The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights
Abstract
:1. Introduction
2. Biological and Molecular Action of Ozone
3. Clinical Action of Ozone
- Ozone treatment is not an alternative medicine.
- Ozone is not a pro-drug.
- ○
- Carrier pro-drug: where the drug is bound to a molecule that has a transport function.
- ○
- Bio-precursor: the molecule acts as a substrate to enzymes, giving the active drug.
4. Potential Effects of the Interactions between Ozone and Its Putative Molecular Targets
5. Assessment and Monitoring of Efficacy
6. Safety Issues
7. Extemporaneous Preparation of the Gaseous Oxygen–Ozone Mixture
8. Standardization Criteria
9. Participation of the Nursing Staff in the Therapeutic Treatment with Ozone
- Ensuring that the material to be used is resistant to the action of ozone.
- Ensuring adequate ventilation of the premises.
- Checking that the generator does not have gas leaks.
- Connecting the equipment in the required time before applying the procedure in question to stabilize the generation of the O2/O3 gas mixture.
10. Weakness in the Therapeutic Treatment with Ozone
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rubin, M.B. The history of ozone. The Schönbein period, 1839–1868. Bull. Hist. Chem. 2001, 26, 40–56. [Google Scholar]
- Rubin, M.B. The history of ozone. II. 1869–1899. Bull. Hist. Chem. 2002, 27, 81–106. [Google Scholar]
- Rubin, M.B. The History of Ozone. Part III: CD Harries and the Introduction of Ozone into Organic Chemistry. Helv. Chim. Acta. 2003, 86, 930–940. [Google Scholar] [CrossRef]
- Rubin, M.B. The History of Ozone. IV. The Isolation of Pure Ozone and Determination of its Physical Properties. Bull. Hist. Chem. 2004, 29, 99–106. [Google Scholar]
- Rubin, M.B. The History of Ozone. V. Formation of Ozone from Oxygen at High Temperatures. Bull. Hist. Chem. 2007, 32, 45–56. [Google Scholar]
- Rubin, M.B. The History of Ozone. VI. Ozone on Silica Gel (“Dry Ozone”). Bull. Hist. Chem. 2008, 33, 68–75. [Google Scholar]
- Rubin, M.B. The history of ozone. VII. The mythical spawn of ozone: Antozone, oxozone, and ozohydrogen. Bull. Hist. Chem. 2009, 34, 39–49. [Google Scholar]
- Braslavsky, S.E.; Rubin, M.B. The history of ozone. Part VIII. Photochemical formation of ozone. Photochem. Photobiol. Sci. 2011, 10, 1515–1520. [Google Scholar] [CrossRef]
- Horváth, M.; Bilitzky, L.; Hüttner, J. Ozone. Topics in Inorganic and General Chemistry. Monograph 20; Elsevier: Amsterdam, The Netherlands, 1985; ISBN 0444996257. [Google Scholar] [CrossRef]
- Travagli, V. Some clarifications regarding ozone therapy vs retinal vascular reactivity. Photodiagnosis Photodyn. Ther. 2022, 40, 103140. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A. Atmospheric chemistry and air pollution. Scient. World J. 2003, 3, 199–234. [Google Scholar] [CrossRef]
- Bytnerowicz, A.; Arbaugh, M.; Schilling, S.; Fraczek, W.; Alexander, D. Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California. Environ. Pollut. 2008, 155, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, L.S. The biological effects of ozone on man and animals. Am. Ind. Hyg. Assoc. J. 1967, 28, 267–277. [Google Scholar] [CrossRef]
- Mustafa, M.G. Biochemical basis of ozone toxicity. Free Radic. Biol. Med. 1990, 9, 245–265. [Google Scholar] [CrossRef]
- Kato, G.; Mitome, H.; Teshima, K.; Tawa, K.; Hakuba, Y.; Tanabe, T.; Funahashi, T.; Hatae, N.; Koike, Y.; Hasebe, M.; et al. Study on the use of ozone water as a chemical decontamination agent for antineoplastic drugs in clinical settings. Ann. Work Expo. Health. 2023, 67, 241–251. [Google Scholar] [CrossRef]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone application in different industries: A review of recent developments. Chem. Eng. J. 2023, 454, 140188. [Google Scholar] [CrossRef]
- Hew-Butler, T.; Smith-Hale, V.; Pollard-McGrandy, A.; VanSumeren, M. Of mice and men-the physiology, psychology, and pathology of overhydration. Nutrients 2019, 11, 1539. [Google Scholar] [CrossRef] [PubMed]
- Vassalle, C.; Maltinti, M.; Sabatino, L. Targeting oxidative stress for disease prevention and therapy: Where do we stand, and where do we go from here. Molecules 2020, 25, 2653. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative eustress: On constant alert for redox homeostasis. Redox Biol. 2021, 41, 101867. [Google Scholar] [CrossRef]
- Roth, J.A.; Sullivan, D.E. Solubility of ozone in water. Ind. Engin. Chem. Fund. 1981, 20, 137–140. [Google Scholar] [CrossRef]
- Gardoni, D.; Vailati, A.; Canziani, R. Decay of ozone in water: A review. Ozone Sci. Engineer. 2012, 34, 233–242. [Google Scholar] [CrossRef]
- Lian, B.; Jiang, Q.; Garg, S.; Wang, Y.; Yuan, Y.; Waite, T.D. Analysis of ozonation processes using coupled modeling of fluid dynamics, mass transfer, and chemical reaction kinetics. Environ. Sci. Technol. 2022, 56, 4377–4385. [Google Scholar] [CrossRef] [PubMed]
- Mehraban, F.; Seyedarabi, A. Molecular effects of ozone on amino acids and proteins, especially human hemoglobin and albumin, and the need to personalize ozone concentration in major ozone autohemotherapy. Crit. Rev. Clin. Lab. Sci. 2023. published online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Viebahn-Haensler, R.; León Fernández, O.S. Ozone in Medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. Int. J. Mol. Sci. 2021, 22, 7890. [Google Scholar] [CrossRef]
