Safety Evaluation and Anti-Inflammatory Efficacy of Lacticaseibacillus paracasei PS23
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genome-Based Safety Assessment of L. paracasei PS23
2.2. L. paracasei PS23 Did Not Exhibit Ornithine Decarboxylase Activity In Vitro
2.3. Antibiotic Resistance Profile of L. paracasei PS23
2.4. L. paracasei PS23 Evaluation for Mutagenicity and Clastogenicity In Vitro and In Vivo
2.5. L. paracasei PS23 Evaluation for Adverse Effects in the Subacute Toxicity Study
2.6. Lack of Histopathological Defects Following Subacute Toxicity Study for L. paracasei PS23
2.7. L. paracasei PS23 Ameliorates Colonic Inflammation Induced by DSS
3. Materials and Methods
3.1. Preparation of L. paracasei PS23
3.2. Genome-Based Safety Assessment of L. paracasei PS23
3.3. Assessment of Ornithine Decarboxylase Activity of Lactobacilli
3.4. Antibiotic Resistance Profile of L. paracasei PS23
3.5. Bacterial Reverse Mutation Test
3.6. Cytotoxicity Assay
3.7. Analysis of Chromosomal Aberrations
3.8. Ethics Statement
3.9. Mammalian Erythrocyte Micronucleus Test
3.10. Subacute Toxicity Study
3.11. Hematological and Serum Biochemical Analyses
3.12. Gross Necropsy
3.13. Histopathology
3.14. Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice
3.15. Colonic Myeloperoxidase (MPO) Activity and Cytokine Production
3.16. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothari, D.; Patel, S.; Kim, S.K. Probiotic supplements might not be universally-effective and safe: A review. Biomed. Pharmacother. 2019, 111, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.L.Y.; Ling, K.H.; El-Nezami, H.; Wang, M.F. Influence of functional food components on gut health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Shukla, R.; Goyal, A. Probiotics in valorization of innate immunity across various animal models. J. Funct. Foods 2015, 14, 549–561. [Google Scholar] [CrossRef]
- Nouri, Z.; Karami, F.; Neyazi, N.; Modarressi, M.H.; Karimi, R.; Khorramizadeh, M.R.; Taheri, B.; Motevaseli, E. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines. Cell J. 2016, 18, 127–134. [Google Scholar]
- Thushara, R.M.; Gangadaran, S.; Solati, Z.; Moghadasian, M.H. Cardiovascular benefits of probiotics: A review of experimental and clinical studies. Food Funct 2016, 7, 632–642. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Oniszczuk, T.; Gancarz, M.; Szymanska, J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021, 26, 1172. [Google Scholar] [CrossRef]
- Cardinali, N.; Bauman, C.; Rodriguez Ayala, F.; Grau, R. Two cases of type 2 diabetes mellitus successfully treated with probiotics. Clin. Case Rep. 2020, 8, 3120–3125. [Google Scholar] [CrossRef]
- Huang, R.; Wang, K.; Hu, J. Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Tome-Castro, X.M.; Rodriguez-Arrastia, M.; Cardona, D.; Rueda-Ruzafa, L.; Molina-Torres, G.; Roman, P. Probiotics as a therapeutic strategy in obesity and overweight: A systematic review. Benef. Microbes 2021, 12, 5–15. [Google Scholar] [CrossRef]
