Classical Hodgkin Lymphoma: From Past to Future—A Comprehensive Review of Pathophysiology and Therapeutic Advances
Abstract
:1. Introduction and Historical Background
2. Materials and Methods
3. Epidemiology
4. Risk Factors and Etiology
5. Pathophysiology and Molecular Biology of HL
6. Classification of HL
6.1. cHL
6.2. NLPHL
7. Clinical Presentation and Symptomatology
8. Differential Diagnoses
9. Diagnostic Workup
10. Staging and Risk Stratification
- Low-risk group: stage IA/IIA without bulk or extra-nodal extension (E).
- Intermediate-risk group: stage IIB/IIIA, as well as stage IA/IIA with extra-nodal extension (E) or bulky disease.
11. Treatment Strategies for Classical HL
11.1. Combination Chemotherapy for HL
11.2. Treatment of Adult cHL
11.2.1. Stage I–II/Early Stage HL
11.2.2. Stage III–IV/Advanced HL
11.3. Treatment of Pediatric cHL
11.3.1. Low-Risk cHL
11.3.2. Intermediate-Risk cHL
11.3.3. High-Risk cHL
11.3.4. Overview of the EuroNet-PHL Studies for the Treatment of Pediatric cHL
11.4. Summary of Combination Chemotherapy Approaches
12. Treatment of R/R HL
Autologous Stem Cell Transplant in HL
13. Relapse after ASCT
14. Novel Therapies for R/R HL
14.1. CD30 Inhibitor (Brentuximab Vedotin)
14.2. Proteasome Inhibitor (Bortezomib)
14.3. CD20 Inhibitor (Rituximab)
14.4. Immune Checkpoint Inhibitors/PD-L1 Inhibitors
15. Allo-SCT in R/R cHL
16. CAR T-Cell Therapy for the Treatment of HL
17. Ongoing Research
18. Surveillance and Acute and Long-Term Adverse Events Associated with HL Therapy
19. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, K.M. Hodgkin lymphoma in children and adolescents: Improving the therapeutic index. Blood 2015, 126, 2452–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, T. On some Morbid Appearances of the Absorbent Glands and Spleen. Med. Chir. Trans. 1832, 17, 68–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geller, S.A. Comments on the anniversary of the description of Hodgkin’s disease. J. Natl. Med. Assoc. 1984, 76, 815–817. [Google Scholar] [PubMed]
- Hellman, S. Brief Consideration of Thomas Hodgkin and His Times. In Hodgkin Lymphoma, 2nd ed.; Hoppe, R.T., Mauch, P.T., Armitage, J.O., Diehl, V., Weiss, L.M., Eds.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 3–6. [Google Scholar]
- Thakkar, K.; Ghaisas, S.M.; Singh, M. Lymphadenopathy: Differentiation between Tuberculosis and Other Non-Tuberculosis Causes like Follicular Lymphoma. Front. Public. Health 2016, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, P.; Akl, M.R.; Ayoub, N.M.; Tomiyama, T.; Cousins, T.; Tai, B.; Carroll, N.; Nyrenda, T.; Bhattacharyya, P.; Harris, M.B.; et al. Pediatric Hodgkin lymphoma: Biomarkers, drugs, and clinical trials for translational science and medicine. Oncotarget 2016, 7, 67551–67573. [Google Scholar] [CrossRef] [Green Version]
- Momotow, J.; Borchmann, S.; Eichenauer, D.A.; Engert, A.; Sasse, S. Hodgkin Lymphoma-Review on Pathogenesis, Diagnosis, Current and Future Treatment Approaches for Adult Patients. J. Clin. Med. 2021, 10, 1125. [Google Scholar] [CrossRef]
- Hoppe, R.T.; Advani, R.H.; Ai, W.Z.; Ambinder, R.F.; Armand, P.; Bello, C.M.; Benitez, C.M.; Bierman, P.J.; Boughan, K.M.; Dabaja, B.; et al. Hodgkin Lymphoma, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. J. Natl. Compr. Cancer Netw. 2020, 18, 755–781. [Google Scholar] [CrossRef]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef]