- Tricarico, G.; Travagli, V. The relationship between ozone and human blood in the course of a well-controlled, mild, and transitory oxidative eustress. Antioxidants 2021, 10, 1946. [Google Scholar] [CrossRef] [PubMed]
- Bocci, V. Oxygen-Ozone Therapy. A Critical Evaluation; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2002; ISBN 978-1-4020-0588-6. [Google Scholar] [CrossRef]
- Bocci, V. Ozone—A New Medical Drug; Springer: Dordrecht, The Netherlands, 2005; ISBN 978-90-481-6805-7. [Google Scholar] [CrossRef]
- Bocci, V. Ozone—A New Medical Drug, 2nd ed.; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-9233-5. [Google Scholar] [CrossRef]
- Wu, K.M. A new classification of prodrugs: Regulatory perspectives. Pharmaceuticals 2009, 2, 77–81. [Google Scholar] [CrossRef]
- Travagli, V. The right therapeutic method of ozone therapy used to treat multiple sclerosis patients. Mult. Scler. Relat. Dis. 2020, 46, 102545. [Google Scholar] [CrossRef]
- Bocci, V.; Borrelli, E.; Travagli, V.; Zanardi, I. The ozone paradox: Ozone is a strong oxidant as well as a medical drug. Med. Res. Rev. 2009, 29, 646–682. [Google Scholar] [CrossRef]
- Sagai, M.; Bocci, V. Mechanisms of action involved in ozone therapy: Is healing induced via a mild oxidative stress? Med. Gas Res. 2011, 1, 29. [Google Scholar] [CrossRef]
- Pecorelli, A.; Bocci, V.; Acquaviva, A.; Belmonte, G.; Gardi, C.; Virgili, F.; Ciccoli, L.; Valacchi, G. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 2013, 267, 30–40. [Google Scholar] [CrossRef]
- Di Mauro, R.; Cantarella, G.; Bernardini, R.; Di Rosa, M.; Barbagallo, I.; Distefano, A.; Longhitano, L.; Vicario, N.; Nicolosi, D.; Lazzarino, G.; et al. The biochemical and pharmacological properties of ozone: The smell of protection in acute and chronic diseases. Int. J. Mol. Sci. 2019, 20, 634. [Google Scholar] [CrossRef]
- Liu, S.; Pi, J.; Zhang, Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol. 2022, 54, 102389. [Google Scholar] [CrossRef] [PubMed]
- Lender, C. Zur anwendung von sauerstoff und ozon-sauerstoff. In Deutsche Klinik; Göschen, A., Ed.; Druck und Verlag: Berlin, Germany, 1870; Volume 22, pp. 435–436. [Google Scholar]
- Koßobutzki, C. Die geschichte der inhalativen sauerstofftherapie in Deutschland. Ph.D. Thesis, Universität Lübeck, Lübeck, Germany, 2009. [Google Scholar]
- Anonymous. The internal administration of ozone in the treatment of phthisis. Lancet 1892, 140, 1180–1181. [Google Scholar] [CrossRef]
- Tricarico, G.; Rodrigues Orlandin, J.; Rocchetti, V.; Ambrosio, C.E.; Travagli, V. A critical evaluation of the use of ozone and its derivatives in dentistry. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9071–9093. [Google Scholar] [CrossRef]
- Orlandin, J.R.; Machado, L.C.; Ambrósio, C.E.; Travagli, V. Ozone and its derivatives in veterinary medicine: A careful appraisal. Vet. Anim. Sci. 2021, 13, 100191. [Google Scholar] [CrossRef] [PubMed]
- Pires, M.V.; de Lima, C.J.; Carvalho, H.C.; Moreira, L.H.; Fernandes, A.B. Effectiveness of intravesical ozone in interstitial cystitis by the O’Leary-Sant symptom index. Int. Urogynecol. J. 2022, 15, 1–10. [Google Scholar] [CrossRef]
- Bocci, V.; Bianchi, L.; Larini, A. The ozone enigma in medicine. The biochemical relationship between ozone and body fluids may account for its biological, therapeutic and toxic effects. Riv. Ital. Ossigeno-Ozonoterapia 2003, 2, 113–120. [Google Scholar]
- Guensch, D.P.; Michel, M.C.; Huettenmoser, S.P.; Jung, B.; Gulac, P.; Segiser, A.; Longnus, S.L.; Fischer, K. The blood oxygen level dependent (BOLD) effect of in-vitro myoglobin and hemoglobin. Sci. Rep. 2021, 11, 11464. [Google Scholar] [CrossRef]
- Mazurok, V.; Belikov, V.L.; Slivin, O.A. Intestinal insufflation of small volume of oxygen increases systemic oxygenation in acute respiratory distress syndrome patients. Eur. J. Anaesthesiol. 2015, 32, 507–508. [Google Scholar] [CrossRef]
- Ishii, Y.; Ushida, T.; Tateishi, T.; Miyanaga, Y. Effects of transcutaneous topical injection of oxygen on vascular endothelial growth factor gene into the healing ligament in rats. J. Orthop. Res. 2003, 21, 1113–1117. [Google Scholar] [CrossRef]
- Assidi, M.; Buhmeida, A.; Budowle, B. Medicine and health of 21st Century: Not just a high biotech-driven solution. NPJ Genom. Med. 2022, 7, 67. [Google Scholar] [CrossRef]
- Vogt, H. The precision paradox: How personalized medicine increases uncertainty. In Can Precision Medicine Be Personal; Can Personalized Medicine Be Precise? Barilan, Y.M., Brusa, M., Ciechanover, A., Eds.; Oxford University Press: Oxford, UK, 2022; pp. 61–74. [Google Scholar] [CrossRef]
- Bocci, V.; Zanardi, I.; Borrelli, E.; Travagli, V. Reliable and effective oxygen-ozone therapy at a crossroads with ozonated saline infusion and ozone rectal insufflation. J. Pharm. Pharmacol. 2012, 64, 482–489. [Google Scholar] [CrossRef] [PubMed]
- König, B.; Lahodny, J. Ozone high dose therapy (OHT) improves mitochondrial bioenergetics in peripheral blood mononuclear cells. Transl. Med. Commun. 2022, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Franzini, M.; Valdenassi, L.; Pandolfi, S.; Ricevuti, G.; Tirelli, U.; Vaiano, F.; Chirumbolo, S. Comments on the optimal use of medical ozone in clinics versus the Ozone High Dose Therapy (OHT) approach. Transl. Med. Commun. 2022, 7, 26. [Google Scholar] [CrossRef]
