Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Ionic Liquids on the Insulin Amyloid Fibrillization Process
2.2. Effect of Ionic Liquids on the Morphology of Insulin Amyloid Fibrils
2.3. Effect of Ionic Liquids on the Structure of Insulin and Insulin Amyloid Fibrils
3. Materials and Methods
3.1. Chemicals
3.2. Insulin Amyloid Fibril Formation In Vitro
3.3. Thioflavin T (ThT) Fluorescence Assay
3.4. Kinetics of Insulin Fibrillization
3.5. Atomic Force Microscopy (AFM)
3.6. Attenuated Total Reflectance–Fourier-Transform Infrared (ATR-FTIR) Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, J.F.; Knowles, T.P.J.; Dobson, C.M.; MacPhee, C.E.; Welland, M.E. Characterization of the Nanoscale Properties of Individual Amyloid Fibrils. Proc. Natl. Acad. Sci. USA 2006, 103, 15806–15811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, T.P.J.; Buehler, M.J. Nanomechanics of Functional and Pathological Amyloid Materials. Nat. Nanotechnol. 2011, 6, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Fabrication of Novel Biomaterials through Molecular Self-Assembly. Nat. Biotechnol. 2003, 21, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Cherny, I.; Gazit, E. Amyloids: Not Only Pathological Agents but Also Ordered Nanomaterials. Angew. Chem.-Int. Ed. 2008, 47, 4062–4069. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Mezzenga, R. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Adv. Mater. 2016, 28, 6546–6561. [Google Scholar] [CrossRef]
- Yang, J.E.; Park, J.S.; Cho, E.; Jung, S.; Paik, S.R. Robust Polydiacetylene-Based Colorimetric Sensing Material Developed with Amyloid Fibrils of α-Synuclein. Langmuir 2015, 31, 1802–1810. [Google Scholar] [CrossRef]
- Herland, A.; Björk, P.; Nilsson, K.P.R.; Olsson, J.D.M.; Åsberg, P.; Konradsson, P.; Hammarström, P.; Inganäs, O. Electroactive Luminescent Self-Assembled Bio-Organic Nanowires: Integration of Semiconducting Oligoelectrolytes within Amyloidogenic Proteins. Adv. Mater. 2005, 17, 1466–1471. [Google Scholar] [CrossRef]
- Reynolds, N.P.; Styan, K.E.; Easton, C.D.; Li, Y.; Waddington, L.; Lara, C.; Forsythe, J.S.; Mezzenga, R.; Hartley, P.G.; Muir, B.W. Nanotopographic Surfaces with Defined Surface Chemistries from Amyloid Fibril Networks Can Control Cell Attachment. Biomacromolecules 2013, 14, 2305–2316. [Google Scholar] [CrossRef]
- Dobson, C.M. Principles of Protein Folding, Misfolding and Aggregation. Semin. Cell Dev. Biol. 2004, 15, 3–16. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Amyloid Formation by Globular Proteins under Native Conditions. Nat. Chem. Biol. 2009, 5, 15–22. [Google Scholar] [CrossRef]
- Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C.F. Common Core Structure of Amyloid Fibrils by Synchrotron X-Ray Diffraction. J. Mol. Biol. 1997, 273, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Fändrich, M. On the Structural Definition of Amyloid Fibrils and Other Polypeptide Aggregates. Cell. Mol. Life Sci. 2007, 64, 2066–2078. [Google Scholar] [CrossRef]