- Yoon, J.S.; Sohn, W.; Lee, O.Y.; Lee, S.P.; Lee, K.N.; Jun, D.W.; Lee, H.L.; Yoon, B.C.; Choi, H.S.; Chung, W.S.; et al. Effect of multispecies probiotics on irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. J. Gastroenterol. Hepatol. 2014, 29, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Rao, A. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutr. Res. 2021, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.-S.; Liu, C.-F.; Tseng, K.-C.; Mau, J.-L.; Pan, T.-M. Immunomodulatory effects of dead Lactobacillus on murine splenocytes and macrophages. Food Agric. Immunol. 2012, 23, 183–202. [Google Scholar] [CrossRef]
- Lv, X.C.; Chen, M.; Huang, Z.R.; Guo, W.L.; Ai, L.Z.; Bai, W.D.; Yu, X.D.; Liu, Y.L.; Rao, P.F.; Ni, L. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Res. Int. 2021, 139, 109956. [Google Scholar] [CrossRef] [PubMed]
- Tarrah, A.; Dos Santos Cruz, B.C.; Sousa Dias, R.; da Silva Duarte, V.; Pakroo, S.; Licursi de Oliveira, L.; Gouveia Peluzio, M.C.; Corich, V.; Giacomini, A.; Oliveira de Paula, S. Lactobacillus paracasei DTA81, a cholesterol-lowering strain having immunomodulatory activity, reveals gut microbiota regulation capability in BALB/c mice receiving high-fat diet. J. Appl. Microbiol. 2021, 131, 1942–1957. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Huang, S.Y.; Huang, K.C.; Hsu, C.C.; Yang, K.C.; Li, L.A.; Chan, C.H.; Huang, H.Y. Lactobacillus paracasei PS23 decelerated age-related muscle loss by ensuring mitochondrial function in SAMP8 mice. Aging 2019, 11, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Chen, L.H.; Wang, M.F.; Hsu, C.C.; Chan, C.H.; Li, J.X.; Huang, H.Y. Lactobacillus paracasei PS23 Delays Progression of Age-Related Cognitive Decline in Senescence Accelerated Mouse Prone 8 (SAMP8) Mice. Nutrients 2018, 10, 894. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.F.; Hsu, C.C.; Chou, G.T.; Hsu, J.S.; Liong, M.T.; Tsai, Y.C. Lactobacillus paracasei PS23 reduced early-life stress abnormalities in maternal separation mouse model. Benef. Microbes 2019, 10, 425–436. [Google Scholar] [CrossRef]
- Wei, C.L.; Wang, S.; Yen, J.T.; Cheng, Y.F.; Liao, C.L.; Hsu, C.C.; Wu, C.C.; Tsai, Y.C. Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Res. 2019, 1711, 202–213. [Google Scholar] [CrossRef]
- GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Stidham, R.W.; Higgins, P.D.R. Colorectal Cancer in Inflammatory Bowel Disease. Clin. Colon Rectal Surg. 2018, 31, 168–178. [Google Scholar] [PubMed]
- Hazel, K.; O’Connor, A. Emerging treatments for inflammatory bowel disease. Ther. Adv. Chronic Dis. 2020, 11, 2040622319899297. [Google Scholar] [CrossRef] [PubMed]
- Durchschein, F.; Petritsch, W.; Hammer, H.F. Diet therapy for inflammatory bowel diseases: The established and the new. World J. Gastroenterol. 2016, 22, 2179–2194. [Google Scholar] [CrossRef] [PubMed]
- Pararajasingam, A.; Uwagwu, J. Lactobacillus: The not so friendly bacteria. BMJ Case Rep. 2017, 2017, bcr-2016-218423. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E.; Akkermans, L.M.; Haller, D.; Hammerman, C.; Heimbach, J.; Hormannsperger, G.; Huys, G.; Levy, D.D.; Lutgendorff, F.; Mack, D.; et al. Safety assessment of probiotics for human use. Gut Microbes 2010, 1, 164–185. [Google Scholar] [CrossRef]