- Ciborowski, M.; Lipska, A.; Godzien, J.; Ferrarini, A.; Korsak, J.; Radziwon, P.; Tomasiak, M.; Barbas, C. Combination of LC-MS- and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood. J. Proteome Res. 2012, 11, 6231–6241. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, N.; Bocci, V.; Gaggiotti, E. Ozone therapy. Int. J. Artif. Organs. 2004, 27, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.L.; Wilson, A.L.; Gandhi, J.; Vatsia, S.; Khan, S.A. Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility. Med. Gas Res. 2017, 7, 212–219. [Google Scholar] [CrossRef]
- Scassellati, C.; Galoforo, A.C.; Bonvicini, C.; Esposito, C.; Ricevuti, G. Ozone: A natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res. Rev. 2020, 63, 101138. [Google Scholar] [CrossRef]
- Malatesta, M.; Cisterna, B.; Costanzo, M. Cellular and molecular mechanisms of ozone therapy: Present knowledge and prospective applications. Int. J. Mol. Sci. 2022, 23, 12586. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, P.; Wang, H.; Liu, Y.; Bu, W. Biomedicine meets Fenton chemistry. Chem. Rev. 2021, 121, 1981–2019. [Google Scholar] [CrossRef]
- Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018, 29, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zeng, L.; Xia, T.; Li, S.; Yan, T.; Wu, S.; Qiu, G.; Liu, Z. Toward a biomarker of oxidative stress: A fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Anal. Chem. 2015, 87, 8052–8056. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.D.; Lodi, C.; Collinson, C.; Balchum, O.J. Ozone and lipid peroxidation. Arch. Environ. Health 1969, 18, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Roehm, J.N.; Hadley, J.G.; Menzel, D.B. Oxidation of unsaturated fatty acids by ozone and nitrogen dioxide. Arch. Environ. Health 1971, 23, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Long, N.C.; Suh, J.; Morrow, J.D.; Schiestl, R.H.; Murthy, G.G.; Brain, J.D.; Frei, B. Ozone causes lipid peroxidation but little antioxidant depletion in exercising and nonexercising hamsters. J. Appl. Physiol. 2001, 91, 1694–1700. [Google Scholar] [CrossRef]
- Pryor, W.A.; Das, B.; Church, D.F. The ozonation of unsaturated fatty acids: Aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chem. Res. Toxicol. 1991, 4, 341–348. [Google Scholar] [CrossRef]
- Corteselli, E.M.; Gold, A.; Surratt, J.; Cui, T.; Bromberg, P.; Dailey, L.; Samet, J.M. Supplementation with omega-3 fatty acids potentiates oxidative stress in human airway epithelial cells exposed to ozone. Environ. Res. 2020, 187, 109627. [Google Scholar] [CrossRef]
- Cetraro, N.; Cody, R.B.; Yew, J.Y. Carbon-carbon double bond position elucidation in fatty acids using ozone-coupled direct analysis in real time mass spectrometry. Analyst 2019, 144, 5848–5855. [Google Scholar] [CrossRef]
- Wroński, A.; Wójcik, P. Impact of ROS-dependent lipid metabolism on psoriasis pathophysiology. Int. J. Mol. Sci. 2022, 23, 12137. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwel, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Kajarabille, N.; Latunde-Dada, G.O. Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int. J. Mol. Sci. 2019, 20, 4968. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Onaivi, E.S. Endocannabinoid system components: Overview and tissue distribution. Adv. Exp. Med. Biol. 2019, 1162, 1–12. [Google Scholar] [CrossRef]
- Lu, H.C.; Mackie, K. Review of the endocannabinoid system. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef]
- Zerbinati, C.; Iuliano, L. Cholesterol and related sterols autoxidation. Free Radic. Biol. Med. 2017, 111, 151–155. [Google Scholar] [CrossRef]
- Kosmider, B.; Loader, J.E.; Murphy, R.C.; Mason, R.J. Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells. Free Radic. Biol. Med. 2010, 48, 1513–1524. [Google Scholar] [CrossRef]
- Miyoshi, N.; Iuliano, L.; Tomono, S.; Ohshima, H. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochem. Biophys. Res. Commun. 2014, 446, 702–708. [Google Scholar] [CrossRef]
- Panigrahy, D.; Gilligan, M.M.; Serhan, C.N.; Kashfi, K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol. Ther. 2021, 227, 107879. [Google Scholar] [CrossRef]
- Yaeger, M.J.; Reece, S.W.; Kilburg-Basnyat, B.; Hodge, M.X.; Pal, A.; Dunigan-Russell, K.; Luo, B.; You, D.J.; Bonner, J.C.; Spangenburg, E.E.; et al. Sex differences in pulmonary eicosanoids and specialized pro-resolving mediators in response to ozone exposure. Toxicol. Sci. 2021, 183, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Kilburg-Basnyat, B.; Reece, S.W.; Crouch, M.J.; Luo, B.; Boone, A.D.; Yaeger, M.; Hodge, M.; Psaltis, C.; Hannan, J.L.; Manke, J.; et al. Specialized pro-resolving lipid mediators regulate ozone-induced pulmonary and systemic inflammation. Toxicol. Sci. 2018, 163, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Sevanian, A.; Ursini, F. Lipid peroxidation in membranes and low-density lipoproteins: Similarities and differences. Free Radic. Biol. Med. 2000, 29, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Bacchetti, T.; Ferretti, G.; Carbone, F.; Ministrini, S.; Montecucco, F.; Jamialahmadi, T.; Sahebkar, A. Dysfunctional high-density lipoprotein: The role of myeloperoxidase and paraoxonase-1. Curr. Med. Chem. 2021, 28, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, S.; Hu, D.; Jiang, F.; Lv, Y.; Liu, G. Biological properties and clinical significance of lipoprotein-associated phospholipase A2 in ischemic stroke. Cardiovasc. Ther. 2022, 2022, 3328574. [Google Scholar] [CrossRef]
