Chemical and Electrochemical Reductions of Monoiminoacenaphthenes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structure of MIANs
2.2. Redox Properties of MIANs, Theoretical vs. Electrochemical HOMO/LUMO Gaps
ELUMO = 4.8 + ECVred(vs. Fc+/Fc) [eV]
ELUMO = 4.8 + EDPVred(vs. Fc+/Fc) [eV]
2.3. One-Electron Reduction of Studied MIANs by Sodium Metal
2.4. Photophysical Properties of Sodium Anion Radicals
2.5. Preparative Electrochemical Reduction of MIANs
2.6. Comparison of Reduction Potentials for Compounds 1–9-X (Where X = Na or NBu4)
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Razborov, D.A.; Lukoyanov, A.N.; Baranov, E.V.; Fedushkin, I.L. Addition of phenylacetylene to a magnesium complex of monoiminoacenaphtheneone (dpp-mian). Dalton Trans. 2015, 44, 20532–20541. [Google Scholar] [CrossRef]
- Razborov, D.A.; Lukoyanov, A.N.; Makarov, V.M.; Samsonov, M.A.; Fedushkin, I.L. Complexes of gallium(III), antimony(III), titanium(IV), and cobalt(II) with acenaphthenequinonimine. Russ. Chem. Bull. Int. Ed. 2015, 10, 2377–2385. [Google Scholar] [CrossRef]
- Anga, S.; Paul, M.; Naktode, K.; Kottalanka, R.K.; Panda, T.K. Cobalt(II) and Copper(I) Complexes of Rigid Bidentate [N-(2,6-Diisopropyl-phenyl)imino]acenapthenone Ligand: Synthesis and Structural Studies. ZAAC 2012, 638, 1311–1315. [Google Scholar] [CrossRef]
- Anga, S.; Rej, S.; Naktode, K.; Pal, T.; Panda, T.K. Syntheses and solid state structures of zinc (II) complexes with Bi-dentate N-(Aryl)imino-acenapthenone (Ar-BIAO) ligands. J. Chem. Sci. 2015, 127, 103–113. [Google Scholar] [CrossRef]
- Bhattacharjee, J.; Sachdeva, M.; Banerjee, I.; Panda, T.K. Zinc catalyzed Guanylation reaction of Amines with Carbodiimides/Isocyanate leading to Guanidines/Urea derivatives formation. J. Chem. Sci. 2016, 128, 875–881. [Google Scholar] [CrossRef]
- Hazari, A.S.; Das, A.; Ray, R.; Agarwala, H.; Maji, S.; Mobin, S.M.; Lahiri, G.K. Epoxidation reaction Tunable Electrochemical and Catalytic Features of BIAN- and BIAO-Derived Ruthenium Complexes. Inorg. Chem. 2015, 54, 4998–5012. [Google Scholar] [CrossRef]
- Broggi, J.; Terme, T.; Vanelle, P. Organic Electron Donors as Powerful Single-Electron Reducing Agents in Organic Synthesis. Angew. Chem. Int. Ed. 2014, 53, 384–413. [Google Scholar] [CrossRef]
- Bains, A.K.; Adhikari, D. C-H Functionalization Reactions Following a Single-Electron Transfer and Radical Pathway. Handb. CH-Funct. 2022, 1–29. [Google Scholar] [CrossRef]
- Chmiel, A.F.; Williams, O.P.; Chernowsky, C.P.; Yeung, C.S.; Wickens, Z.K. Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides. J. Am. Chem. Soc. 2021, 143, 10882–10889. [Google Scholar] [CrossRef]
- Koike, T.; Akita, M. Modern Synthetic Strategies for One-Electron Injection. Trends Chem. 2021, 3, 416–427. [Google Scholar] [CrossRef]
