DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC
Abstract
:1. Introduction
2. Results
2.1. Study Population Characteristics
2.2. Associations between Transcript Levels and BRCA1/2 Mutations
2.3. Overall Survival and Progression-Free Survival
2.4. Correlation between Genes and Associations between Transcript Levels and Overall Survival
2.5. Associations between Transcript Levels and Peritoneal Carcinomatosis
2.6. Associations between Transcript Levels and Therapy
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Isolation of RNA and cDNA Synthesis
4.3. Quantitative Real-Time PCR
4.4. Statistical Analyses
4.5. Clinical Data
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 25 October 2022).
- Burges, A.; Schmalfeldt, B. Ovarian Cancer Diagnosis and Treatment. Dtsch. Arztebl. Int. 2011, 108, 635–641. [Google Scholar] [CrossRef]
- Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian Cancer in the World: Epidemiology and Risk Factors. Int. J. Womens Health 2019, 11, 287. [Google Scholar] [CrossRef]
- Desai, J.P.; Moustarah, F. Peritoneal Metastasis. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Ozols, R.F. Treatment Goals in Ovarian Cancer. Int. J. Gynecol. Cancer 2005, 15, 3–11. [Google Scholar] [CrossRef]
- Mohelníková-Duchoňová, B.; Lemstrová, R.; Klos, D.; Hanuliak, J.; Stašek, M.; Neoral, Č.; Melichar, B. Significance of Systemic Chemotherapy and Hyperthermic Intraperitoneal Chemotherapy in Primary and Secondary Peritoneal Surface Malignancies. Onkologie 2017, 11, 289–292. [Google Scholar] [CrossRef]
- Lemstrová, R.; Souček, P.; Melichar, B.; Mohelnikova-Duchonova, B. Role of Solute Carrier Transporters in Pancreatic Cancer: A Review. Pharmacogenomics 2014, 15, 1133–1145. [Google Scholar] [CrossRef]
- Siddik, Z.H. Cisplatin: Mode of Cytotoxic Action and Molecular Basis of Resistance. Oncogene 2003, 22, 7265–7279. [Google Scholar] [CrossRef]
- Van Driel, W.J.; Koole, S.N.; Sikorska, K.; Schagen van Leeuwen, J.H.; Schreuder, H.W.R.; Hermans, R.H.M.; de Hingh, I.H.J.T.; van der Velden, J.; Arts, H.J.; Massuger, L.F.A.G.; et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018, 378, 230–240. [Google Scholar] [CrossRef]
- Moynahan, M.E.; Pierce, A.J.; Jasin, M. BRCA2 Is Required for Homology-Directed Repair of Chromosomal Breaks. Mol. Cell 2001, 7, 263–272. [Google Scholar] [CrossRef]
- Krawczyk, P.M.; Eppink, B.; Essers, J.; Stap, J.; Rodermond, H.; Odijk, H.; Zelensky, A.; van Bree, C.; Stalpers, L.J.; Buist, M.R.; et al. Mild Hyperthermia Inhibits Homologous Recombination, Induces BRCA2 Degradation, and Sensitizes Cancer Cells to Poly (ADP-Ribose) Polymerase-1 Inhibition. Proc. Natl. Acad. Sci. USA 2011, 108, 9851–9856. [Google Scholar] [CrossRef]
- Jasin, M.; Rothstein, R. Repair of Strand Breaks by Homologous Recombination. Cold Spring Harb. Perspect. Biol. 2013, 5, a012740. [Google Scholar] [CrossRef]
- Van Den Tempel, N.; Laffeber, C.; Odijk, H.; Van Cappellen, W.A.; Van Rhoon, G.C.; Franckena, M.; Kanaar, R. The Effect of Thermal Dose on Hyperthermia-Mediated Inhibition of DNA Repair through Homologous Recombination. Oncotarget 2017, 8, 44593. [Google Scholar] [CrossRef]
- Lampe, B.; Kroll, N.; Piso, P.; Forner, D.M.; Mallmann, P. Prognostic Significance of Sugarbaker’s Peritoneal Cancer Index for the Operability of Ovarian Carcinoma. Int. J. Gynecol. Cancer 2015, 25, 135–144. [Google Scholar] [CrossRef]
- Feng, W.; Dean, D.C.; Hornicek, F.J.; Wang, J.; Jia, Y.; Duan, Z.; Shi, H. ATR and P-ATR Are Emerging Prognostic Biomarkers and DNA Damage Response Targets in Ovarian Cancer. Ther. Adv. Med. Oncol. 2020, 12, 1758835920982853. [Google Scholar] [CrossRef]