- Jialal, I.; Fuller, C.J. Oxidized LDL and antioxidants. Clin. Cardiol. 1993, 16 (Suppl. S1), 16–19. [Google Scholar] [CrossRef]
- Pallotti, F.; Bergamini, C.; Lamperti, C.; Fato, R. The roles of coenzyme Q in disease: Direct and indirect involvement in cellular functions. Int. J. Mol. Sci. 2021, 23, 128. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential anti-atherosclerotic properties of astaxanthin. Mar. Drugs 2016, 14, 35. [Google Scholar] [CrossRef]
- Lankin, V.Z.; Tikhaze, A.K.; Kapel’ko, V.I.; Shepel’kova, G.S.; Shumaev, K.B.; Panasenko, O.M.; Konovalova, G.G.; Belenkov, Y.N. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry 2007, 72, 1081–1090. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Kanuri, S.H.; Mehta, J.L. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr. Med. Chem. 2019, 26, 1693–1700. [Google Scholar] [CrossRef]
- Hörl, G.; Ledinski, G.; Kager, G.; Hallström, S.; Tafeit, E.; Koestenberger, M.; Jürgens, G.; Cvirn, G. In vitro oxidation of LDL by ozone. Chem. Phys. Lipids 2014, 183, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.T.; Groh, L.; Thiem, K.; Bekkering, S.; Li, Y.; Matzaraki, V.; van der Heijden, C.D.C.C.; van Puffelen, J.H.; Lachmandas, E.; Jansen, T.; et al. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J. Mol. Med. 2020, 98, 819–831. [Google Scholar] [CrossRef]
- Groh, L.A.; Ferreira, A.V.; Helder, L.; van der Heijden, C.D.C.C.; Novakovic, B.; van de Westerlo, E.; Matzaraki, V.; Moorlag, S.J.C.F.M.; de Bree, L.C.; Koeken, V.A.C.M.; et al. oxLDL-induced trained immunity is dependent on mitochondrial metabolic reprogramming. Immunometabolism 2021, 3, e210025. [Google Scholar] [CrossRef]
- Fabi, M.; Petrovic, B.; Andreozzi, L.; Corinaldesi, E.; Filice, E.; Biagi, C.; Rizzello, A.; Mattesini, B.E.; Bugani, S.; Lanari, M. Circulating endothelial cells: A new possible marker of endothelial damage in Kawasaki disease, Multisystem Inflammatory Syndrome in children and acute SARS-CoV-2 infection. Int. J. Mol. Sci. 2022, 23, 10106. [Google Scholar] [CrossRef]
- Saha, A.; Bagchi, A.; Chatterjee, S.; Dutta, S.; Misra, S.; Bhattacharjee, D.; Chatterjee, S.; Mondal, S.; Ghosh, P.; Chatterjee, M.; et al. Phenotypic characterization of circulating endothelial cells induced by inflammation and oxidative stress in ankylosing spondylitis. Free Radic. Res. 2021, 55, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Rafii, S. Circulating endothelial precursors: Mystery, reality, and promise. J. Clin. Investig. 2000, 105, 17–19. [Google Scholar] [CrossRef]
- Reskiawan, A.; Kadir, R.; Alwjwaj, M.; Ahmad Othman, O.; Rakkar, K.; Sprigg, N.; Bath, P.M.; Bayraktutan, U. Inhibition of oxidative stress delays senescence and augments functional capacity of endothelial progenitor cells. Brain Res. 2022, 1787, 147925. [Google Scholar] [CrossRef] [PubMed]
- Jantzen, K.; Jensen, A.; Kermanizadeh, A.; Elholm, G.; Sigsgaard, T.; Møller, P.; Roursgaard, M.; Loft, S. Inhalation of house dust and ozone alters systemic levels of endothelial progenitor cells, oxidative stress, and inflammation in elderly subjects. Toxicol. Sci. 2018, 163, 353–363. [Google Scholar] [CrossRef]
- Kumari, R.; Jat, P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front. Cell. Dev. Biol. 2021, 9, 645593. [Google Scholar] [CrossRef]
- Schmauck-Medina, T.; Molière, A.; Lautrup, S.; Zhang, J.; Chlopicki, S.; Madsen, H.B.; Cao, S.; Soendenbroe, C.; Mansell, E.; Vestergaard, M.B.; et al. New hallmarks of ageing: A 2022 Copenhagen ageing meeting summary. Aging 2022, 14, 6829–6839. [Google Scholar] [CrossRef]
- Wilhelm, J. Metabolic aspects of membrane lipid peroxidation. Acta Univ. Carol. Med. Monogr. 1990, 137, 1–53. [Google Scholar] [PubMed]
- Catalá, A.; Díaz, M. Editorial: Impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front. Physiol. 2016, 7, 423. [Google Scholar] [CrossRef] [PubMed]
- Zemski Berry, K.A.; Murphy, R.C. Phospholipid ozonation products activate the 5-Lipoxygenase pathway in macrophages. Chem. Res. Toxicol. 2016, 29, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Bodega, G.; Alique, M.; Puebla, L.; Carracedo, J.; Ramírez, R.M. Microvesicles: ROS scavengers and ROS producers. J. Extracell. Vesicles 2019, 8, 1626654. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, I.; Vo, T.; Paudel, K.; Wen, X.; Gupta, R.; Kesimer, M.; Patial, S.; Saini, Y. Vesicular and extravesicular protein analyses from the airspaces of ozone-exposed mice revealed signatures associated with mucoinflammatory lung disease. Sci. Rep. 2021, 11, 23203. [Google Scholar] [CrossRef]
- Carnino, J.M.; Lee, H.; Smith, L.C.; Sunil, V.R.; Rancourt, R.C.; Vayas, K.; Cervelli, J.; Kwok, Z.H.; Ni, K.; Laskin, J.D.; et al. Microvesicle-derived miRNAs regulate proinflammatory macrophage activation in the lung following ozone exposure. Toxicol. Sci. 2022, 187, 162–174. [Google Scholar] [CrossRef]