- Selivanova, O.M.; Galzitskaya, O.V. Structural Polymorphism and Possible Pathways of Amyloid Fibril Formation on the Example of Insulin Protein. Biochemistry 2012, 77, 1237–1247. [Google Scholar] [CrossRef]
- Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an Amyloid Dye: Fibril Quantification, Optimal Concentration and Effect on Aggregation. R. Soc. Open Sci. 2017, 4, 160696. [Google Scholar] [CrossRef] [Green Version]
- Close, W.; Neumann, M.; Schmidt, A.; Hora, M.; Annamalai, K.; Schmidt, M.; Reif, B.; Schmidt, V.; Grigorieff, N.; Fändrich, M. Physical Basis of Amyloid Fibril Polymorphism. Nat. Commun. 2018, 9, 699. [Google Scholar] [CrossRef] [Green Version]
- Sakalauskas, A.; Ziaunys, M.; Smirnovas, V. Concentration-Dependent Polymorphism of Insulin Amyloid Fibrils. PeerJ 2019, 2019, e8208. [Google Scholar] [CrossRef]
- De Luca, G.; Fennema Galparsoro, D.; Sancataldo, G.; Leone, M.; Foderà, V.; Vetri, V. Probing Ensemble Polymorphism and Single Aggregate Structural Heterogeneity in Insulin Amyloid Self-Assembly. J. Colloid Interface Sci. 2020, 574, 229–240. [Google Scholar] [CrossRef]
- Forsyth, S.A.; Pringle, J.M.; MacFarlane, D.R. Ionic Liquids—An Overview. Aust. J. Chem. 2004, 57, 113–119. [Google Scholar] [CrossRef]
- Jenkins, H.D.B. Ionic Liquids—An Overview. Sci. Prog. 2011, 94, 265–297. [Google Scholar] [CrossRef]
- Pillai, V.V.S.; Benedetto, A. Ionic Liquids in Protein Amyloidogenesis: A Brief Screenshot of the State-of-the-Art. Biophys. Rev. 2018, 10, 847–852. [Google Scholar] [CrossRef]
- Basu, A.; Bhattacharya, S.C.; Kumar, G.S. Influence of the Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide on Amyloid Fibrillogenesis in Lysozyme: Evidence from Photophysical and Imaging Studies. Int. J. Biol. Macromol. 2018, 107, 2643–2649. [Google Scholar] [CrossRef] [PubMed]
- Takekiyo, T.; Yamazaki, K.; Yamaguchi, E.; Abe, H.; Yoshimura, Y. High Ionic Liquid Concentration-Induced Structural Change of Protein in Aqueous Solution: A Case Study of Lysozyme. J. Phys. Chem. B 2012, 116, 11092–11097. [Google Scholar] [CrossRef] [PubMed]
- Takekiyo, T.; Koyama, Y.; Yamazaki, K.; Abe, H.; Yoshimura, Y. Ionic Liquid-Induced Formation of the α-Helical Structure of β-Lactoglobulin. J. Phys. Chem. B 2013, 117, 10142–10148. [Google Scholar] [CrossRef] [PubMed]
- Takekiyo, T.; Yamaguchi, E.; Yoshida, K.; Kato, M.; Yamaguchi, T.; Yoshimura, Y. Interaction Site between the Protein Aggregates and Thiocyanate Ion in Aqueous Solution: A Case Study of 1-Butyl-3-Methylimidazolium Thiocyanate. J. Phys. Chem. B 2015, 119, 6536–6544. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Zhang, H.; Cao, J.; Fei, Z.; Wang, Y. Impact of the Alkyl Chain Length on Binding of Imidazolium-Based Ionic Liquids to Bovine Serum Albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 323–333. [Google Scholar] [CrossRef]
- Islam, M.M.; Barik, S.; Sarkar, M. Probing the Interactions of 1-Alkyl-3-Methylimidazolium Tetrafluoroborate (Alkyl = Octyl, Hexyl, Butyl, and Ethyl) Ionic Liquids with Bovine Serum Albumin: An Alkyl Chain Length-Dependent Study. J. Phys. Chem. B 2019, 123, 1512–1526. [Google Scholar] [CrossRef]
