Quantitative Analysis of Isoform Switching in Cancer
Abstract
:1. Introduction
2. Results
2.1. Detection of Isoform Switching in Cancer Using SatuRn
2.2. Relationship between Changes in Transcript Usage and Changes in Transcript Expression
2.3. Influence of the Level of Transcript Expression on the Magnitude of Changes in Usage or Expression
2.4. Frequency of the Detected Switches
2.5. Ranking Isoform Switching Events Using Expression and Frequency Data
3. Discussion
4. Materials and Methods
4.1. General
4.2. Data
4.3. Analysis of Differential Transcript Usage
4.4. Identification of Isoform Switches
4.5. Analysis of Differential Transcript Expression
4.6. Reconstruction of Sebestyén et al.’s Approach to Isoform Switching Detection
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodall, G.J.; Wickramasinghe, V.O. RNA in Cancer. Nat. Rev. Cancer 2021, 21, 22–36. [Google Scholar] [CrossRef]
- Bonnal, S.C.; López-Oreja, I.; Valcárcel, J. Roles and Mechanisms of Alternative Splicing in Cancer—Implications for Care. Nat. Rev. Clin. Oncol. 2020, 17, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Demircioğlu, D.; Cukuroglu, E.; Kindermans, M.; Nandi, T.; Calabrese, C.; Fonseca, N.A.; Kahles, A.; Lehmann, K.-V.; Stegle, O.; Brazma, A.; et al. A Pan-Cancer Transcriptome Analysis Reveals Pervasive Regulation through Alternative Promoters. Cell 2019, 178, 1465–1477.e17. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.J.; Smith, C.W.J.; Jiggins, C.D. Alternative Splicing as a Source of Phenotypic Diversity. Nat. Rev. Genet. 2022, 23, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Coulombe-Huntington, J.; Kang, S.; Sheynkman, G.M.; Hao, T.; Richardson, A.; Sun, S.; Yang, F.; Shen, Y.A.; Murray, R.R.; et al. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell 2016, 164, 805–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, C.F.A.; Wong-Brown, M.W.; Bowden, N.A. BCL-2 Family Isoforms in Apoptosis and Cancer. Cell Death Dis. 2019, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Trisciuoglio, D.; Tupone, M.G.; Desideri, M.; Di Martile, M.; Gabellini, C.; Buglioni, S.; Pallocca, M.; Alessandrini, G.; D’Aguanno, S.; Del Bufalo, D. BCL-XL Overexpression Promotes Tumor Progression-Associated Properties. Cell Death Dis. 2017, 8, 3216. [Google Scholar] [CrossRef] [Green Version]
- Sumantran, V.N.; Ealovega, M.W.; Nuñez, G.; Clarke, M.F.; Wicha, M.S. Overexpression of Bcl-XS Sensitizes MCF-7 Cells to Chemotherapy-Induced Apoptosis. Cancer Res. 1995, 55, 2507–2510. [Google Scholar]
- Hossini, A.M.; Eberle, J.; Fecker, L.F.; Orfanos, C.E.; Geilen, C.C. Conditional Expression of Exogenous Bcl-X(S) Triggers Apoptosis in Human Melanoma Cells in Vitro and Delays Growth of Melanoma Xenografts. FEBS Lett. 2003, 553, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Sebestyén, E.; Zawisza, M.; Eyras, E. Detection of Recurrent Alternative Splicing Switches in Tumor Samples Reveals Novel Signatures of Cancer. Nucleic Acids Res. 2015, 43, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Vitting-Seerup, K.; Sandelin, A. The Landscape of Isoform Switches in Human Cancers. Mol. Cancer Res. MCR 2017, 15, 1206–1220. [Google Scholar] [CrossRef] [Green Version]