- Rohrbach, S.; Shah, R.S.; Tuttle, T.; Murphy, J.A. Neutral Organic Super Electron Donors Made Catalytic. Angew. Chem. 2019, 58, 11127–11540. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Morozov, A.G.; Chudakova, V.A.; Fukin, G.K.; Cherkasov, V.K. Magnesium(II) Complexes of the dpp-BIAN Radical-Anion: Synthesis, Molecular Structure, and Catalytic Activity in Lactide Polymerization. Eur. J. Inorg. Chem. 2009, 2009, 4995–5003. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Eremenko, O.V.; Skatova, A.A.; Piskunov, A.V.; Fukin, G.K.; Ketkov, S.Y.; Irran, E.; Schumann, H. Binuclear Zinc Complexes with Radical-Anionic Diimine Ligands. Organometallics 2009, 28, 3863–3868. [Google Scholar] [CrossRef]
- Koptseva, T.S.; Moskalev, M.V.; Skatova, A.A.; Rumyantcev, R.V.; Fedushkin, I.L. Reduction of CO2 with Aluminum Hydrides Supported with Ar-BIAN Radical-Anions (Ar-BIAN = 1,2-Bis(arylimino)acenaphthene). Inorg. Chem. 2022, 61, 206–213. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Dodonov, V.A.; Skatova, A.A.; Sokolov, V.G.; Piskunov, A.V.; Fukin, G.K. Redox-Active Ligand-Assisted Two-Electron Oxidative Addition to Gallium(II). Chem. Eur. J. 2018, 24, 1877–1889. [Google Scholar] [CrossRef] [PubMed]
- Lukoyanov, A.N.; Ulivanova, E.A.; Razborov, D.A.; Khrizanforova, V.V.; Budnikova, Y.H.; Makarov, S.G.; Rumyantcev, R.V.; Ketkov, S.Y.; Fedushkin, I.L. One-Electron Reduction of 2-Mono(2,6-diisopropylphenylimino)acenaphthene-1-one (dpp-MIAN). Chem. Eur. J. 2019, 25, 3858–3866. [Google Scholar] [CrossRef]
- Lukoyanov, A.N.; Zvereva, Y.V.; Parshina, D.A.; Cherkasov, A.V.; Ketkov, S.Y. Calcium Complexes Bearing Dianionic or Monoanionic Iminoacenaphthen-1-one Ligands: Synthesis, Reactions with Alkynes and Catalysis of L-lactide Polymerization. Eur.J. Inorg. Chem. 2022, 2022, e202200348. [Google Scholar] [CrossRef]
- Lukoyanov, A.N.; Fomenko, I.S.; Gongola, M.I.; Shul’pina, L.S.; Ikonnikov, N.S.; Shul’pin, G.B.; Ketkov, S.Y.; Fukin, G.K.; Rumyantcev, R.V.; Novikov, A.S.; et al. Novel Oxidovanadium Complexes with Redox-Active R-Mian and R-Bian Ligands: Synthesis, Structure, Redox and Catalytic Properties. Molecules 2021, 26, 5706. [Google Scholar] [CrossRef]
- Carrington, S.J.; Chakraborty, I.; Mascharak, P.K. Exceptionally rapid CO release from a manganese(I) tricarbonyl complex derived from bis(4-chloro-phenylimino)acenaphthene upon exposure to visible light. Dalton Trans. 2015, 44, 13828–13834. [Google Scholar] [CrossRef]
- Razborov, D.A.; Lukoyanov, A.N.; Moskalev, M.V.; Baranov, E.V.; Fedyushkin, I.L. Gallium Complexes with Acenaphthene-1-Imino-2-one: Synthesis and Reactivity. Russ. J. Coord. Chem. 2018, 44, 380–387. [Google Scholar] [CrossRef]
- Hazari, A.S.; Ray, R.; Hoque, M.A.; Lahiri, G.K. Electronic Structure and Multicatalytic Features of Redox-Active Bis(arylimino)acenaphthene (BIAN)-Derived Ruthenium Complexes. Inorg. Chem. 2016, 55, 8160–8173. [Google Scholar] [CrossRef]