- Akpek, G.; Ambinder, R.F.; Piantadosi, S.; Abrams, R.A.; Brodsky, R.A.; Vogelsang, G.B.; Zahurak, M.L.; Fuller, D.; Miller, C.B.; Noga, S.J.; et al. Long-Term Results of Blood and Marrow Transplantation for Hodgkin’s Lymphoma. J. Clin. Oncol. 2001, 19, 4314–4321. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Garshell, J.; Neyman, N.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review, 1975–2010; National Cancer Institute: Bethesda, MD, USA, 2013. [Google Scholar]
- Swerdlow, S.; Campo, E.; Harris, N. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; IARC Press: Lyon, France, 2017. [Google Scholar]
- Küppers, R.; Engert, A.; Hansmann, M.-L. Hodgkin lymphoma. J. Clin. Investig. 2012, 122, 3439–3447. [Google Scholar] [CrossRef]
- Sjöberg, J.; Halthur, C.; Kristinsson, S.Y.; Landgren, O.; Axdorph Nygell, U.; Dickman, P.W.; Björkholm, M. Progress in Hodgkin lymphoma: A population-based study on patients diagnosed in Sweden from 1973–2009. Blood 2012, 119, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Engert, A.; Diehl, V.; Franklin, J.; Lohri, A.; Dörken, B.; Ludwig, W.-D.; Koch, P.; Hänel, M.; Pfreundschuh, M.; Wilhelm, M.; et al. Escalated-Dose BEACOPP in the Treatment of Patients With Advanced-Stage Hodgkin’s Lymphoma: 10 Years of Follow-Up of the GHSG HD9 Study. J. Clin. Oncol. 2009, 27, 4548–4554. [Google Scholar] [CrossRef]
- Sasse, S.; Bröckelmann, P.J.; Goergen, H.; Plütschow, A.; Müller, H.; Kreissl, S.; Buerkle, C.; Borchmann, S.; Fuchs, M.; Borchmann, P.; et al. Long-Term Follow-Up of Contemporary Treatment in Early-Stage Hodgkin Lymphoma: Updated Analyses of the German Hodgkin Study Group HD7, HD8, HD10, and HD11 Trials. J. Clin. Oncol. 2017, 35, 1999–2007. [Google Scholar] [CrossRef]
- Rapoport, A.P.; Guo, C.; Badros, A.; Hakimian, R.; Akpek, G.; Kiggundu, E.; Meisenberg, B.; Mannuel, H.; Takebe, N.; Fenton, R.; et al. Autologous stem cell transplantation followed by consolidation chemotherapy for relapsed or refractory Hodgkin’s lymphoma. Bone Marrow Transplant. 2004, 34, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Mauz-Körholz, C.; Metzger, M.L.; Kelly, K.M.; Schwartz, C.L.; Castellanos, M.E.; Dieckmann, K.; Kluge, R.; Körholz, D. Pediatric hodgkin lymphoma. J. Clin. Oncol. 2015, 33, 2975–2985. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M. Hodgkin lymphoma: A 2020 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2020, 95, 978–989. [Google Scholar] [CrossRef]
- Bröckelmann, P.J.; Goergen, H.; Keller, U.; Meissner, J.; Ordemann, R.; Halbsguth, T.V.; Sasse, S.; Sökler, M.; Kerkhoff, A.; Mathas, S.; et al. Nivolumab and AVD for Early-Stage Unfavorable Hodgkin Lymphoma (NIVAHL). Blood 2019, 134, 236. [Google Scholar] [CrossRef]
- Gloeckler Ries, L.A.; Reichman, M.E.; Lewis, D.R.; Hankey, B.F.; Edwards, B.K. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist 2003, 8, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Shenoy, P.; Maggioncalda, A.; Malik, N.; Flowers, C.R. Incidence patterns and outcomes for hodgkin lymphoma patients in the United States. Adv. Hematol. 2011, 2011, 725219. [Google Scholar] [CrossRef] [Green Version]
- Grubb, W.R.; Neboori, H.J.; Diaz, A.D.; Li, H.; Kwon, D.; Panoff, J. Racial and Ethnic Disparities in the Pediatric Hodgkin Lymphoma Population. Pediatr. Blood Cancer 2016, 63, 428–435. [Google Scholar] [CrossRef]
- Lymphoma—National Cancer Institute. Available online: https://www.cancer.gov/types/lymphoma (accessed on 20 October 2022).