- Kumar, A.; Venkatesu, P. Prevention of Insulin Self-Aggregation by a Protic Ionic Liquid. RSC Adv. 2013, 3, 362–367. [Google Scholar] [CrossRef]
- Takekiyo, T.; Yamaguchi, E.; Abe, H.; Yoshimura, Y. Suppression Effect on the Formation of Insulin Amyloid by the Use of Ionic Liquids. ACS Sustain. Chem. Eng. 2016, 4, 422–428. [Google Scholar] [CrossRef]
- Takekiyo, T.; Ishikawa, Y.; Yamaguchi, E.; Yamada, N.; Yoshimura, Y. Dissolution of Amyloid Aggregates in Aqueous Ionic Liquid Solutions: A Case Study of Insulin Amyloid. Aust. J. Chem. 2019, 72, 81–86. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Takekiyo, T.; Yoshimura, Y. Recovery and Cryopreservation of Insulin Amyloid Using Ionic Liquids. J. Mol. Liq. 2018, 272, 1019–1024. [Google Scholar] [CrossRef]
- Kumar, A.; Venkatesu, P. The Stability of Insulin in the Presence of Short Alkyl Chain Imidazolium-Based Ionic Liquids. RSC Adv. 2014, 4, 4487–4499. [Google Scholar] [CrossRef]
- Todinova, S.; Guncheva, M.; Yancheva, D. Thermal and Conformational Stability of Insulin in the Presence of Imidazolium-Based Ionic Liquids. J. Therm. Anal. Calorim. 2016, 123, 2591–2598. [Google Scholar] [CrossRef]
- Kumar, A.; Venkatesu, P. Does the Stability of Proteins in Ionic Liquids Obey the Hofmeister Series? Int. J. Biol. Macromol. 2014, 63, 244–253. [Google Scholar] [CrossRef]
- Goto, Y.; Calciano, L.J.; Fink, A.L. Acid-Induced Folding of Proteins. Proc. Natl. Acad. Sci. USA 1990, 87, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Marek, P.J.; Patsalo, V.; Green, D.F.; Raleigh, D.P. Ionic Strength Effects on Amyloid Formation by Amylin Are a Complicated Interplay among Debye Screening, Ion Selectivity, and Hofmeister Effects. Biochemistry 2012, 51, 8478–8490. [Google Scholar] [CrossRef]
- Nordwald, E.M.; Kaar, J.L. Mediating Electrostatic Binding of 1-Butyl-3-Methylimidazolium Chloride to Enzyme Surfaces Improves Conformational Stability. J. Phys. Chem. B 2013, 117, 8977–8986. [Google Scholar] [CrossRef]
- Poniková, S.; Antošová, A.; Demjén, E.; Sedláková, D.; Marek, J.; Varhač, R.; Gažová, Z.; Sedlák, E. Lysozyme Stability and Amyloid Fibrillization Dependence on Hofmeister Anions in Acidic PH. J. Biol. Inorg. Chem. 2015, 20, 921–933. [Google Scholar] [CrossRef]
- Fedunova, D.; Antosova, A.; Marek, J.; Vanik, V.; Demjen, E.; Bednarikova, Z.; Gazova, Z. Effect of 1-Ethyl-3-Methylimidazolium Tetrafluoroborate and Acetate Ionic Liquids on Stability and Amyloid Aggregation of Lysozyme. Int. J. Mol. Sci. 2022, 23, 783. [Google Scholar] [CrossRef]
- Nielsen, L.; Frokjaer, S.; Carpenter, J.F.; Brange, J. Studies of the Structure of Insulin Fibrils by Fourier Transform Infrared (FTIR) Spectroscopy and Electron Microscopy. J. Pharm. Sci. 2001, 90, 29–37. [Google Scholar] [CrossRef]
