Testing Antimicrobial Properties of Selected Short Amyloids
Abstract
:1. Introduction
2. Results
2.1. Predicition of Antimicrobial Properties in Short Amyloids
2.2. Experimental Verification of Investigated Peptides in Terms of Amyloidogenic Properties
2.3. Experimental Verification of Cytotoxic Properties of Short Amyloids
2.4. Experimental Verification of Antimicrobial Properties of Short Amyloids
3. Discussion and Conclusions
4. Materials and Methods
4.1. In Silico Selection of Amyloids with Antimicrobial Properties
4.2. Strains and Culture Conditions
4.3. Determination of the Antimicrobial Properties of Short Amyloids
4.4. Kinetics of Polymerization Process
4.5. Cell Culture
4.6. Cell Proliferation Assays
4.7. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.; Merlini, G.; Saraiva, M.J.; Westermark, P. Amyloid Fibril Protein Nomenclature: 2012 Recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2012, 19, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Tillement, J.-P.; Lecanu, L.; Papadopoulos, V. Amyloidosis and Neurodegenerative Diseases: Current Treatments and New Pharmacological Options. Pharmacology 2010, 85, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G. Chapter 21—Concepts and Classification of Neurodegenerative Diseases. In Handbook of Clinical Neurology; Neuropathology; Kovacs, G.G., Alafuzoff, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 145, pp. 301–307. [Google Scholar]
- Otzen, D.; Riek, R. Functional Amyloids. Cold Spring Harb. Perspect. Biol. 2019, 11, a033860. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Srinivasan, Y.; De Anda, J.; Nicastro, L.K.; Tükel, Ç.; Wong, G.C. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation. Front. Immunol. 2020, 11, 1629. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, Y.; Zhang, M.; Liu, Y.; Zhang, D.; Gong, X.; Feng, Z.; Tang, J.; Chang, Y.; Zheng, J. Fundamentals of Cross-Seeding of Amyloid Proteins: An Introduction. J. Mater. Chem. B 2019, 7, 7267–7282. [Google Scholar] [CrossRef]
- Ivanova, M.I.; Lin, Y.; Lee, Y.-H.; Zheng, J.; Ramamoorthy, A. Biophysical Processes Underlying Cross-Seeding in Amyloid Aggregation and Implications in Amyloid Pathology. Biophys. Chem. 2021, 269, 106507. [Google Scholar] [CrossRef]
- Chaudhuri, P.; Prajapati, K.P.; Anand, B.G.; Dubey, K.; Kar, K. Amyloid Cross-Seeding Raises New Dimensions to Understanding of Amyloidogenesis Mechanism. Ageing Res. Rev. 2019, 56, 100937. [Google Scholar] [CrossRef]
- Burdukiewicz, M.; Rafacz, D.; Barbach, A.; Hubicka, K.; Bąkała, L.; Lassota, A.; Stecko, J.; Szymańska, N.; Wojciechowski, J.W.; Kozakiewicz, D.; et al. AmyloGraph: A Comprehensive Database of Amyloid–Amyloid Interactions. Nucleic Acids Res. 2022, gkac882. [Google Scholar] [CrossRef]
- Katorcha, E.; Makarava, N.; Lee, Y.J.; Lindberg, I.; Monteiro, M.J.; Kovacs, G.G.; Baskakov, I.V. Cross-Seeding of Prions by Aggregated α-Synuclein Leads to Transmissible Spongiform Encephalopathy. PLoS Pathog. 2017, 13, e1006563. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Ren, B.; Zhang, M.; Chen, H.; Liu, Y.; Liu, L.; Gong, X.; Jiang, B.; Ma, J.; Zheng, J. Seed-Induced Heterogeneous Cross-Seeding Self-Assembly of Human and Rat Islet Polypeptides. ACS Omega 2017, 2, 784–792. [Google Scholar] [CrossRef]