- Boczkowska-Radziwon, B.; Olbromski, P.J.; Rogowska, A.; Bujno, M.; Myśliwiec, M.; Żebrowska, A.; Średziński, D.; Polityńska, B.; Wojtukiewicz, M.Z.; Radziwon, P. Ozonation of whole blood results in an increased release of microparticles from blood cells. Biomolecules 2022, 12, 164. [Google Scholar] [CrossRef]
- Yamaoka-Tojo, M. Endothelial glycocalyx damage as a systemic inflammatory microvascular endotheliopathy in COVID-19. Biomed. J. 2020, 43, 399–413. [Google Scholar] [CrossRef]
- Tricarico, G.; Travagli, V. COVID-19 fatal outcomes: Role of the endothelial glycocalyx in both cell adhesion and migration. Biomed. J. 2021, 44, 512–513. [Google Scholar] [CrossRef]
- Joffre, J.; Hellman, J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid. Redox Signal. 2021, 35, 1291–1307. [Google Scholar] [CrossRef]
- Tzeng, Y.Z.; Hu, C.H. Radical-induced Cis-Trans isomerization of fatty acids: A theoretical study. J. Phys. Chem. A 2014, 118, 4554–4564. [Google Scholar] [CrossRef]
- Loffeld, B.; Keweloh, H. cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 1996, 31, 811–815. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef]
- Hung, W.-L.; Hwang, L.S.; Shahidi, F.; Pan, M.-H.; Wang, Y.; Ho, C.-T. Endogenous formation of trans fatty acids: Health implications and potential dietary intervention. J. Funct. Foods 2014, 25, 14–24. [Google Scholar] [CrossRef]
- Schilter, D. Thiol oxidation: A slippery slope. Nat. Rev. Chem. 2017, 1, 0013. [Google Scholar] [CrossRef]
- van Bergen, L.A.; Roos, G.; De Proft, F. From thiol to sulfonic acid: Modeling the oxidation pathway of protein thiols by hydrogen peroxide. J. Phys. Chem. A 2014, 118, 6078–6084. [Google Scholar] [CrossRef]
- Winterbourn, C.C. Hydrogen peroxide reactivity and specificity in thiol-based cell signalling. Biochem. Soc. Trans. 2020, 48, 745–754. [Google Scholar] [CrossRef]
- Galiè, M.; Covi, V.; Tabaracci, G.; Malatesta, M. The role of Nrf2 in the antioxidant cellular response to medical ozone exposure. Int. J. Mol. Sci. 2019, 20, 4009. [Google Scholar] [CrossRef]
- Van der Vliet, A.; O’Neil, C.A.; Eiserich, J.P.; Cross, C.E. Oxidative damage to extracellular fluids by ozone and possible protective effects of thiols. Arch. Biochem. Biophys. 1995, 321, 43–50. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Altieri, A.; Fischer, H. The kinetics of thiyl radical-induced reactions of monounsaturated fatty acid esters. J. Am. Chem. Soc. 2002, 124, 12816–12823. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Samadi, A.; Guerra, M.; Fischer, H. The kinetics of Z/E isomerization of methyl oleate catalyzed by photogenerated thiyl radicals. Chemphyschem 2005, 6, 286–291. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Mulazzani, Q.; Landi, L. cis−trans isomerization of monounsaturated fatty acid residues in phospholipids by thiyl radicals. J. Am. Chem. Soc. 2000, 122, 4593–4601. [Google Scholar] [CrossRef]
- Peskin, A.V.; Cox, A.G.; Nagy, P.; Morgan, P.E.; Hampton, M.B.; Davies, M.J.; Winterbourn, C.C. Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochem. J. 2010, 432, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Graham, N.J.D. Oxidation of amino acids, peptides and proteins by ozone: A review. Ozone Sci. Engineer. 2010, 32, 81–90. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Buyuklu, M.; Kandemir, F.M.; Set, T.; Bakırcı, E.M.; Degirmenci, H.; Hamur, H.; Topal, E.; Kucukler, S.; Turkmen, K. Beneficial effects of ozone therapy on oxidative stress, cardiac functions and clinical findings in patients with heart failure reduced ejection fraction. Cardiovasc. Toxicol. 2017, 17, 426–433. [Google Scholar] [CrossRef]
- Di Filippo, C.; Luongo, M.; Marfella, R.; Ferraraccio, F.; Lettieri, B.; Capuano, A.; Rossi, F.; D’Amico, M. Oxygen/ozone protects the heart from acute myocardial infarction through local increase of eNOS activity and endothelial progenitor cells recruitment. Naunyn Schmiedebergs Arch. Pharmacol. 2010, 382, 287–291. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Rudolphi-Szydło, E.; Filek, M.; Dyba, B.; Miszalski, Z.; Zembala, M. Antioxidative action of polyamines in protection of phospholipid membranes exposed to ozone stress. Acta Biochim. Pol. 2020, 67, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.N.; Orrico, F.; Villar, S.F.; López, A.C.; Silva, N.; Donzé, M.; Thomson, L.; Denicola, A. Oxidants and antioxidants in the redox biochemistry of human red blood cells. ACS Omega 2023, 8, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Habdous, M.; Herbeth, B.; Vincent-Viry, M.; Lamont, J.V.; Fitzgerald, P.S.; Visvikis, S.; Siest, G. Serum total antioxidant status, erythrocyte superoxide dismutase and whole-blood glutathione peroxidase activities in the Stanislas cohort: Influencing factors and reference intervals. Clin. Chem. Lab. Med. 2003, 41, 209–215. [Google Scholar] [CrossRef]
- Vender, R.L.; Horstman, D.H.; Mangione, S. Red blood cell antioxidants in human volunteers exposed to ozone. Toxicol. Ind. Health 1994, 10, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, L.S.; Machado, P.E. Age-related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes. Braz. J. Med. Biol. Res. 1991, 24, 449–454. [Google Scholar]