- Bernardeau, M.; Vernoux, J.P.; Henri-Dubernet, S.; Gueguen, M. Safety assessment of dairy microorganisms: The Lactobacillus genus. Int. J. Food Microbiol. 2008, 126, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M.; de Las Rivas, B.; Marcobal, A.; Munoz, R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol. 2007, 117, 258–269. [Google Scholar] [CrossRef] [Green Version]
- EFSA, Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206.
- FDA. Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers; Guidance for Industry: Rockville, MD, USA, 2005. [Google Scholar]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15 25 1–15 25 14. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Cho, K.A.; Kang, J.L.; Kim, K.H.; Woo, S.Y. Comparison of experimental mouse models of inflammatory bowel disease. Int. J. Mol. Med. 2014, 33, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Tsai, Y.C.; Wang, S.Y.; Chen, Y.P.; Chen, M.J. Coculture Strategy for Developing Lactobacillus paracasei PS23 Fermented Milk with Anti-Colitis Effect. Foods 2021, 10, 2337. [Google Scholar] [CrossRef]
- Jin, B.R.; Chung, K.S.; Cheon, S.Y.; Lee, M.; Hwang, S.; Noh Hwang, S.; Rhee, K.J.; An, H.J. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-kappaB and STAT3 activation. Sci. Rep. 2017, 7, 46252. [Google Scholar] [CrossRef]
- Moon, J.M.; Lee, H.J.; Han, K.; Kim, D.H.; Hong, S.W.; Soh, H.; Park, S.; Kang, E.A.; Lee, J.; Koh, S.J.; et al. Occult Blood in Feces Is Associated with an Increased Risk of Ischemic Stroke and Myocardial Infarction: A Nationwide Population Study. J. Am. Heart Assoc. 2021, 10, e017783. [Google Scholar] [CrossRef]
- Hansberry, D.R.; Shah, K.; Agarwal, P.; Agarwal, N. Fecal Myeloperoxidase as a Biomarker for Inflammatory Bowel Disease. Cureus 2017, 9, e1004. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Yan, D.; Wang, Y.; Zhang, J.; Li, M.; Xiong, W.; Jing, X.; Li, P.; Zhao, W.; Xiong, X.; et al. Inhibitor of Differentiation-2 Protein Ameliorates DSS-Induced Ulcerative Colitis by Inhibiting NF-kappaB Activation in Neutrophils. Front. Immunol. 2021, 12, 760999. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, M.G.; Coffey, J.C.; Sahebally, S.M.; Tibbitts, P.; Lyons, E.M.; O’Leary, E.; Owolabi, F.; Dunne, C.P. Systemic Molecular Mediators of Inflammation Differentiate Between Crohn’s Disease and Ulcerative Colitis, Implicating Threshold Levels of IL-10 and Relative Ratios of Pro-inflammatory Cytokines in Therapy. J. Crohn’s Colitis 2020, 14, 118–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luissint, A.C.; Williams, H.C.; Kim, W.; Flemming, S.; Azcutia, V.; Hilgarth, R.S.; Leary, M.N.O.; Denning, T.L.; Nusrat, A.; Parkos, C.A. Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice. Mucosal Immunol. 2019, 12, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Benjamin, B.; Chao, X.; Daniel, H.H. Fast and Sensitive Protein Alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar]