- Chorell, E.; Andersson, E.; Evans, M.L.; Jain, N.; Götheson, A.; Åden, J.; Chapman, M.R.; Almqvist, F.; Wittung-Stafshede, P. Bacterial Chaperones CsgE and CsgC Differentially Modulate Human α-Synuclein Amyloid Formation via Transient Contacts. PLoS ONE 2015, 10, e0140194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167, 1469–1480.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedland, R.P.; Chapman, M.R. The Role of Microbial Amyloid in Neurodegeneration. PLoS Pathog. 2017, 13, e1006654. [Google Scholar] [CrossRef] [PubMed]
- Challis, C.; Hori, A.; Sampson, T.R.; Yoo, B.B.; Challis, R.C.; Hamilton, A.M.; Mazmanian, S.K.; Volpicelli-Daley, L.A.; Gradinaru, V. Gut-Seeded α-Synuclein Fibrils Promote Gut Dysfunction and Brain Pathology Specifically in Aged Mice. Nat. Neurosci. 2020, 23, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Maróti, G.; Kereszt, A.; Kondorosi, É.; Mergaert, P. Natural Roles of Antimicrobial Peptides in Microbes, Plants and Animals. Res. Microbiol. 2011, 162, 363–374. [Google Scholar] [CrossRef]
- Raffatellu, M. Learning from Bacterial Competition in the Host to Develop Antimicrobials. Nat. Med. 2018, 24, 1097–1103. [Google Scholar] [CrossRef]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial Host Defence Peptides: Functions and Clinical Potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Augustyniak, D.; Kramarska, E.; Mackiewicz, P.; Orczyk-Pawiłowicz, M.; Lundy, F.T. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int. J. Mol. Sci. 2021, 22, 3658. [Google Scholar] [CrossRef]
- Travkova, O.G.; Moehwald, H.; Brezesinski, G. The Interaction of Antimicrobial Peptides with Membranes. Adv. Colloid Interface Sci. 2017, 247, 521–532. [Google Scholar] [CrossRef]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef]
- Ahmed, T.A.E.; Hammami, R. Recent Insights into Structure–Function Relationships of Antimicrobial Peptides. J. Food Biochem. 2019, 43, e12546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin Hafeez, A.; Jiang, X.; Bergen, P.J.; Zhu, Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int. J. Mol. Sci. 2021, 22, 11691. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and Consequences of Bacterial Resistance to Antimicrobial Peptides. Drug Resist. Update 2016, 26, 43–57. [Google Scholar] [CrossRef]
- Lázár, V.; Martins, A.; Spohn, R.; Daruka, L.; Grézal, G.; Fekete, G.; Számel, M.; Jangir, P.K.; Kintses, B.; Csörgő, B.; et al. Antibiotic-Resistant Bacteria Show Widespread Collateral Sensitivity to Antimicrobial Peptides. Nat. Microbiol. 2018, 3, 718–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; et al. Integrated Evolutionary Analysis Reveals Antimicrobial Peptides with Limited Resistance. Nat. Commun. 2019, 10, 4538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquette, A.; Bechinger, B. Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob. Agents Chemother. 2017, 61, e02340-16. [Google Scholar] [CrossRef] [Green Version]
- Gosztyla, M.L.; Brothers, H.M.; Robinson, S.R. Alzheimer’s Amyloid-β Is an Antimicrobial Peptide: A Review of the Evidence. J. Alzheimers Dis. 2018, 62, 1495–1506. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-C.; Moon, J.C.; Shin, S.Y.; Son, H.; Jung, Y.J.; Kim, N.-H.; Kim, Y.-M.; Jang, M.-K.; Lee, J.R. Functional Characterization of Alpha-Synuclein Protein with Antimicrobial Activity. Biochem. Biophys. Res. Commun. 2016, 478, 924–928. [Google Scholar] [CrossRef]