- Climente-González, H.; Porta-Pardo, E.; Godzik, A.; Eyras, E. The Functional Impact of Alternative Splicing in Cancer. Cell Rep. 2017, 20, 2215–2226. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Hoadley, K.A.; Parker, J.S.; Perou, C.M. Identification of MRNA Isoform Switching in Breast Cancer. BMC Genom. 2016, 17, 181. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, A.; Karakulak, T.; Szklarczyk, D.; von Mering, C. Pathogenic Impact of Transcript Isoform Switching in 1,209 Cancer Samples Covering 27 Cancer Types Using an Isoform-Specific Interaction Network. Sci. Rep. 2020, 10, 14453. [Google Scholar] [CrossRef]
- Chen, L.; Chen, K.; Hong, Y.; Xing, L.; Zhang, J.; Zhang, K.; Zhang, Z. The Landscape of Isoform Switches in Sepsis: A Multicenter Cohort Study. Sci. Rep. 2022, 12, 10276. [Google Scholar] [CrossRef]
- Zhang, Y.; Weh, K.M.; Howard, C.L.; Riethoven, J.-J.; Clarke, J.L.; Lagisetty, K.H.; Lin, J.; Reddy, R.M.; Chang, A.C.; Beer, D.G.; et al. Characterizing Isoform Switching Events in Esophageal Adenocarcinoma. Mol. Ther. Nucleic Acids 2022, 29, 749–768. [Google Scholar] [CrossRef]
- Marques-Coelho, D.; Iohan, L.D.C.C.; Melo de Farias, A.R.; Flaig, A.; Lambert, J.-C.; Costa, M.R. Differential Transcript Usage Unravels Gene Expression Alterations in Alzheimer’s Disease Human Brains. Npj Aging Mech. Dis. 2021, 7, 2. [Google Scholar] [CrossRef]
- Anders, S.; Reyes, A.; Huber, W. Detecting Differential Usage of Exons from RNA-Seq Data. Genome Res. 2012, 22, 2008–2017. [Google Scholar] [CrossRef]
- Nowicka, M.; Robinson, M.D. DRIMSeq: A Dirichlet-Multinomial Framework for Multivariate Count Outcomes in Genomics. F1000Research 2016, 5, 1356. [Google Scholar] [CrossRef]
- Froussios, K.; Mourão, K.; Simpson, G.; Barton, G.; Schurch, N. Relative Abundance of Transcripts ( RATs): Identifying Differential Isoform Abundance from RNA-Seq. F1000Research 2019, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Gilis, J.; Vitting-Seerup, K.; Van den Berge, K.; Clement, L. SatuRn: Scalable Analysis of Differential Transcript Usage for Bulk and Single-Cell RNA-Sequencing Applications. F1000Research 2021, 10, 374. [Google Scholar] [CrossRef] [PubMed]
- Vivian, J.; Rao, A.A.; Nothaft, F.A.; Ketchum, C.; Armstrong, J.; Novak, A.; Pfeil, J.; Narkizian, J.; Deran, A.D.; Musselman-Brown, A.; et al. Toil Enables Reproducible, Open Source, Big Biomedical Data Analyses. Nat. Biotechnol. 2017, 35, 314–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakulak, T.; Moch, H.; von Mering, C.; Kahraman, A. Probing Isoform Switching Events in Various Cancer Types: Lessons From Pan-Cancer Studies. Front. Mol. Biosci. 2021, 8, 726902. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Soneson, C.; Patro, R. Swimming Downstream: Statistical Analysis of Differential Transcript Usage Following Salmon Quantification. F1000Research 2018, 7, 952. [Google Scholar] [CrossRef] [PubMed]
- Ntranos, V.; Yi, L.; Melsted, P.; Pachter, L. A Discriminative Learning Approach to Differential Expression Analysis for Single-Cell RNA-Seq. Nat. Methods 2019, 16, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Tekath, T.; Dugas, M. Differential Transcript Usage Analysis of Bulk and Single-Cell RNA-Seq Data with DTUrtle. Bioinformatics 2021, 37, 3781–3787. [Google Scholar] [CrossRef]