- Chen, L.H.; Zheng, D.D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—Distinguishing Friend from foe Using Bacterial Whole Genome Sequence Data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the NCBI AMRFinder Tool and Resistance Gene Database Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of NARMS Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Micobiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Park, Y.K.; Kim, J.F. PAIDB v2.0: Exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Res. 2015, 43, D624–D630. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.E.; Smith, J.; Lam, M.; Zemla, A.; Dyer, M.D.; Slezak, T. MvirDB—A microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res. 2007, 35, D391–D394. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Holzapfel, W.H. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 1999, 53, 33–41. [Google Scholar] [CrossRef]
- Romano, A.; Trip, H.; Campbell-Sills, H.; Bouchez, O.; Sherman, D.; Lolkema, J.S.; Lucas, P.M. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines. Genome Announc 2013, 1, e00097-12. [Google Scholar] [CrossRef] [Green Version]
- ISO10932; Milk and Milk Products—Determination of the Minimal Inhibitory Concentration (MIC) of Antibiotics Applicable to Bifidobacteria and Non-Enterococcal Lactic Acid Bacteria (LAB). ISO: Geneva, Switzerland, 2010.
- Li, C.H.; Liao, J.W.; Liao, P.L.; Huang, W.K.; Tse, L.S.; Lin, C.H.; Kang, J.J.; Cheng, Y.W. Evaluation of Acute 13-Week Subchronic Toxicity and Genotoxicity of the Powdered Root of Tongkat Ali (Eurycoma longifolia Jack). Evid. -Based Complement. Altern. Med. eCAM 2013, 2013, 102987. [Google Scholar] [CrossRef]
- Liao, P.L.; Li, C.H.; Tse, L.S.; Kang, J.J.; Cheng, Y.W. Safety assessment of the Cistanche tubulosa health food product Memoregain((R)): Genotoxicity and 28-day repeated dose toxicity test. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 118, 581–588. [Google Scholar] [CrossRef]
- OECD. Test No. 407: Repeated Dose 28-Day Oral Toxicity Study in Rodents; OECD: Paris, France, 2008. [Google Scholar]
- OECD. Test No. 408: Repeated Dose 90-Day Oral Toxicity Study in Rodents; OECD: Paris, France, 2018. [Google Scholar]
- Liu, Y.W.; Su, Y.W.; Ong, W.K.; Cheng, T.H.; Tsai, Y.C. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int. Immunopharmacol. 2011, 11, 2159–2166. [Google Scholar] [PubMed]
- Kwak, S.Y.; Shim, S.; Park, S.; Kim, H.; Lee, S.J.; Kim, M.J.; Jang, W.S.; Kim, Y.H.; Jang, H. Ghrelin reverts intestinal stem cell loss associated with radiation-induced enteropathy by activating Notch signaling. Phytomedicine Int. J. Phytother. Phytopharm. 2021, 81, 153424. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Cut-Off Values of L. paracasei a (mg/L) | PS23 | |
---|---|---|---|
MICs (mg/L) | Interpretation | ||
Ampicillin | 4 | 1 | S |
Gentamicin | 32 | 4 | S |
Kanamycin | 64 | 64 | S |
Streptomycin | 64 | 16 | S |
Erythromycin | 1 | 0.125 | S |
Clindamycin | 4 | 0.25 | S |
Tetracycline | 4 | 1 | S |
Chloramphenicol | 4 | 4 | S |
TA97 | TA98 | TA100 | TA102 | TA1535 | |
---|---|---|---|---|---|
Without S9 metabolic activation | |||||
Negative 1 | 18 ± 4 | 29 ± 5 | 53 ± 7 | 25 ± 2 | 17 ± 3 |
Positive 2 | 315 ± 31 * | 591 ± 65 * | 1290 ± 12 * | 422 ± 14 * | 1327 ± 64 * |
PS23 (mg/plate) | |||||
5 | 31 ± 12 | 18 ± 4 | 68 ± 13 | 21 ± 3 | 16 ± 3 |
2.5 | 18 ± 0 | 15 ± 2 | 66 ± 4 | 27 ± 4 | 14 ± 4 |
1.25 | 22 ± 11 | 17 ± 1 | 65 ± 7 | 24 ± 5 | 14 ± 5 |
0.625 | 23 ± 3 | 18 ± 5 | 71 ± 1 | 23 ± 2 | 11 ± 1 |
0.3125 | 16 ± 10 | 23 ± 4 | 51 ± 5 | 24 ± 5 | 24 ± 3 |