- Kobayashi, N.; Masuda, J.; Kudoh, J.U.N.; Shimizu, N.; Yoshida, T. BindingSites on Tau Proteins as Components for Antimicrobial Peptides. Biocontrol Sci. 2008, 13, 49–56. [Google Scholar] [CrossRef]
- Last, N.B.; Miranker, A.D. Common Mechanism Unites Membrane Poration by Amyloid and Antimicrobial Peptides. Proc. Natl. Acad. Sci. USA 2013, 110, 6382–6387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasupuleti, M.; Roupe, M.; Rydengård, V.; Surewicz, K.; Surewicz, W.K.; Chalupka, A.; Malmsten, M.; Sörensen, O.E.; Schmidtchen, A. Antimicrobial Activity of Human Prion Protein Is Mediated by Its N-Terminal Region. PLoS ONE 2009, 4, e7358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Jutila, A.; Nurminen, T.; Wickström, S.A.; Keski-Oja, J.; Kinnunen, P.K.J. Binding of Endostatin to Phosphatidylserine-Containing Membranes and Formation of Amyloid-like Fibers. Biochemistry 2005, 44, 2857–2863. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, X.; Chen, Y.; Lin, H. Amyloid Peptides with Antimicrobial and/or Microbial Agglutination Activity. Appl. Microbiol. Biotechnol. 2022, 106, 7711–7720. [Google Scholar] [CrossRef]
- Bhattacharjya, S. Structure and Interactions of A Host Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination. Sci. Rep. 2017, 7, 17795. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A.; Raimondi, F.; Rajendran, L.; Temussi, P.A. Why Does the Aβ Peptide of Alzheimer Share Structural Similarity with Antimicrobial Peptides? Commun. Biol. 2020, 3, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moir, R.D.; Lathe, R.; Tanzi, R.E. The Antimicrobial Protection Hypothesis of Alzheimer’s Disease. Alzheimers Dement. 2018, 14, 1602–1614. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Tang, Y.; Zhang, D.; He, H.; Wu, J.; Zheng, J. Antimicrobial α-Defensins as Multi-Target Inhibitors against Amyloid Formation and Microbial Infection. Chem. Sci. 2021, 12, 9124–9139. [Google Scholar] [CrossRef]
- Santos, J.; Gracia, P.; Navarro, S.; Peña-Díaz, S.; Pujols, J.; Cremades, N.; Pallarès, I.; Ventura, S. α-Helical Peptidic Scaffolds to Target α-Synuclein Toxic Species with Nanomolar Affinity. Nat. Commun. 2021, 12, 3752. [Google Scholar] [CrossRef]
- How, S.-C.; Cheng, Y.-H.; Lo, C.-H.; Lai, J.-T.; Lin, T.-H.; Bednarikova, Z.; Antosova, A.; Gazova, Z.; Wu, J.W.; Wang, S.S.-S. Exploring the Effects of Methylene Blue on Amyloid Fibrillogenesis of Lysozyme. Int. J. Biol. Macromol. 2018, 119, 1059–1067. [Google Scholar] [CrossRef]
- Gour, S.; Kumar, V.; Singh, A.; Gadhave, K.; Goyal, P.; Pandey, J.; Giri, R.; Yadav, J.K. Mammalian Antimicrobial Peptide Protegrin-4 Self Assembles and Forms Amyloid-like Aggregates: Assessment of Its Functional Relevance. J. Pept. Sci. 2019, 25, e3151. [Google Scholar] [CrossRef]