- van der Zee, J.; Tijssen-Christianse, K.; Dubbelman, T.M.; van Steveninck, J. The influence of ozone on human red blood cells. Comparison with other mechanisms of oxidative stress. Biochim. Biophys. Acta 1987, 924, 111–118. [Google Scholar] [CrossRef]
- Cisterna, B.; Costanzo, M.; Lacavalla, M.A.; Galiè, M.; Angelini, O.; Tabaracci, G.; Malatesta, M. Low ozone concentrations differentially affect the structural and functional features of non-activated and activated fibroblasts in vitro. Int. J. Mol. Sci. 2021, 22, 10133. [Google Scholar] [CrossRef]
- Lynch, M.D.; Watt, F.M. Fibroblast heterogeneity: Implications for human disease. J. Clin. Investig. 2018, 128, 26–35. [Google Scholar] [CrossRef]
- Talbott, H.E.; Mascharak, S.; Griffin, M.; Wan, D.C.; Longaker, M.T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022, 29, 1161–1180. [Google Scholar] [CrossRef]
- Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef]
- Mochitate, K.; Miura, T. Metabolic enhancement and increase of alveolar macrophages induced by ozone. Environ. Res. 1989, 49, 79–92. [Google Scholar] [CrossRef]
- Laskin, D.L.; Malaviya, R.; Laskin, J.D. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicol. Sci. 2019, 168, 287–301. [Google Scholar] [CrossRef]
- Greve, H.J.; Dunbar, A.L.; Lombo, C.G.; Ahmed, C.; Thang, M.; Messenger, E.J.; Mumaw, C.L.; Johnson, J.A.; Kodavanti, U.P.; Oblak, A.L.; et al. The bidirectional lung brain-axis of amyloid-β pathology: Ozone dysregulates the peri-plaque microenvironment. Brain 2023, 146, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Lucien, F.; Leong, H.S. The role of extracellular vesicles in cancer microenvironment and metastasis: Myths and challenges. Biochem. Soc. Trans. 2019, 47, 273–280. [Google Scholar] [CrossRef]
- Rajagopala, S.V.; Vashee, S.; Oldfield, L.M.; Suzuki, Y.; Venter, J.C.; Telenti, A.; Nelson, K.E. The human microbiome and cancer. Cancer Prev. Res. 2017, 10, 226–234. [Google Scholar] [CrossRef]
- Narunsky-Haziza, L.; Sepich-Poore, G.D.; Livyatan, I.; Asraf, O.; Martino, C.; Nejman, D.; Gavert, N.; Stajich, J.E.; Amit, G.; González, A.; et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 2022, 185, 3789–3806. [Google Scholar] [CrossRef]
- Brewer, G. Fungi in cancer: Not such a ‘fun-guy’. Nat. Rev. Cancer 2022, 22, 659. [Google Scholar] [CrossRef]
- Dohlman, A.B.; Klug, J.; Mesko, M.; Gao, I.H.; Lipkin, S.M.; Shen, X.; Iliev, I.D. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 2022, 185, 3807–3822. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Zhou, F.; Zhang, L. The fungal mycobiome: A new hallmark of cancer revealed by pan-cancer analyses. Signal Transduct. Target Ther. 2023, 8, 50. [Google Scholar] [CrossRef]
- Baeza-Noci, J.; Pinto-Bonilla, R. Systemic Review: Ozone: A potential new chemotherapy. Int. J. Mol. Sci. 2021, 22, 11796. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.A. Evolving as a holobiont. PLoS Biol. 2017, 15, e2002168. [Google Scholar] [CrossRef] [PubMed]
- Michael, W.G. Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol. Biol. Cell 2017, 28, 1285–1287. [Google Scholar] [CrossRef]
- Mohajeri, M.H.; Brummer, R.J.M.; Rastall, R.A.; Weersma, R.K.; Harmsen, H.J.M.; Faas, M.; Eggersdorfer, M. The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nutr. 2018, 57 (Suppl. S1), 1–14. [Google Scholar] [CrossRef]
- Katsuyama, M.; Matsuno, K.; Yabe-Nishimura, C. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J. Clin. Biochem. Nutr. 2012, 50, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Compar. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 153, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Luo, L.; Ardita, C.S.; Richardson, A.N.; Kwon, Y.M.; Mercante, J.W.; Alam, A.; Gates, C.L.; Wu, H.; Swanson, P.A.; et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 2013, 32, 3017–3028. [Google Scholar] [CrossRef]
- Cho, Y.; Osgood, R.S.; Bell, L.N.; Karoly, E.D.; Shore, S.A. Ozone-induced changes in the serum metabolome: Role of the microbiome. PLoS ONE 2019, 14, e0221633. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015; ISBN 9780198717478. [Google Scholar] [CrossRef]
- Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C.; Traverso, N. Hormesis and oxidative distress: Pathophysiology of reactive oxygen species and the open question of antioxidant modulation and supplementation. Antioxidants 2022, 11, 1613. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Ndrepepa, G. Myeloperoxidase—A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta 2019, 493, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Q.; Liu, A.; Anadón, A.; Rodríguez, J.L.; Martínez-Larrañaga, M.R.; Yuan, Z.; Martínez, M.A. Paracetamol: Overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab. Rev. 2017, 49, 395–437. [Google Scholar] [CrossRef]
- Wu, M.Y.; Xing, C.Y.; Wang, J.N.; Li, Y.; Lin, X.W.; Fu, Z.J. Therapeutic dosage of ozone inhibits autophagy and apoptosis of nerve roots in a chemically induced radiculoneuritis rat model. Eur. Rev. Med. Pharmacol Sci. 2018, 22, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.L.; Chu, J.G.; Jian, X.M.; Dong, J.Z.; Wang, L.P.; Li, G.X.; Yang, N.B. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation. Biomed. Pharmacother. 2017, 91, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Toda, I.; Ceprián, N.; Díaz-Del Cerro, E.; De la Fuente, M. The role of immune cells in oxi-inflamm-aging. Cells 2021, 10, 2974. [Google Scholar] [CrossRef]