- Hasan, K.; Zysman-Colman, E. Synthesis, UV–Vis and CV properties of astructurally related series of bis(Arylimino)acenaphthenes (Ar-BIANs). J. Phys. Org. Chem. 2013, 26, 274–279. [Google Scholar] [CrossRef]
- Viganò, M.; Ferretti, F.; Caselli, A.; Ragaini, F.; Rossi, M.; Mussini, P.; Macchi, P. Easy Entry into Reduced Ar-BIANH2 Compounds: A New Class ofQuinone/Hydroquinone-Type Redox-Active Couples with an EasilyTunable Potential. Chem. Eur. J. 2014, 20, 14451–14464. [Google Scholar] [CrossRef] [PubMed]
- Cardona, C.M.; Li, W.; Kaifer, A.E.; Stockdale, D.; Bazan, G.C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 2011, 24, 2367–2371. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Skatova, A.A.; Chudakova, V.A.; Fukin, G.K. Four-Step Reduction of dpp-bian with Sodium Metal: Crystal Structures of the Sodium Salts of the Mono-, Di-, Tri- and Tetraanions of dpp-bian. Angew. Chem. Int. Ed. 2003, 42, 3294–3298. [Google Scholar] [CrossRef]
- Khusniyarov, M.M.; Harms, K.; Burghaus, O.; Sundermeyer, J. Molecular and Electronic Structures of Homoleptic Nickel and Cobalt Complexes with Non-Innocent Bulky Diimine Ligands Derived from Fluorinated 1,4-Diaza-1,3-butadiene (DAD) and Bis(arylimino)acenaphthene (BIAN). Eur. J. Inorg. Chem. 2006, 2006, 2985–2996. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Dudkina, Y.B.; Kalinin, A.A.; Balakina, M.Y. Considerations on electrochemical behavior of NLO chromophores: Relation of redox properties and NLO activity. Electrochim. Acta 2021, 368, 137578. [Google Scholar] [CrossRef]
- Dudkina, Y.B.; Kalinin, A.A.; Fazleeva, G.M.; Sharipova, S.M.; Islamova, L.N.; Dobrynin, A.B.; Islamov, D.R.; Levitskaya, A.I.; Balakina, M.Y.; Budnikova, Y.H. Composing NLO Chromophore as a Puzzle: Electrochemistry-based Approach to Design and Effectiveness. ChemPhysChem 2021, 22, 2313–2328. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. Gaussian 09 Revision A 02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Johnson, E.R.; Becke, A.D. A Post-Hartree-Fock Model of Intermolecular Interactions: Inclusion of Higher-Order Corrections. J. Chem. Phys. 2006, 124, 174104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A Density-Functional Model of the Dispersion Interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef] [PubMed]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 2008, 117, 43–54. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | CV Potentials (V) | DPV Potentials (V) | EHOMO, eV | ELUMO, eV | ΔE, eV | ||
---|---|---|---|---|---|---|---|
Reduction | Oxidation | Reduction | Oxidation | ||||
I | −1.42; −2.57; −2.84 | 1.29 | −1.38 | 1.10 | −5.80 | −3.42 | 2.48 |
II | −1.54; −2.40; −2.78 | 1.02 | −1.45 | 1.00 | −5.80 | −3.35 | 2.45 |
III | −1.56; −2.36; −2.76 | 0.89 | −1.49 | 0.77 | −5.57 | −3.31 | 2.26 |
IV | −1.59; −1.88; −2.41 | 1.00 | −1.52 | 0.88 | −5.68 | −3.28 | 2.40 |
V | −1.55; −2.03; −2.36 | 1.02 | −1.51 | 0.92 | −5.72 | −3.29 | 2.43 |
VI | −1.52; −2.15; −2.44 | 1.02 | −1.45 | 0.95 | −5.75 | −3.35 | 2.40 |