- Garvey, M.; Meehan, S.; Gras, S.L.; Schirra, H.J.; Craik, D.J.; Van der Weerden, N.L.; Anderson, M.A.; Gerrard, J.A.; Carver, J.A. A Radish Seed Antifungal Peptide with a High Amyloid Fibril-Forming Propensity. Biochim. Biophys. Acta BBA-Proteins Proteom. 2013, 1834, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Wang, X.; Chen, W.; Sun, H.; Wang, J. Lipopolysaccharide Induces Amyloid Formation of Antimicrobial Peptide HAL-2. Biochim. Biophys. Acta BBA-Biomembr. 2014, 1838, 2910–2918. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.L.; Kubeil, C.; Piantavigna, S.; Tikkoo, T.; Gray, N.P.; John, T.; Calabrese, A.N.; Liu, Y.; Hong, Y.; Hossain, M.A. Amyloid Aggregation and Membrane Activity of the Antimicrobial Peptide Uperin 3.5. Pept. Sci. 2018, 110, e24052. [Google Scholar] [CrossRef]
- Gour, S.; Kaushik, V.; Kumar, V.; Bhat, P.; Yadav, S.C.; Yadav, J.K. Antimicrobial Peptide (Cn-AMP2) from Liquid Endosperm of Cocos Nucifera Forms Amyloid-like Fibrillar Structure. J. Pept. Sci. 2016, 22, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Sayegh, R.S.R.; Batista, I.D.F.C.; de Melo, R.L.; Riske, K.A.; Daffre, S.; Montich, G.; Junior, P.I.D.S. Longipin: An Amyloid Antimicrobial Peptide from the Harvestman Acutisoma Longipes (Arachnida: Opiliones) with Preferential Affinity for Anionic Vesicles. PLoS ONE 2016, 11, e0167953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louros, N.; Konstantoulea, K.; De Vleeschouwer, M.; Ramakers, M.; Schymkowitz, J.; Rousseau, F. WALTZ-DB 2.0: An Updated Database Containing Structural Information of Experimentally Determined Amyloid-Forming Peptides. Nucleic Acids Res. 2020, 48, D389–D393. [Google Scholar] [CrossRef]
- Sidorczuk, K.; Gagat, P.; Pietluch, F.; Kała, J.; Rafacz, D.; Bąkała, L.; Słowik, J.; Kolenda, R.; Rödiger, S.; Fingerhut, L.C.; et al. Benchmarks in Antimicrobial Peptide Prediction Are Biased Due to the Selection of Negative Data. Brief. Bioinform. 2022, 23, bbac343. [Google Scholar] [CrossRef]
- Burdukiewicz, M.; Sidorczuk, K.; Rafacz, D.; Pietluch, F.; Chilimoniuk, J.; Rödiger, S.; Gagat, P. Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram. Int. J. Mol. Sci. 2020, 21, 4310. [Google Scholar] [CrossRef]
- Gade Malmos, K.; Blancas-Mejia, L.M.; Weber, B.; Buchner, J.; Ramirez-Alvarado, M.; Naiki, H.; Otzen, D. ThT 101: A Primer on the Use of Thioflavin T to Investigate Amyloid Formation. Amyloid 2017, 24, 1–16. [Google Scholar] [CrossRef]
- Biancalana, M.; Koide, S. Molecular Mechanism of Thioflavin-T Binding to Amyloid Fibrils. Biochim. Biophys. Acta BBA-Proteins Proteom. 2010, 1804, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed Ahmed, M.A.E.-G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and Its Role in the Era of Antibiotic Resistance: An Extended Review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [Green Version]
- Khamesipour, F.; Hashemian, S.M.; Velayati, A.A.; Tabarsi, P. A Review of Teicoplanin Used in the Prevention and Treatment of Serious Infections Caused by Gram-Positive Bacteria and Compared Its Effects with Some Other Antibiotics. Biomed. Pharmacol. J. 2015, 8, 513–521. [Google Scholar]
- Yushchuk, O.; Ostash, B.; Truman, A.W.; Marinelli, F.; Fedorenko, V. Teicoplanin Biosynthesis: Unraveling the Interplay of Structural, Regulatory, and Resistance Genes. Appl. Microbiol. Biotechnol. 2020, 104, 3279–3291. [Google Scholar] [CrossRef]