TA97 | TA98 | TA100 | TA102 | TA1535 | |
With S9 metabolic activation | |||||
Negative 1 | 13 ± 2 | 18 ± 1 | 97 ± 13 | 160 ± 18 | 16 ± 3 |
Positive 2 | 512 ± 30 * | 174 ± 13 * | 835 ± 50 * | 718 ± 19 * | 127 ± 18 * |
PS23 (mg/plate) | |||||
5 | 21 ± 2 | 14 ± 1 | 85 ± 18 | 148 ± 5 | 11 ± 3 |
2.5 | 17 ± 4 | 20 ± 3 | 114 ± 16 | 161 ± 17 | 12 ± 1 |
1.25 | 16 ± 3 | 20 ± 6 | 87 ± 13 | 164 ± 8 | 10 ± 2 |
0.625 | 16 ± 4 | 14 ± 4 | 79 ± 9 | 175 ± 8 | 13 ± 5 |
0.3125 | 21 ± 6 | 22 ± 4 | 106 ± 25 | 163 ± 11 | 12 ± 3 |
Aberrant Cell (%) 4 | Number of Cells with Structural Aberrations (%) 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
With Gap | Without Gap | G | B | D | R | g | b | e | |
3 h without S9 metabolic activation | |||||||||
Negative 1 | 0.2 5 ± 0.50 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 |
Positive 2 | 8.25 ± 3.30 *** | 6.25 ± 2.75 ** | 0.75 ± 0.50 | 2.00 ± 1.15 ** | 1.50 ± 1.29 * | 0.0 ± 0.0 | 1.25 ± 0.50 * | 2.00 ± 1.41 | 0.75 ± 0.96 |
PS23 (mg/mL) | |||||||||
0.16 | 0.75 ± 1.50 | 0.50 ± 1.00 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.25 ± 0.50 | 0.0 ± 0.0 |
0.313 | 1.00 ± 0.82 | 0.50 ± 0.58 | 0.25 ± 0.50 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.25 ± 0.50 | 0.0 ± 0.0 |
0.625 | 1.00 ± 1.15 | 0.75 ± 0.96 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.75 ± 0.96 | 0.0 ± 0.0 |
3 h with S9 metabolic activation | |||||||||
Negative 1 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Positive 2 | 11.00 ± 1.83 *** | 8.00 ± 1.83 *** | 1.00 ± 0.82 | 2.75 ± 0.50 *** | 1.50 ± 0.58 *** | 0.75 ± 0.96 | 2.00 ± 0.82 ** | 2.75 ± 0.96 *** | 0.25 ± 0.50 |
PS23 (mg/mL) | |||||||||
0.16 | 0.25 ± 0.50 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 |
0.313 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 |
0.625 | 0.50 ± 0.58 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 |
24 h without S9 metabolic activation | |||||||||
Negative 1 | 0.25 ± 0.50 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 |
Positive 2 | 9.75 ± 1.50 *** | 8.25 ± 1.71 *** | 1.00 ± 0.82 | 2.75 ± 0.50 *** | 2.50 ± 1.29 ** | 0.25 ± 0.50 | 0.50 ± 0.58 | 3.00 ± 0.82 *** | 0.50 ± 0.58 |
PS23 (mg/mL) | |||||||||
0.16 | 1.00 ± 0.82 | 0.50 ± 0.58 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.50 ± 0.58 | 0.25 ± 0.50 | 0.0 ± 0.0 |
0.313 | 0.75 ± 0.96 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 |
0.625 | 0.3 ± 0.5 | 0.0 ± 0.0 | 0.25 ± 0.50 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.50 ± 0.58 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Negative | PS23 (g/kg b.w.) | Positive | |||
---|---|---|---|---|---|
Distilled Water | 0.5 | 1.0 | 2.0 | Cyclophosphamide 100 mg/kg | |
MNPCEs (‰) | |||||
Day 1 | 0.6 ± 0.5 | 0.8 ± 0.8 | 0.2 ± 0.4 | 0.4 ± 0.5 | 3.2 ± 0.8 *** |
Day 2 | 0.4 ± 0.5 | 0.6 ± 0.9 | 0.6 ± 0.5 | 0.6 ± 0.5 | 3.2 ± 0.8 *** |
Day 3 | 0.6 ± 0.5 | 0.4 ± 0.5 | 0.4 ± 0.5 | 0.6 ± 0.9 | 2.8 ± 0.8 *** |
PCEs (%) | |||||
Day 1 | 6.4 ± 1.3 | 5.8 ± 1.3 | 5.4 ± 1.5 | 6.0 ± 1.4 | 5.2 ± 0.8 |
Day 2 | 5.4 ± 1.1 | 5.6 ± 1.8 | 5.4 ± 1.7 | 5.2 ± 1.6 | 5.4 ± 1.1 |
Day 3 | 6.6 ± 1.1 | 6.4 ± 1.1 | 7.2 ± 0.8 | 6.8 ± 1.3 | 5.6 ± 0.9 |
Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 40 | 400 | 4000 | 0 | 40 | 400 | 4000 | ||