- Hernández, F.A. To what extent does ozone therapy need a real biochemical control system? Assessment and importance of oxidative stress. Arch. Med. Res. 2007, 38, 571–578. [Google Scholar] [CrossRef]
- Guanche, D.; Zamora, Z.; Hernández, F.; Mena, K.; Alonso, Y.; Roda, M.; Gonzáles, M.; Gonzales, R. Effect of ozone/oxygen mixture on systemic oxidative stress and organic damage. Toxicol. Mech. Methods 2010, 20, 25–30. [Google Scholar] [CrossRef]
- Kadiiska, M.B.; Basu, S.; Brot, N.; Cooper, C.; Saari Csallany, A.; Davies, M.J.; George, M.M.; Murray, D.M.; Jackson Roberts, L., 2nd; Shigenaga, M.K.; et al. Biomarkers of oxidative stress study V: Ozone exposure of rats and its effect on lipids, proteins, and DNA in plasma and urine. Free Radic. Biol. Med. 2013, 61, 408–415. [Google Scholar] [CrossRef]
- Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef]
- Iorio, E.L.; Marin, M.G. Redoxomics. An integrated and practical approach to genomics, metabolomics and lipidomics to manage oxidative stress. Gen-T 2008, 2, 67. [Google Scholar]
- Alu, S.N.; Los, E.A.; Ford, G.A.; Stone, W.L. Oxidative stress in type 2 diabetes: The case for future pediatric redoxomics studies. Antioxidants 2022, 11, 1336. [Google Scholar] [CrossRef] [PubMed]
- Travagli, V.; Zanardi, I.; Bernini, P.; Nepi, S.; Tenori, L.; Bocci, V. Effects of ozone blood treatment on the metabolite profile of human blood. Int. J. Toxicol. 2010, 29, 165–174. [Google Scholar] [CrossRef]
- Islam, T.; Berhane, K.; McConnell, R.; Gauderman, W.J.; Avol, E.; Peters, J.M.; Gilliland, F.D. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax 2009, 64, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Bowers, E.C.; Martin, E.M.; Jarabek, A.M.; Morgan, D.S.; Smith, H.J.; Dailey, L.A.; Aungst, E.R.; Diaz-Sanchez, D.; McCullough, S.D. Ozone responsive gene expression as a model for describing repeat exposure response trajectories and interindividual toxicodynamic variability in vitro. Toxicol. Sci. 2021, 185, 38–49. [Google Scholar] [CrossRef]
- Scassellati, C.; Costanzo, M.; Cisterna, B.; Nodari, A.; Galiè, M.; Cattaneo, A.; Covi, V.; Tabaracci, G.; Bonvicini, C.; Malatesta, M. Effects of mild ozonisation on gene expression and nuclear domains organization in vitro. Toxicol. Vitr. 2017, 44, 100–110. [Google Scholar] [CrossRef]
- Poursafa, P.; Kamali, Z.; Fraszczyk, E.; Boezen, H.M.; Vaez, A.; Snieder, H. DNA methylation: A potential mediator between air pollution and metabolic syndrome. Clin. Epigenetics 2022, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Bind, M.C.; Rubin, D.B.; Cardenas, A.; Dhingra, R.; Ward-Caviness, C.; Liu, Z.; Mirowsky, J.; Schwartz, J.D.; Diaz-Sanchez, D.; Devlin, R.B. Heterogeneous ozone effects on the DNA methylome of bronchial cells observed in a crossover study. Sci. Rep. 2020, 10, 15739. [Google Scholar] [CrossRef]
- Du, X.; Niu, Y.; Wang, C.; Wang, W.; Liu, C.; Meng, X.; Chu, C.; Chen, R.; Kan, H. Ozone exposure and blood transcriptome: A randomized, controlled, crossover trial among healthy adults. Environ. Int. 2022, 163, 107242. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Khater, S.I.; Metwally, M.M.M.; Bin Emran, T.; Nassan, M.A.; Abd El-Emam, M.M.; Mostafa-Hedeab, G.; El-Shetry, E.S. TGF-β1, NAG-1, and antioxidant enzymes expression alterations in cisplatin-induced nephrotoxicity in a rat model: Comparative modulating role of melatonin, vit. E and ozone. Gene 2022, 820, 146293. [Google Scholar] [CrossRef]
- Abdelrahman, S.A.; Abdelrahman, A.A.; Samy, W.; Dessouky, A.A.; Ahmed, S.M. Hypoxia pretreatment enhances the therapeutic potential of mesenchymal stem cells (BMSCs) on ozone-induced lung injury in rats. Cell Tissue Res. 2022, 389, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Sun, L.; Agarwal, M.; Maker, G.; Han, Y.; Yu, X.; Ren, Y. The effect of ozone therapy on metabolite profile of germinating barley. Foods 2022, 11, 1211. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, J.; Wang, X.; Ding, Q.; Bai, X.; Zhang, Y.; Su, D.; Zhang, W.; Zhang, W.; Tang, B. In situ visualization of ozone in the brains of mice with depression phenotypes by using a new near-infrared fluorescence probe. Chem. Sci. 2019, 10, 2805–2810. [Google Scholar] [CrossRef] [PubMed]
- Coffaro, B.; Weisel, C.P. Reactions and products of squalene and ozone: A review. Environ. Sci. Technol. 2022, 56, 7396–7411. [Google Scholar] [CrossRef] [PubMed]
- Zannoni, N.; Lakey, P.S.J.; Won, Y.; Shiraiwa, M.; Rim, D.; Weschler, C.J.; Wang, N.; Ernle, L.; Li, M.; Bekö, G.; et al. The human oxidation field. Science 2022, 377, 1071–1077. [Google Scholar] [CrossRef]
- Herget, H.F.; Jacobs, M.T. Zwischenfälle und typische komplikationen in der ozon-sauerstoff-therapie. Gesundh. Umsch. 1982, 11, 83–84. [Google Scholar]
- Kelekis, A.D.; Filippiadis, D.K.; Martin, J.B.; Brountzos, E. Standards of practice: Quality assurance guidelines for percutaneous treatments of intervertebral discs. Cardiovasc. Intervent. Radiol. 2010, 33, 909–913. [Google Scholar] [CrossRef]
- Costa, T.; Linhares, D.; Ribeiro da Silva, M.; Neves, N. Ozone therapy for low back pain. A systematic review. Acta Reumatol. Port. 2018, 43, 172–181. [Google Scholar]