- Thomas, S.; Karnik, S.; Barai, R.S.; Jayaraman, V.K.; Idicula-Thomas, S. CAMP: A Useful Resource for Research on Antimicrobial Peptides. Nucleic Acids Res. 2010, 38, D774–D780. [Google Scholar] [CrossRef] [Green Version]
- The UniProt Consortium. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Biggio, B.; Roli, F. Wild Patterns: Ten Years after the Rise of Adversarial Machine Learning. Pattern Recognit. 2018, 84, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-T.; Lee, C.-C.; Yang, J.-R.; Lai, J.Z.C.; Chang, K.Y. A Large-Scale Structural Classification of Antimicrobial Peptides. BioMed Res. Int. 2015, 2015, e475062. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-T.; Yang, L.-Y.; Lu, I.-H.; Cheng, W.-C.; Hsu, Z.-R.; Chen, S.-H.; Lin, C.-Y. AI4AMP: An Antimicrobial Peptide Predictor Using Physicochemical Property-Based Encoding Method and Deep Learning. mSystems 2021, 6, e00299-21. [Google Scholar] [CrossRef]
- Bhadra, P.; Yan, J.; Li, J.; Fong, S.; Siu, S.W.I. AmPEP: Sequence-Based Prediction of Antimicrobial Peptides Using Distribution Patterns of Amino Acid Properties and Random Forest. Sci. Rep. 2018, 8, 1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingerhut, L.C.H.W.; Miller, D.J.; Strugnell, J.M.; Daly, N.L.; Cooke, I.R. Ampir: An R Package for Fast Genome-Wide Prediction of Antimicrobial Peptides. Bioinformatics 2020, 36, 5262–5263. [Google Scholar] [CrossRef] [PubMed]
- Veltri, D.; Kamath, U.; Shehu, A. Deep Learning Improves Antimicrobial Peptide Recognition. Bioinformatics 2018, 34, 2740–2747. [Google Scholar] [CrossRef] [Green Version]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A Database on Sequences, Structures and Signatures of Antimicrobial Peptides. Nucleic Acids Res. 2016, 44, D1094–D1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Bhadra, P.; Li, A.; Sethiya, P.; Qin, L.; Tai, H.K.; Wong, K.H.; Siu, S.W.I. Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. Mol. Ther. Nucleic Acids 2020, 20, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Kavousi, K.; Bagheri, M.; Behrouzi, S.; Vafadar, S.; Atanaki, F.F.; Lotfabadi, B.T.; Ariaeenejad, S.; Shockravi, A.; Moosavi-Movahedi, A.A. IAMPE: NMR-Assisted Computational Prediction of Antimicrobial Peptides. J. Chem. Inf. Model. 2020, 60, 4691–4701. [Google Scholar] [CrossRef] [PubMed]
- Santos-Júnior, C.D.; Pan, S.; Zhao, X.-M.; Coelho, L.P. Macrel: Antimicrobial Peptide Screening in Genomes and Metagenomes. PeerJ 2020, 8, e10555. [Google Scholar] [CrossRef] [PubMed]
- Pinacho-Castellanos, S.A.; García-Jacas, C.R.; Gilson, M.K.; Brizuela, C.A. Alignment-Free Antimicrobial Peptide Predictors: Improving Performance by a Thorough Analysis of the Largest Available Data Set. J. Chem. Inf. Model. 2021, 61, 3141–3157. [Google Scholar] [CrossRef]
- Salinas, N.; Tayeb-Fligelman, E.; Sammito, M.D.; Bloch, D.; Jelinek, R.; Noy, D.; Usón, I.; Landau, M. The Amphibian Antimicrobial Peptide Uperin 3.5 Is a Cross-α/Cross-β Chameleon Functional Amyloid. Proc. Natl. Acad. Sci. USA 2021, 118, e2014442118. [Google Scholar] [CrossRef]
- Ahmadian, S.; Barar, J.; Saei, A.A.; Fakhree, M.A.A.; Omidi, Y. Cellular Toxicity of Nanogenomedicine in MCF-7 Cell Line: MTT Assay. JoVE J. Vis. Exp. 2009, 26, e1191. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 10 October 2022).