Red blood cell count (RBC) | 106/dL | 6.26 ± 3.81 | 5.12 ± 4.45 | 7.62 ± 3.42 | 7.33 ± 3.1 | 6.85 ± 3.75 | 8.23 ± 2.23 | 9.49 ± 0.54 | 7.21 ± 2.41 |
Hematocrit (HCT) | % | 46.65 ± 2.45 | 46.25 ± 2.37 | 44.98 ± 8.34 | 43.56 ± 5.09 | 34.21 ± 18.17 | 42.23 ± 10.82 | 48.06 ± 2.36 | 36.18 ± 11.44 |
Hemoglobin (Hb) | g/L | 146.5 ± 9 | 149 ± 9.47 | 142.13 ± 25.78 | 141.71 ± 11.05 | 126.8 ± 47.08 | 135 ± 44.98 | 154.5 ± 8.35 | 149.6 ± 13.08 |
Mean corpuscular hemoglobin (MCH) | Pg | 15.2 ± 1.21 | 16.38 ± 1.42 | 15.39 ± 1.59 | 15.54 ± 0.33 | 27.94 ± 20.84 | 15.34 ± 4.36 | 16.29 ± 0.45 | 23.98 ± 10.53 |
MCH Concentration (MCHC) | g/dL | 288.8 ± 48.66 | 319.4 ± 27.69 | 307.2 ± 32.29 | 330.9 ± 38.65 | 535.5 ± 374.67 | 299 ± 87.69 | 321.5 ± 11.06 | 469.5 ± 194.13 |
Mean corpuscular volume (MCV) | fL | 52.31 ± 3.19 | 52.62 ± 3.79 | 50.16 ± 2.06 | 50.35 ± 1.93 | 51.02 ± 2.54 | 51.94 ± 2.79 | 50.69 ± 1.43 | 50.64 ± 1.76 |
RBC Distribution Width coefficient of variation (RDW-CV) | % | 18.09 ± 3.21 | 17.06 ± 2.95 | 19.5 ± 2.58 | 18.92 ± 3.33 | 18.13 ± 2.85 | 19.1 ± 1.43 | 19.33 ± 0.56 | 17.32 ± 2.36 |
RBC Distribution Width standard deviation (RDW-SD) | fL | 30.53 ± 3.23 | 28.78 ± 2.75 | 31.36 ± 2.29 | 30.77 ± 3.64 | 29.57 ± 2.2 | 31.46 ± 1.84 | 30.03 ± 1.3 | 28.42 ± 1.82 |
Platelet distribution width (PDW) | fL | 8 ± 0.77 | 6.61 ± 0.72 * | 7.96 ± 0.78 | 7.78 ± 0.83 | 7.82 ± 1.07 | 7.31 ± 0.64 | 7.48 ± 0.27 | 7.74 ± 0.39 |
Mean platelet volume (MPV) | fL | 7.68 ± 0.61 | 6.76 ± 0.39 * | 7.47 ± 0.56 | 7.42 ± 0.39 | 7.55 ± 0.3 | 7.08 ± 0.26 * | 7.05 ± 0.25 * | 7.48 ± 0.38 |
White blood cell count (WBC) | 103/L | 6.16 ± 3.65 | 6.7 ± 2.49 | 7.26 ± 3.72 | 7.1 ± 3.04 | 5.57 ± 3.67 | 4.69 ± 1.51 | 7.92 ± 3.53 | 6.43 ± 4.46 |
Lymphocytes | % | 76.9 ± 6.79 | 85.36 ± 3.24 | 84.61 ± 4.15 | 83.3 ± 4.3 | 75.65 ± 3.05 | 84.07 ± 5.77 | 82.42 ± 3.07 | 84.88 ± 2.64 |
Neutrophils | % | 18.97 ± 5.77 | 11.1 ± 1.68 | 12.16 ± 3.67 | 14.3 ± 3.33 | 20.1 ± 3.2 | 11.7 ± 4.74 | 12.5 ± 3.59 | 10.63 ± 1.81 |
Monocytes | % | 0.59 ± 0.54 | 0.68 ± 0.28 | 1.03 ± 0.74 | 0.73 ± 0.21 | 1.15 ± 0.15 | 0.33 ± 0.09 | 0.8 ± 0.38 | 0.58 ± 0.44 |
Eosinophil | % | 2.77 ± 1.21 | 2.14 ± 1.96 | 1.69 ± 1.17 | 1.43 ± 0.65 | 1.85 ± 0.55 | 3.43 ± 1.14 | 3.74 ± 1.02 | 2.75 ± 1.77 |
Basophils | % | 0.77 ± 0.38 | 0.46 ± 0.42 | 0.47 ± 0.54 | 0.47 ± 0.4 | 0.52 ± 0.45 | 1.05 ± 0.96 | 0.48 ± 0.48 | 1.09 ± 0.93 |
Platelets count (PLT) | 106/L | 663.6 ± 511.66 | 545.8 ± 549.61 | 1188.5 ± 782.7 | 803.8 ± 464.88 | 490.5 ± 372.8 | 538 ± 188.46 | 743.3 ± 168.38 | 455.9 ± 212.25 |
Platelet Large Cell Ratio (P-LCR) | % | 9.75 ± 4.09 | 6.75 ± 3.41 | 8.75 ± 2.68 | 7.72 ± 2.41 | 8.88 ± 2.7 | 6.45 ± 1.64 * | 6.03 ± 1.24 * | 8.2 ± 2.24 |
Plateletcrit (PCT) | % | 0.5 ± 0.37 | 0.36 ± 0.36 | 0.88 ± 0.59 | 0.6 ± 0.34 | 0.37 ± 0.28 | 0.38 ± 0.14 | 0.52 ± 0.12 | 0.34 ± 0.15 |
Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|
DAILY DOSE (mg/kg(b.w/day)) | 0 | 40 | 400 | 4000 | 0 | 40 | 400 | 4000 | |
Calcium | mg/dL | 7.24 ± 0.81 | 7.11 ± 0.74 | 7.63 ± 1.75 | 8.14 ±1.25 | 8.36 ± 0.64 | 9.22 ± 1.25 | 9.39 ± 1.64 | 9.04 ± 1.08 |
Chloride | mmol/L | 89.00 ± 2.16 | 84.90 ± 2.60 * | 85.80 ± 2.35 * | 86.20 ± 1.40 * | 79.82 ± 24.95 | 84.30 ± 3.37 | 86.40 ± 0.97 | 87.20 ± 1.55 * |