- Kim, J.; Cho, Y.J.; Ryu, J.Y.; Hwang, I.; Han, H.D.; Ahn, H.J.; Kim, W.Y.; Cho, H.; Chung, J.Y.; Hewitt, S.M.; et al. CDK7 Is a Reliable Prognostic Factor and Novel Therapeutic Target in Epithelial Ovarian Cancer. Gynecol. Oncol. 2020, 156, 211. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jia, Y.; Wang, S.; Liu, N.; Gao, D.; Zhang, L.; Lin, Z.; Wang, S.; Kong, F.; Peng, C.; et al. Downregulation of MUTYH Contributes to Cisplatin resistance of Esophageal Squamous Cell Carcinoma Cells by Promoting Twist mediated EMT. Oncol. Rep. 2019, 42, 2716–2727. [Google Scholar] [CrossRef]
- Ganzinelli, M.; Mariani, P.; Cattaneo, D.; Fossati, R.; Fruscio, R.; Corso, S.; Ricci, F.; Broggini, M.; Damia, G. Expression of DNA Repair Genes in Ovarian Cancer Samples: Biological and Clinical Considerations. Eur. J. Cancer 2011, 47, 1086–1094. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef]
- Tsibulak, I.; Wieser, V.; Degasper, C.; Shivalingaiah, G.; Wenzel, S.; Sprung, S.; Lax, S.F.; Marth, C.; Fiegl, H.; Zeimet, A.G. BRCA1 and BRCA2 MRNA-Expression Prove to Be of Clinical Impact in ovarian Cancer. Br. J. Cancer 2018, 119, 683. [Google Scholar] [CrossRef]
- Olbromski, P.J.; Pawlik, P.; Bogacz, A.; Sajdak, S. Identification of New Molecular Biomarkers in Ovarian Cancer Using the Gene Expression Profile. J. Clin. Med. 2022, 11, 3888. [Google Scholar] [CrossRef]
- Osorio, A.; Milne, R.L.; Kuchenbaecker, K.; Vaclová, T.; Pita, G.; Alonso, R.; Peterlongo, P.; Blanco, I.; de la Hoya, M.; Duran, M.; et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014, 10, e1004256. [Google Scholar] [CrossRef]
- Gallagher, D.J.; Konner, J.A.; Bell-McGuinn, K.M.; Bhatia, J.; Sabbatini, P.; Aghajanian, C.A.; Offit, K.; Barakat, R.R.; Spriggs, D.R.; Kauff, N.D. Survival in Epithelial Ovarian Cancer: A Multivariate Analysis Incorporating BRCA Mutation Status and Platinum Sensitivity. Ann. Oncol. 2011, 22, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Pennington, K.P.; Walsh, T.; Harrell, M.I.; Lee, M.K.; Pennil, C.C.; Rendi, M.H.; Thornton, A.; Norquist, B.M.; Casadei, S.; Nord, A.S.; et al. Germline and Somatic Mutations in Homologous Recombination Genes Predict Platinum Response and Survival in Ovarian, Fallopian Tube, and Peritoneal Carcinomas. Clin. Cancer. Res. 2014, 20, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Norquist, B.M.; Brady, M.F.; Harrell, M.I.; Walsh, T.; Lee, M.K.; Gulsuner, S.; Bernards, S.S.; Casadei, S.; Burger, R.A.; Tewari, K.S.; et al. Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin. Cancer. Res. 2018, 24, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Liontos, M.; Zografos, E.; Zoumpourlis, P.; Andrikopoulou, A.; Svarna, A.; Fiste, O.; Kunadis, E.; Papatheodoridi, A.M.; Kaparelou, M.; Koutsoukos, K.; et al. BRCA1/2 Mutation Types Do Not Affect Prognosis in Ovarian Cancer Patients. Curr. Oncol. 2021, 28, 4446–4456. [Google Scholar] [CrossRef] [PubMed]
- Labidi-Galy, S.I.; Olivier, T.; Rodrigues, M.; Ferraioli, D.; Derbel, O.; Bodmer, A.; Petignat, P.; Rak, B.; Chopin, N.; Tredan, O.; et al. Location of Mutation in BRCA2 Gene and Survival in Patients with Ovarian Cancer. Clin. Cancer. Res. 2018, 24, 326–333. [Google Scholar] [CrossRef]
- Alsop, K.; Fereday, S.; Meldrum, C.; DeFazio, A.; Emmanuel, C.; George, J.; Dobrovic, A.; Birrer, M.J.; Webb, P.M.; Stewart, C.; et al. BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation–Positive Women with Ovarian Cancer: A Report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 2012, 30, 2654. [Google Scholar] [CrossRef]
- ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data (BETA). Available online: https://biit.cs.ut.ee/clustvis/ (accessed on 25 October 2022).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Jensen, L.J.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic. Acids Res. 2021, 49, 605–612. [Google Scholar] [CrossRef]