AMP Prediction Model | Peptide Name and Its Sequence | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Amy 1 | Amy 2 | Amy 3 | Amy 4 | Amy 5 | Amy 6 | Amy 7 | Amy 8 | Amy 9 | Amy 10 | |
VQIVCK | VCIVYK | LIVAGK | GAIIGL | KCWCFT | VKIVYK | LKVKVL | AIIGLM | GGYLLG | VGIVYK | |
AmpGram | 0.685 | 0.720 | 0.769 | 0.809 | 0.849 | 0.684 | 0.632 | 0.633 | 0.652 | 0.665 |
ADAM-SVM * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
AI4AMP | 0.686 | 0.174 | 0.292 | 0.280 | 0.292 | 0.564 | 0.254 | 0.534 | 0.181 | 0.553 |
AmPEP * | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 |
Ampir | 0.350 | 0.452 | 0.658 | 0.636 | 0.185 | 0.767 | 0.611 | 0.744 | 0.578 | 0.322 |
AMP Scanner Vr2 | 0.774 | 0.869 | 0.331 | 0.747 | 0.890 | 0.753 | 0.357 | 0.760 | 0.579 | 0.737 |
CAMP3-ANN * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 |
CAMP3-DA | 0.086 | 0.449 | 0.593 | 0.081 | 0.781 | 0.880 | 0.811 | 0.001 | 0.264 | 0.405 |
CAMP3-RF | 0.452 | 0.507 | 0.492 | 0.383 | 0.378 | 0.569 | 0.556 | 0.421 | 0.296 | 0.477 |
CAMP3-SVM | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.876 | 0.024 | 0.000 | 0.000 | 0.000 |
Deep-AmPEP30 * | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 |
IAMPE * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
MACREL | 0.505 | 0.386 | 0.535 | 0.455 | 0.257 | 0.574 | 0.743 | 0.426 | 0.069 | 0.446 |
RF-AmPEP30 * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
RF-AMPDiscover | 0.780 | 0.920 | 0.960 | 0.800 | 0.970 | 0.850 | 0.960 | 0.660 | 0.870 | 0.780 |
RNN-AMPDiscover * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 |
Amyloid | Sequence | R2 | p-Value | Slope | IC50 [µg/mL] |
---|---|---|---|---|---|
Amyloid 1 | VQIVCK | 0.563 | 3.93 × 10−6 | −0.299 | 167 |
Amyloid 2 | VCIVYK | 0.500 | 2.04 × 10−5 | −0.426 | 117 |
Amyloid 3 | LIVAGK | 0.350 | 0.00054 | −0.423 | 118 |
Amyloid 4 | GAIIGL | 0.711 | 2.62 × 10−8 | −0.433 | 116 |
Amyloid 5 | KCWCFT | 0.494 | 2.04 × 10−5 | −0.523 | 96 |
Amyloid 6 | VKIVYK | 0.372 | 0.00039 | −0.447 | 112 |
Amyloid 7 | LKVKVL | 0.271 | 0.00263 | −0.184 | 271 |
Amyloid 8 | AIIGLM | 0.347 | 8.43 × 10−5 | −0.337 | 148 |
Amyloid 9 | GGYLLG | 0.464 | 3.93 × 10−6 | −0.292 | 171 |
Amyloid 10 | VGIVYK | 0.270 | 0.00054 | −0.409 | 122 |
Amyloid | Species | R2 | p-Value | Slope | MIC |
---|---|---|---|---|---|
Amyloid 2 | E. faecium 2VRE | 0.516 | 1.4 × 10−6 | −0.509 | 177 |
Amyloid 6 | E. faecium 2VRE | 0.465 | 4.9 × 10−11 | −0.504 | 179 |