Phosphorus | mg/dL | 7.48 ± 0.91 | 7.24 ± 1.08 | 7.64 ± 0.72 | 8.93 ± 1.54 * | 5.90 ± 1.07 | 6.93 ± 0.89 | 7.06 ± 0.93 | 7.34 ± 0.63 |
Potassium | mmol/L | 3.68 ± 0.40 | 3.73 ± 0.33 | 3.34 ± 0.33 | 3.31 ± 0.39 | 4.24 ± 0.42 | 4.36 ± 0.34 | 4.07 ± 0.33 | 3.81 ± 0.30 |
Sodium | mmol/L | 134.60 ± 2.76 | 129.60 ± 3.44 * | 133.00 ± 2.62 | 133.30 ± 1.77 | 133.70 ± 1.77 | 129.80 ± 5.29 * | 133.20 ± 2.44 | 133.00 ± 2.26 |
Glucose | mg/dL | 120.00 ± 18.62 | 95.80 ± 20.00 * | 84.80 ± 18.24 * | 119.70 ± 27.33 | 106.10 ± 17.44 | 109.40 ± 23.28 | 109.90 ± 28.89 | 122.3 ± 37.5 |
Total Bilirubin (TBIL) | mg/dL | 0.16 ± 0.05 | 0.14 ± 0.07 | 0.18 ± 0.09 | 0.13 ± 0.05 | 0.39 ± 0.12 | 0.36 ± 0.07 | 0.39 ± 0.10 | 0.39 ± 0.07 |
Alanine aminotransferase (ALT) | U/L | 32.20 ± 3.94 | 34.00 ± 34.88 | 28.00 ± 18.59 | 20.10 ± 4.04 | 19.00 ± 6.13 | 17.60 ± 5.46 | 18.50 ± 7.71 | 15.00 ± 4.24 |
Aspartate aminotransferase (AST) | U/L | 85.2 ± 23.40 | 56.80 ± 26.88 | 73.40 ± 47.41 | 46.30 ± 13.62 * | 71.80 ± 28.23 | 60.90 ± 16.41 | 69.60 ± 32.89 | 59.60 ± 10.62 |
Alkaline phosphatase (ALP) | U/L | 48.10 ± 10.03 | 52.2 ± 9.93 | 45.8 ± 10.16 | 51.4 ± 13.53 | 193.40 ± 76.69 | 254.30 ± 52.81 | 216.10 ± 60.00 | 164.80 ±48.50 * |
Creatinine | mg/dL | 0.24 ± 0.05 | 0.21 ± 0.03 | 0.21 ± 0.03 | 0.21 ± 0.03 | 0.20 ± 0.16 | 0.15 ± 0.05 | 0.16 ± 0.05 | 0.16 ± 0.05 |
Blood urea nitrogen (BUN) | mg/dL | 31.61 ± 3.65 | 31.66 ± 2.82 | 31.88 ± 3.41 | 30.60 ± 2.79 | 25.75 ± 4.99 | 23.02 ± 3.44 | 23.42 ± 3.96 | 22.76 ± 4.42 |
Albumin | g/dL | 2.09 ± 0.23 | 1.90 ± 0.11 | 1.93 ± 0.22 | 2.09 ± 0.32 | 2.13 ± 0.32 | 2.35 ± 0.25 | 2.31 ±0.55 | 2.15 ± 0.19 |
Total protein | g/dL | 4.58 ± 0.32 | 4.34 ± 0.25 | 4.53 ± 0.33 | 4.69 ± 0.53 | 4.39 ± 0.35 | 4.67 ± 0.41 | 4.69 ± 0.83 | 4.38 ± 0.39 |
Cholesterol | mg/dL | 152.20 ± 23.86 | 116.90 ± 18.33 * | 128.10 ± 32.91 | 149.20 ± 38.44 | 85.40 ± 23.55 | 103.60 ± 17.51 | 82.80 ± 27.53 | 92.80 ± 18.47 |
Triglycerides | mg/dL | 119.50 ± 38.02 | 92.70 ± 28.28 | 134.10 ± 44.30 | 137.70 ± 38.26 | 141.90 ± 61.07 | 146.90 ± 25.27 | 131.20 ± 37.45 | 134.10 ± 44.57 |
Lactate dehydrogenase (LDH) | U/L | 677.90 ± 186.67 | 829.50 ± 98.58 | 771.00 ± 155.25 | 558.20 ± 277.16 | 736.00 ± 137.37 | 623.60 ± 192.60 | 680.10 ± 204.08 | 526.40 ± 154.84 |
Amylase | U/L | 1028.20 ± 174.35 | 698.60 ± 79.99 * | 880.30 ± 201.17 | 942.50 ± 110.29 | 940.20 ± 216.34 | 795.70 ± 156.60 | 784.80 ± 184.10 | 681.00 ± 110.49 |
Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|
DAILY DOSE (mg/kg) | 0 | 40 | 400 | 4000 | 0 | 40 | 400 | 4000 | |
ADRENALS | |||||||||
Absolute weight | mg | 8.92 ± 3.28 | 6.32 ± 2.69 | 7.48 ± 2.87 | 7.18 ± 2.22 | 9.87 ± 1.08 | 10.64 ± 2.82 | 9.99 ± 1.52 | 9.98 ± 3.07 |
Ratio per body weight | (10−3) | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 |
HEART | |||||||||
Absolute weight | mg | 181 ± 35.1 | 160.5 ± 12.57 | 164.5 ± 25.65 | 174 ± 22.71 | 126.99 ± 14.74 | 116.45 ± 10.29 | 116.97 ± 10.81 | 126.1 ± 11.78 |
Ratio per body weight | (10−3) | 0.49 ± 0.09 | 0.43 ± 0.03 | 0.44 ± 0.08 | 0.45 ± 0.06 | 0.44 ± 0.04 | 0.41 ± 0.03 | 0.41 ± 0.04 | 0.41 ± 0.04 |
KIDNEYS | |||||||||