VII | −1.60; −2.47; −2.83 | 0.89 | −1.52 | 0.85 | −5.65 | −3.28 | 2.37 |
VIII | −1.52; −2.36; −2.54 | 1.06 | −1.36 | 0.95 | −5.75 | −3.44 | 2.31 |
IX | −1,69; −2.36; −2.57 | 1.06 | −1.60 | 0.96 | −5.76 | −3.20 | 2.56 |
Compound | Calculations | Experiment | |||
---|---|---|---|---|---|
EHOMO, eV | ELUMO, eV | ΔEDFT, eV | ΔETDDFT, eV (λ, nm) | ΔEabs, eV (λexp, nm) | |
I | −6.71 | −2.64 | 4.07 | 2.88 (431) | 2.81 (440) |
II | −6.33 | −2.41 | 3.91 | 2.76 (449) | 2.74 (452) |
III | −6.18 | −2.60 | 3.57 | 2.62 (473) | 2.89 (429) |
IV | −6.53 | −2.62 | 3.90 | 2.72 (456) | 2.74 (452) |
V | −6.48 | −2.62 | 3.86 | 2.68 (462) | 2.73 (454) |
VI | −6.48 | −2.63 | 3.85. | 2.68 (463) | 2.70 (458) |
VII | −6.32 | −2.61 | 3.72 | 2.59 (479) | 2.67 (463) |
VIII | −6.19 | −2.67 | 3.52 | 2.57 (483) | 2.42 (512) |
IX | −6.42 | −2.64 | 3.78 | 2.70 (459) | 2.71 (456) |
Compound | 1-X | 2-X | 3-X | 4-X | 5-X | 6-X | 7-X | 8-X | 9-X |
---|---|---|---|---|---|---|---|---|---|
λ, nm | |||||||||
X = Na | 540 | 540 | 530 | 540 | 560 | 545 | 520 | 613 (520) | 570 (477) |
X = DFT (S0-S2) | 567 | 576 | 579 | 532 | 534 | 534 | 535 | 664 (554 *) | 721 (608 *) |
Compounds | Reduction Potential (V vs. Fc+/Fc) for X = Na | Reduction Potential (V vs. Fc+/Fc) for X = NBu4 | UV/Vis Absorption Band (nm) for X = NBu4 |
---|---|---|---|
1-X | −1.57 | −2.31 | 590 |
2-X | −1.63 | −2.36 | 607 |
3-X | −1.63 | −2.34 | 570 |
4-X | −1.64 | −2.45 | 585 |
5-X | −1.58 | −2.49 | 575 |
6-X | −1.67 | −2.47 | 605 |
7-X | −1.62 | −2.34 | 590 |
8-X | −1.81 | −2.25 | 590 |
9-X | −1.69 | −2.20 | 540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrizanforova, V.V.; Fayzullin, R.R.; Gerasimova, T.P.; Khrizanforov, M.N.; Zagidullin, A.A.; Islamov, D.R.; Lukoyanov, A.N.; Budnikova, Y.H. Chemical and Electrochemical Reductions of Monoiminoacenaphthenes. Int. J. Mol. Sci. 2023, 24, 8667. https://doi.org/10.3390/ijms24108667
Khrizanforova VV, Fayzullin RR, Gerasimova TP, Khrizanforov MN, Zagidullin AA, Islamov DR, Lukoyanov AN, Budnikova YH. Chemical and Electrochemical Reductions of Monoiminoacenaphthenes. International Journal of Molecular Sciences. 2023; 24(10):8667. https://doi.org/10.3390/ijms24108667
Chicago/Turabian StyleKhrizanforova, Vera V., Robert R. Fayzullin, Tatiana P. Gerasimova, Mikhail N. Khrizanforov, Almaz A. Zagidullin, Daut R. Islamov, Anton N. Lukoyanov, and Yulia H. Budnikova. 2023. "Chemical and Electrochemical Reductions of Monoiminoacenaphthenes" International Journal of Molecular Sciences 24, no. 10: 8667. https://doi.org/10.3390/ijms24108667
APA StyleKhrizanforova, V. V., Fayzullin, R. R., Gerasimova, T. P., Khrizanforov, M. N., Zagidullin, A. A., Islamov, D. R., Lukoyanov, A. N., & Budnikova, Y. H. (2023). Chemical and Electrochemical Reductions of Monoiminoacenaphthenes. International Journal of Molecular Sciences, 24(10), 8667. https://doi.org/10.3390/ijms24108667