- Chirumbolo, S.; Simonetti, V.; Valdenassi, L.; Pandolfi, S.; Vaiano, F.; Franzini, M. Editorial—A practical assessment to prevent serious complications in the use of a gaseous mixture of oxygen-ozone injected by needle-mediated infiltration. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2224–2226. [Google Scholar] [CrossRef]
- Re, L.; Baeza Noci, J.; Gadelha Serra, M.E.; Mollica, P.; Bonetti, M.; Travagli, V. Safety, pitfalls, and misunderstandings about the use of ozone therapy as a regenerative medicine tool. A narrative review. J. Biol. Regul. Homeost. Agents 2020, 34 (Suppl. S1), 1–14. [Google Scholar]
- Razumovskii, S.D.; Korovina, G.V.; Grinevich, T.V. Mechanism of the first step of ozone decomposition in aqueous solutions of sodium chloride in view of new data on the composition of reaction products. Dokl. Phys. Chem. 2010, 434, 163–165. [Google Scholar] [CrossRef]
- Levanov, A.V.; Isaikina, O.Y. Mechanism and kinetic model of chlorate and perchlorate formation during ozonation of aqueous chloride solutions. Ind. Engin. Chem. Res. 2020, 59, 14278–14287. [Google Scholar] [CrossRef]
- Yin, X.; Cui, H.; Li, S.; Niu, S. Simultaneous determination of chlorite, chlorate, perchlorate and bromate in ozonated saline by using IC-MS. Anal. Methods 2020, 12, 5916–5921. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, G. Practical aspects in ozone therapy: Study of the ozone concentration in the ozonized saline solution. Ozone Ther. Glob. J. 2020, 10, 55–68. [Google Scholar]
- Uhl, W. Primum non nocere, secundum cavere, tertium sanare. Zentralbl. Chir. 2020, 145, 340–341. (In German) [Google Scholar] [CrossRef]
- Rowen, R.J.; Robins, H. Ozone therapy for complex regional pain syndrome: Review and case report. Curr. Pain Headache Rep. 2019, 23, 41. [Google Scholar] [CrossRef]
- Sega, A.; Zanardi, I.; Chiasserini, L.; Gabbrielli, A.; Bocci, V.; Travagli, V. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. Chem. Phys. Lipids 2010, 163, 148–156. [Google Scholar] [CrossRef]
- Guerra-Blanco, P.; Chairez, I.; Poznyak, T.; Brito-Arias, M. Kinetic analysis of ozonation degree effect on the physicochemical properties of ozonated vegetable oils. Ozone Sci. Eng. 2021, 43, 546–561. [Google Scholar] [CrossRef]
- Vinet, J.; Tréguier, S.; Levasseur-Garcia, C.; Calmon, A.; Violleau, F. Iodine and peroxide index rapid determination by mid- and near-infrared spectroscopy in ozonated sunflower oil and ozonated fats. Ozone Sci. Eng. 2021, 44, 337–350. [Google Scholar] [CrossRef]
- Zambelli, R.A. Principles of ozonation and its equipment. In Non-Thermal Food Processing Operations; Jafari, S.M., Therdthai, N., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 17–54. [Google Scholar] [CrossRef]
- Hendawy, H.A.; Mosallam, W.; Abuelnaga, M.E.; Sabry, A.M. Old treatment for a new disease: Can rectal ozone insufflation be used for COVID-19 management? A case report. SN Compr. Clin. Med. 2021, 3, 1424–1427. [Google Scholar] [CrossRef]
- Zanardi, I.; Borrelli, E.; Valacchi, G.; Travagli, V.; Bocci, V. Ozone: A multifaceted molecule with unexpected therapeutic activity. Curr. Med. Chem. 2016, 23, 304–314. [Google Scholar] [CrossRef] [PubMed]
Modality | Characteristics | Routes of Administration |
---|---|---|
Infiltration/Injection * | Amounts of gaseous mixture oxygen/ozone infiltrated/injected with a needle | Sub-cutaneous |
Peri-articular | ||
Intra-articular | ||
Per-cutaneous | ||
Para-vertebral | ||
Intra-radicular | ||
Intra-foraminal | ||
Peri-radicular | ||
Insufflation * | Amount of gaseous mixture oxygen/ozone administered through a thin and soft polymeric catheter | Rectal |
Vaginal | ||
Bladder | ||
Auricular | ||
Infusion *,# | Ex vivo static mode (major auto-hemotherapy, M-AHT) | Intra-venous |
Up to 250 mL of uncoagulated venous blood is taken into a device and bubbled with the required amount of gaseous mixture oxygen/ozone. The mixture is then immediately administered again to the same subject. | ||
In vivo dynamic mode | ||
Ozonation of infusion solutions, with subsequent administration of ozone solubilized in them | ||
Up to 10 mL of venous blood is mixed with the amount of gaseous mixture oxygen/ozone and injected into the muscle. | Intra-muscular | |
Bagging * | Gaseous mixture oxygen/ozone in a bag | The relevant limb comes into direct contact with the ozone gas |
Dermatological preparations #,† | Ozonated water | Topical applications |
Ozonated vegetable matrices |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travagli, V.; Iorio, E.L. The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights. Int. J. Mol. Sci. 2023, 24, 8465. https://doi.org/10.3390/ijms24108465
Travagli V, Iorio EL. The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights. International Journal of Molecular Sciences. 2023; 24(10):8465. https://doi.org/10.3390/ijms24108465
Chicago/Turabian StyleTravagli, Valter, and Eugenio Luigi Iorio. 2023. "The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights" International Journal of Molecular Sciences 24, no. 10: 8465. https://doi.org/10.3390/ijms24108465
APA StyleTravagli, V., & Iorio, E. L. (2023). The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights. International Journal of Molecular Sciences, 24(10), 8465. https://doi.org/10.3390/ijms24108465