- Chatani, E.; Imamura, H.; Yamamoto, N.; Kato, M. Stepwise Organization of the β-Structure Identifies Key Regions Essential for the Propagation and Cytotoxicity of Insulin Amyloid Fibrils. J. Biol. Chem. 2014, 289, 10399–10410. [Google Scholar] [CrossRef] [Green Version]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
Medium | tlag (min) | thalf (min) | kagg (min−1) |
---|---|---|---|
Control | 66.93 ± 1.65 | 79.42 ± 0.92 | 0.160 ± 0.024 |
EMIM HSO4 [10 mM] | 33.61 ± 0.69 | 35.71 ± 0.38 | 0.952 ± 0.301 |
EMIM HSO4 [25 mM] | 34.17 ± 1.28 | 35.48 ± 0.43 | 1.519 ± 1.024 |
EMIM HSO4 [100 mM] | 29.14 ± 0.15 | 31.09 ± 0.06 | 1.028 ± 0.069 |
EMIM AC [10 mM] | 39.39 ± 2.13 | 50.53 ± 1.20 | 0.179 ± 0.030 |
EMIM AC [25 mM] | 32.00 ± 1.14 | 37.66 ± 0.53 | 0.353 ± 0.060 |
EMIM AC [100 mM] | 24.18 ± 0.21 | 25.28 ± 0.09 | 1.822 ± 0.419 |
EMIM Cl [10 mM] | 45.46 ± 1.85 | 55.78 ± 0.99 | 0.194 ± 0.039 |
EMIM Cl [25 mM] | 32.49 ± 0.73 | 38.79 ± 0.36 | 0.318 ± 0.041 |
EMIM Cl [100 mM] | 22.91 ± 0.05 | 23.94 ± 0.04 | 1.951 ± 0.119 |
EMIM NO3 [10 mM] | 40.95 ± 0.79 | 43.92 ± 0.33 | 0.672 ± 0.158 |
EMIM NO3 [25 mM] | 26.18 ± 0.72 | 30.29 ± 0.42 | 0.487 ± 0.086 |
EMIM NO3 [100 mM] | 16.74 ± 2.21 | 20.16 ± 1.09 | 0.585 ± 0.238 |
EMIM BF4 [10 mM] | 31.01 ± 1.12 | 36.69 ± 0.42 | 0.352 ± 0.057 |
EMIM BF4 [25 mM] | 30.62 ± 0.82 | 33.40 ± 0.30 | 0.718 ± 0.174 |
EMIM BF4 [100 mM] | 16.85 ± 0.98 | 19.73 ± 0.46 | 0.695 ± 0.170 |
INSULIN | INSULIN FIBRILS | |||||
---|---|---|---|---|---|---|
Peak Center Position | 1640–1658 cm−1 | 1620–1635 & 1690–1700 cm−1 | 1665–1685 cm−1 | 1640–1658 cm−1 | 1620–1635 & 1690–1700 cm−1 | 1665–1685 cm−1 |
Secondary Structure | Random & α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random & α-Helix (%) | β-Sheet (%) | β-Turn (%) |
Control | 53.7 | 19.6 | 24.4 | 14.4 | 58.6 | 21.2 |
[EMIM+] [HSO4−] | 47.3 | 15.1 | 34.5 | 14.0 | 55.1 | 21.8 |
[EMIM+] [AC−] | 44.8 | 18.4 | 35.0 | 12.9 | 59.8 | 23.1 |
[EMIM+] [Cl−] | 46.0 | 19.0 | 30.7 | 13.1 | 59.6 | 23.3 |
[EMIM+] [NO3−] | 46.2 | 13.7 | 35.8 | 20.0 | 51.7 | 24.1 |
[EMIM+] [BF4−] | 40.7 | 15.9 | 38.2 | 13.1 | 57.0 | 26.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanik, V.; Bednarikova, Z.; Fabriciova, G.; Wang, S.S.-S.; Gazova, Z.; Fedunova, D. Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions. Int. J. Mol. Sci. 2023, 24, 9699. https://doi.org/10.3390/ijms24119699
Vanik V, Bednarikova Z, Fabriciova G, Wang SS-S, Gazova Z, Fedunova D. Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions. International Journal of Molecular Sciences. 2023; 24(11):9699. https://doi.org/10.3390/ijms24119699
Chicago/Turabian StyleVanik, Vladimir, Zuzana Bednarikova, Gabriela Fabriciova, Steven S.-S. Wang, Zuzana Gazova, and Diana Fedunova. 2023. "Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions" International Journal of Molecular Sciences 24, no. 11: 9699. https://doi.org/10.3390/ijms24119699
APA StyleVanik, V., Bednarikova, Z., Fabriciova, G., Wang, S. S. -S., Gazova, Z., & Fedunova, D. (2023). Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions. International Journal of Molecular Sciences, 24(11), 9699. https://doi.org/10.3390/ijms24119699