- Adams, S.J.; DeTure, M.A.; McBride, M.; Dickson, D.W.; Petrucelli, L. Three Repeat Isoforms of Tau Inhibit Assembly of Four Repeat Tau Filaments. PLoS ONE 2010, 5, e10810. [Google Scholar] [CrossRef]
- Cendrowski, J.; Kaczmarek, M.; Mazur, M.; Kuzmicz-Kowalska, K.; Jastrzebski, K.; Brewinska-Olchowik, M.; Kominek, A.; Piwocka, K.; Miaczynska, M. Splicing Variation of BMP2K Balances Abundance of COPII Assemblies and Autophagic Degradation in Erythroid Cells. eLife 2020, 9, e58504. [Google Scholar] [CrossRef]
- Mehta, S.; Campbell, H.; Drummond, C.J.; Li, K.; Murray, K.; Slatter, T.; Bourdon, J.-C.; Braithwaite, A.W. Adaptive Homeostasis and the P53 Isoform Network. EMBO Rep. 2021, 22, e53085. [Google Scholar] [CrossRef]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of Apoptosis in Health and Disease: The Balancing Act of BCL-2 Family Proteins. Nat. Rev. Mol. Cell Biol. 2019, 20, 175–193. [Google Scholar] [CrossRef]
- Ram, D.R.; Ilyukha, V.; Volkova, T.; Buzdin, A.; Tai, A.; Smirnova, I.; Poltorak, A. Balance between Short and Long Isoforms of CFLIP Regulates Fas-Mediated Apoptosis In Vivo. Proc. Natl. Acad. Sci. USA 2016, 113, 1606–1611. [Google Scholar] [CrossRef] [Green Version]
- Wylie, A.; Jones, A.E.; Das, S.; Lu, W.-J.; Abrams, J.M. Distinct P53 Isoforms Code for Opposing Transcriptional Outcomes. Dev. Cell 2022, 57, 1833–1846.e6. [Google Scholar] [CrossRef]
- Chasov, V.; Zaripov, M.; Mirgayazova, R.; Khadiullina, R.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Rizvanov, A.; Bulatov, E. Promising New Tools for Targeting P53 Mutant Cancers: Humoral and Cell-Based Immunotherapies. Front. Immunol. 2021, 12, 707734. [Google Scholar] [CrossRef]
- Gonzàlez-Porta, M.; Frankish, A.; Rung, J.; Harrow, J.; Brazma, A. Transcriptome Analysis of Human Tissues and Cell Lines Reveals One Dominant Transcript per Gene. Genome Biol. 2013, 14, R70. [Google Scholar] [CrossRef] [Green Version]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Frankish, A.; Diekhans, M.; Jungreis, I.; Lagarde, J.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Armstrong, J.; Barnes, I.; et al. GENCODE 2021. Nucleic Acids Res. 2021, 49, D916–D923. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and Interpreting Cancer Genomics Data via the Xena Platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgalev, G.; Poverennaya, E. Quantitative Analysis of Isoform Switching in Cancer. Int. J. Mol. Sci. 2023, 24, 10065. https://doi.org/10.3390/ijms241210065
Dolgalev G, Poverennaya E. Quantitative Analysis of Isoform Switching in Cancer. International Journal of Molecular Sciences. 2023; 24(12):10065. https://doi.org/10.3390/ijms241210065
Chicago/Turabian StyleDolgalev, Georgii, and Ekaterina Poverennaya. 2023. "Quantitative Analysis of Isoform Switching in Cancer" International Journal of Molecular Sciences 24, no. 12: 10065. https://doi.org/10.3390/ijms241210065
APA StyleDolgalev, G., & Poverennaya, E. (2023). Quantitative Analysis of Isoform Switching in Cancer. International Journal of Molecular Sciences, 24(12), 10065. https://doi.org/10.3390/ijms241210065