Amyloid 10 | E. faecalis 37VRE | 0.598 | 4.0 × 10−5 | −0.465 | 193 |
Amyloid 1 | E. faecium 2VRE | 0.381 | 1.0 × 10−4 | −0.460 | 196 |
Amyloid 9 | E. faecium 2VRE | 0.457 | 6.3 × 10−8 | −0.440 | 204 |
Amyloid 1 | E. faecalis 37VRE | 0.645 | 3.8 × 10−17 | −0.395 | 228 |
Amyloid 5 | E. faecium 2VRE | 0.425 | 1.0 × 10−14 | −0.391 | 230 |
Amyloid 8 | E. faecium 2VRE | 0.446 | 1.2 × 10−4 | −0.322 | 280 |
Amyloid 10 | E. faecium 2 VRE | 0.288 | 1.5 × 10−4 | −0.305 | 295 |
Amyloid 3 | E. faecium 2VRE | 0.419 | 9.3 × 10−8 | −0.299 | 301 |
Amyloid 6 | E. coli 1471 | 0.500 | 2.9 × 10−17 | −0.282 | 319 |
Amyloid 7 | E. faecium 2VRE | 0.316 | 7.0 × 10−4 | −0.276 | 326 |
Amyloid 7 | E. coli 1471 | 0.389 | 2.5 × 10−11 | −0.261 | 345 |
Amyloid 2 | E. faecalis 37VRE | 0.554 | 4.1 × 10−7 | −0.247 | 364 |
Amyloid 8 | E. coli 1471 | 0.362 | 2.0 × 10−14 | −0.242 | 372 |
Amyloid 9 | E. faecalis 37VRE | 0.641 | 4.9 × 10−3 | −0.232 | 389 |
Amyloid 5 | E. coli 1471 | 0.432 | 1.8 × 10−17 | −0.222 | 405 |
Amyloid 9 | K. pneumoniae N111 | 0.436 | 4.5 × 10−12 | −0.221 | 406 |
Amyloid 7 | E. faecalis 37VRE | 0.308 | 8.7 × 10−3 | −0.215 | 418 |
Amyloid 8 | K. pneumoniae N111 | 0.355 | 1.8 × 10−12 | −0.189 | 475 |
Amyloid 6 | K. pneumoniae N111 | 0.375 | 3.0 × 10−12 | −0.187 | 482 |
Amyloid 8 | E. faecalis 37VRE | 0.384 | 5.6 × 10−5 | −0.182 | 496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagat, P.; Duda-Madej, A.; Ostrówka, M.; Pietluch, F.; Seniuk, A.; Mackiewicz, P.; Burdukiewicz, M. Testing Antimicrobial Properties of Selected Short Amyloids. Int. J. Mol. Sci. 2023, 24, 804. https://doi.org/10.3390/ijms24010804
Gagat P, Duda-Madej A, Ostrówka M, Pietluch F, Seniuk A, Mackiewicz P, Burdukiewicz M. Testing Antimicrobial Properties of Selected Short Amyloids. International Journal of Molecular Sciences. 2023; 24(1):804. https://doi.org/10.3390/ijms24010804
Chicago/Turabian StyleGagat, Przemysław, Anna Duda-Madej, Michał Ostrówka, Filip Pietluch, Alicja Seniuk, Paweł Mackiewicz, and Michał Burdukiewicz. 2023. "Testing Antimicrobial Properties of Selected Short Amyloids" International Journal of Molecular Sciences 24, no. 1: 804. https://doi.org/10.3390/ijms24010804
APA StyleGagat, P., Duda-Madej, A., Ostrówka, M., Pietluch, F., Seniuk, A., Mackiewicz, P., & Burdukiewicz, M. (2023). Testing Antimicrobial Properties of Selected Short Amyloids. International Journal of Molecular Sciences, 24(1), 804. https://doi.org/10.3390/ijms24010804