang, H.; Chen, F.; Chu, W.; Zhang, B.; Mei, D.; Cheng, H.; Hu, Q. An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Front. Plant Sci. 2018, 9, 442. [Google Scholar] [CrossRef]
- Nekrasov, V.; Wang, C.; Win, J.; Lanz, C.; Weigel, D.; Kamoun, S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017, 7, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Liu, Y.; Wang, F.; Li, T.; Chen, Z.; Kong, D.; Bi, J.; Zhang, F.; Luo, X.; Wang, J.; et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breed. 2019, 39, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, N.R.; Shin, Y.H.; Kim, H.S.; Park, Y.D. Function analysis of the PR55/B gene related to self-incompatibility in Chinese Cabbage using CRISPR/Cas9. Int. J. Mol. Sci. 2022, 23, 5062. [Google Scholar] [CrossRef] [PubMed]
- Jyothishwaran, G.; Kotresha, D.; Selvaraj, T.; Srideshikan, S.M.; Rajvanshi, P.K.; Jayabaskaran, C. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr. Sci. 2007, 93, 770–772. [Google Scholar]
- Lee, M.K.; Kim, H.S.; Kim, J.S.; Kim, S.H.; Park, Y.D. Agrobacterium-mediated transformation system for large-scale producion of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J. Plant Biol. 2004, 47, 300–306. [Google Scholar] [CrossRef]
- Lee, G.H.; Yu, J.G.; Park, Y.D. Development of an effective PCR technique for analyzing T-DNA integration sites in Brassica species and its application. Hortic. Sci. 2015, 33, 242–250. [Google Scholar]
- Shin, Y.H.; Lee, H.M.; Park, Y.D. CRISPR/Cas9-mediated editing of AGAMOUS-like genes results in a late-bolting phenotype in Chinese cabbage (Brassica rapa ssp. pekinensis). Int. J. Mol. Sci. 2022, 23, 15009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.-H.; Park, Y.-D. CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Int. J. Mol. Sci. 2023, 24, 541. https://doi.org/10.3390/ijms24010541
Shin Y-H, Park Y-D. CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). International Journal of Molecular Sciences. 2023; 24(1):541. https://doi.org/10.3390/ijms24010541
Chicago/Turabian StyleShin, Yun-Hee, and Young-Doo Park. 2023. "CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)" International Journal of Molecular Sciences 24, no. 1: 541. https://doi.org/10.3390/ijms24010541
APA StyleShin, Y. -H., & Park, Y. -D. (2023). CRISPR/Cas9-Mediated Mutagenesis of BrLEAFY Delays the Bolting Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). International Journal of Molecular Sciences, 24(1), 541. https://doi.org/10.3390/ijms24010541