Absolute weight | mg | 578 ± 92.59 | 539 ± 51.09 | 485.5 ± 42.72 | 553.5 ± 59.07 | 358.53 ± 49.41 | 328.8 ± 22.28 | 329.02 ± 26.37 | 343.48 ± 40.6 |
Ratio per body weight | (10−3) | 1.55 ± 0.21 | 1.46 ± 0.1 | 1.3 ± 0.14 | 1.43 ± 0.2 | 1.23 ± 0.15 | 1.16 ± 0.05 | 1.16 ± 0.09 | 1.12 ± 0.12 |
LIVER | |||||||||
Absolute weight | mg | 1745 ± 265.55 | 1523 ± 119.63 * | 1510 ± 116.43 * | 1759 ± 179.72 | 1348.59 ± 177.39 | 1144.98 ± 122.42 * | 1187.37 ± 127.53 | 1253.72 ± 191.86 |
Ratio per body weight | (10−3) | 4.72 ± 0.82 | 4.12 ± 0.34 * | 4.04 ± 0.27 * | 4.5 ± 0.33 | 4.64 ± 0.59 | 4.04 ± 0.37 * | 4.19 ± 0.39 | 4.07 ± 0.5 * |
SPLEEN | |||||||||
Absolute weight | mg | 92 ± 11.35 | 76.7 ± 15.71 | 96.4 ± 18.41 | 101.82 ± 11.86 | 96.88 ± 11.13 | 85.59 ± 11.28 | 91.73 ± 14.24 | 110.02 ± 29.12 |
Ratio per body weight | (10−3) | 0.25 ± 0.03 | 0.21 ± 0.04 | 0.26 ± 0.04 | 0.26 ± 0.03 | 0.33 ± 0.04 | 0.3 ± 0.04 | 0.32 ± 0.05 | 0.36 ± 0.08 |
TESTIS/OVARY | |||||||||
Absolute weight | mg | 231 ± 30.35 | 233.87 ± 39.81 | 232 ± 24.4 | 219 ± 37.55 | 21.63 ± 5.94 | 16.86 ± 4.6 | 21.01 ± 3.79 | 23.81 ± 4.46 |
Ratio per body weight | (10−3) | 0.62 ± 0.1 | 0.63 ± 0.09 | 0.62 ± 0.07 | 0.56 ± 0.11 | 0.08 ± 0.02 | 0.06 ± 0.02 | 0.07 ± 0.01 | 0.08 ± 0.01 |
Epididymis/Uterus | |||||||||
Absolute weight | mg | 37.34 ± 7.46 | 33.08 ± 6.97 | 32.32 ± 5.35 | 33.12 ± 9.94 | 122.82 ± 35.68 | 82.93 ± 30.75 | 124.72 ± 47.92 | 141.4 ± 52.16 |
Ratio per body weight | (10−3) | 0.1 ± 0.02 | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.08 ± 0.03 | 0.42 ± 0.13 | 0.29 ± 0.11 | 0.44 ± 0.18 | 0.46 ± 0.16 |
LUNG | |||||||||
Absolute weight | mg | 215 ± 29.15 | 194 ± 11.74 | 194 ± 23.19 | 211 ± 16.63 | 176.03 ± 18.38 | 165.95 ± 11.1 | 162.37 ± 12.4 | 179.98 ± 14.83 |
Ratio per body weight | (10−3) | 0.58 ± 0.07 | 0.53 ± 0.04 | 0.52 ± 0.08 | 0.54 ± 0.06 | 0.61 ± 0.06 | 0.59 ± 0.03 | 0.58 ± 0.07 | 0.59 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-H.; Chen, T.-Y.; Wu, C.-C.; Cheng, S.-H.; Chang, M.-Y.; Cheng, W.-H.; Chiu, S.-H.; Chen, C.-C.; Tsai, Y.-C.; Yang, D.-J.; et al. Safety Evaluation and Anti-Inflammatory Efficacy of Lacticaseibacillus paracasei PS23. Int. J. Mol. Sci. 2023, 24, 724. https://doi.org/10.3390/ijms24010724
Li C-H, Chen T-Y, Wu C-C, Cheng S-H, Chang M-Y, Cheng W-H, Chiu S-H, Chen C-C, Tsai Y-C, Yang D-J, et al. Safety Evaluation and Anti-Inflammatory Efficacy of Lacticaseibacillus paracasei PS23. International Journal of Molecular Sciences. 2023; 24(1):724. https://doi.org/10.3390/ijms24010724
Chicago/Turabian StyleLi, Chin-Hao, Tai-Ying Chen, Chien-Chen Wu, Shih-Hsuan Cheng, Min-Yu Chang, Wei-Hong Cheng, Shih-Hau Chiu, Chien-Chi Chen, Ying-Chieh Tsai, Deng-Jye Yang, and et al. 2023. "Safety Evaluation and Anti-Inflammatory Efficacy of Lacticaseibacillus paracasei PS23" International Journal of Molecular Sciences 24, no. 1: 724. https://doi.org/10.3390/ijms24010724
APA StyleLi, C.-H., Chen, T.-Y., Wu, C.-C., Cheng, S.-H., Chang, M.-Y., Cheng, W.-H., Chiu, S.-H., Chen, C.-C., Tsai, Y.-C., Yang, D.-J., Kang, J.-J., & Liao, P.-L. (2023). Safety Evaluation and Anti-Inflammatory Efficacy of Lacticaseibacillus paracasei PS23. International Journal of Molecular Sciences, 24(1), 724. https://doi.org/10.3390/ijms24010724