- Soukupova, J.; Zemankova, P.; Lhotova, K.; Janatova, M.; Borecka, M.; Stolarova, L.; Lhota, F.; Foretova, L.; Machackova, E.; Stranecky, V.; et al. Validation of CZECANCA (CZEch CAncer PaNel for Clinical Application) for Targeted NGS-Based Analysis of Hereditary Cancer Syndromes. PLoS ONE 2018, 13, e0195761. [Google Scholar] [CrossRef]
ID | Tumor | Meta | Age | Histological Type | BRCA Status | Induction Therapy | CCR | PCI | Death | PFS (Months) | OS (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|
AF050 | AR | MR | 29 | HGSC | neg | Paclitaxel/CBDCA | 1 | 30 | alive | 8 | 44 |
AF064 | AR | MR | 54 | HGSC | neg | Paclitaxel/CBDCA | 0 | 14 | alive | 18 | 38 |
AF069 | AR | - | 64 | HGSC | neg | NO | 0 | 14 | alive | - | 39 |
AF075 | AR | - | 61 | HGSC | BRCA1 | Paclitaxel/CBDCA | 0 | 3 | † | 11 | 23 |
AF083 | AR | MR | 46 | HGSC | BRCA2 | NO | 0 | 2 | † | 12 | 31 |
AF085 | - | MR | 35 | HGSC | BRCA1 | Paclitaxel/CBDCA | 0 | 6 | alive | 18 | 39 |
AF096 | AR | MR | 48 | HGSC | BRCA1 | Paclitaxel/CBDCA | 0 | 7 | alive | 26 | 32 |
AF102 | AR | MR | 56 | HGSC | neg | NO | 1 | 8 | alive | 17 | 39 |
AF111 | AR | MR | 60 | HGSC | neg | Paclitaxel/CBDCA | 0 | 6 | alive | - | 37 |
AF115 | AR | - | 55 | HGSC | BRCA1 | Paclitaxel/CBDCA | 1 | 17 | † | 5 | 8 |
AF124 | AR | - | 51 | HGSC | neg | Paclitaxel/CBDCA | 0 | 8 | alive | - | 32 |
AF129 | AR | MR | 72 | CCA | neg | NO | 0 | 3 | † | 11 | 18 |
AF146 | AR | MR | 64 | EC | neg | Paclitaxel/CBDCA/Bevacizumabe | 1 | 11 | alive | - | 36 |
AF159 | AR | MR | 52 | GCT | NA | NO | 2 | 10 | † | 18 | 23 |
AF165 | AR | MR | 63 | HGSC | BRCA1 | Paclitaxel/CBDCA | 1 | 18 | † | 10 | 13 |
AF174 | AR | - | 61 | SPA | BRCA2 | NO | 0 | 3 | alive | - | 34 |
AF185 | AR | MR | 65 | HGSC | BRCA1 | Paclitaxel/CBDCA | 1 | 12 | alive | - | 34 |
AF196 | - | MR | 64 | HGSC | BRCA2 | NO | 0 | 3 | alive | - | 34 |
AF219 | AR | MR | 53 | HGSC | neg | Paclitaxel/CBDCA | 1 | 21 | † | - | 21 |
AF223 | AR | MR | 67 | HGSC | neg | Paclitaxel/CBDCA | 1 | 25 | alive | 7 | 23 |
AF230 | AR | MR | 62 | HGSC | BRCA1 | Paclitaxel/CBDCA | 1 | 17 | alive | 7 | 32 |
AF231 | AR | MR | 67 | HGSC | BRCA2 | Paclitaxel/CBDCA | 0 | 6 | † | - | 0 |
AF295 | AR | MR | 54 | HGSC | BRCA1 | Paclitaxel/CBDCA | 0 | 15 | alive | 16 | 28 |
AF317 | AR | MR | 68 | HGSC | neg | Paclitaxel/CBDCA | 1 | 21 | alive | 22 | 25 |
AF329 | AR | MR | 50 | HGSC | NA | Gemcitabine/CBDCA | 1 | 18 | alive | 15 | 24 |
AF338 | AR | - | 59 | HGSC | neg | Paclitaxel/CBDCA | 0 | 0 | alive | - | 23 |
AF344 | AR | MR | 63 | LGSC | neg | Paclitaxel/CBDCA | 0 | 6 | alive | - | 22 |
AF365 | - | MR | 66 | LGSC | neg | Paclitaxel/CBDCA | 1 | 21 | alive | - | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flasarova, D.; Urban, K.; Strouhal, O.; Klos, D.; Lemstrova, R.; Dvorak, P.; Soucek, P.; Mohelnikova-Duchonova, B. DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC. Int. J. Mol. Sci. 2023, 24, 8868. https://doi.org/10.3390/ijms24108868
Flasarova D, Urban K, Strouhal O, Klos D, Lemstrova R, Dvorak P, Soucek P, Mohelnikova-Duchonova B. DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC. International Journal of Molecular Sciences. 2023; 24(10):8868. https://doi.org/10.3390/ijms24108868
Chicago/Turabian StyleFlasarova, Dominika, Katerina Urban, Ondrej Strouhal, Dusan Klos, Radmila Lemstrova, Pavel Dvorak, Pavel Soucek, and Beatrice Mohelnikova-Duchonova. 2023. "DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC" International Journal of Molecular Sciences 24, no. 10: 8868. https://doi.org/10.3390/ijms24108868
APA StyleFlasarova, D., Urban, K., Strouhal, O., Klos, D., Lemstrova, R., Dvorak, P., Soucek, P., & Mohelnikova-Duchonova, B. (2023). DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC. International Journal of Molecular Sciences, 24(10), 8868. https://doi.org/10.3390/ijms24108868