- Maggioncalda, A.; Malik, N.; Shenoy, P.; Smith, M.; Sinha, R.; Flowers, C.R. Clinical, Molecular, and Environmental Risk Factors for Hodgkin Lymphoma. Adv. Hematol. 2011, 2011, 736261. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.S.; Tsodikov, A.; Cibrik, D.M.; Ross, C.W.; Kaminski, M.S.; Blayney, D.W. Lymphoma after solid organ transplantation: Risk, response to therapy, and survival at a transplantation center. J. Clin. Oncol. 2009, 27, 3354–3362. [Google Scholar] [CrossRef] [PubMed]
- Biggar, R.J.; Frisch, M.; Goedert, J.J. Risk of cancer in children with AIDS. AIDS-Cancer Match Registry Study Group. JAMA 2000, 284, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robison, L.L.; Stoker, V.; Frizzera, G.; Heinitz, K.; Meadows, A.T.; Filipovich, A.H. Hodgkin’s disease in pediatric patients with naturally occurring immunodeficiency. Am. J. Pediatr. Hematol. Oncol. 1987, 9, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.J.G.; Schwartz, C.L.; Higman, M.; Chen, L.; Buxton, A.; Kanakry, J.A.; Kahwash, S.B.; Hutchison, R.E.; Friedman, D.L.; Ambinder, R.F. Epstein-Barr virus DNA in serum as an early prognostic marker in children and adolescents with Hodgkin lymphoma. Blood Adv. 2017, 1, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Jarrett, R.F. Risk factors for Hodgkin’s lymphoma by EBV status and significance of detection of EBV genomes in serum of patients with EBV-associated Hodgkin’s lymphoma. Leuk. Lymphoma 2003, 44, S27–S32. [Google Scholar] [CrossRef]
- Chang, C.M.; Yu, K.J.; Mbulaiteye, S.M.; Hildesheim, A.; Bhatia, K. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: A need for reappraisal. Virus Res. 2009, 143, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Ambinder, R.F. Epstein-barr virus and hodgkin lymphoma. Hematol. Am. Soc. Hematol. Educ. Program. 2007, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Linabery, A.M.; Erhardt, E.B.; Richardson, M.R.; Ambinder, R.F.; Friedman, D.L.; Glaser, S.L.; Monnereau, A.; Spector, L.G.; Ross, J.A.; Grufferman, S. Family history of cancer and risk of pediatric and adolescent Hodgkin lymphoma: A Children’s Oncology Group study. Int. J. Cancer 2015, 137, 2163–2174. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Sundquist, K.; Sieh, W.; Winkleby, M.A.; Sundquist, J. Perinatal and family risk factors for Hodgkin lymphoma in childhood through young adulthood. Am. J. Epidemiol. 2012, 176, 1147–1158. [Google Scholar] [CrossRef]
- Kharazmi, E.; Fallah, M.; Pukkala, E.; Olsen, J.H.; Tryggvadottir, L.; Sundquist, K.; Tretli, S.; Hemminki, K. Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: A joint study from five Nordic countries. Blood 2015, 126, 1990–1995. [Google Scholar] [CrossRef] [Green Version]
- Poppema, S. Immunobiology and pathophysiology of Hodgkin lymphomas. Hematol. Am. Soc. Hematol. Educ. Program. 2005, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.K.; Re, D.; Wolf, J.; Diehl, V. Part I: Hodgkin’s lymphoma--molecular biology of Hodgkin and Reed-Sternberg cells. Lancet Oncol. 2004, 5, 11–18. [Google Scholar] [CrossRef]
- Weniger, M.A.; Küppers, R. Molecular biology of Hodgkin lymphoma. Leukemia 2021, 35, 968–981. [Google Scholar] [CrossRef]
- Shishodia, S.; Aggarwal, B.B. Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat. Res. 2004, 119, 139–173. [Google Scholar]
- Foss, H.D.; Reusch, R.; Demel, G.; Lenz, G.; Anagnostopoulos, I.; Hummel, M.; Stein, H. Frequent expression of the B-cell-specific activator protein in Reed-Sternberg cells of classical Hodgkin’s disease provides further evidence for its B-cell origin. Blood 1999, 94, 3108–3113. [Google Scholar] [CrossRef]
- Bräuninger, A.; Wacker, H.-H.; Rajewsky, K.; Küppers, R.; Hansmann, M.-L. Typing the histogenetic origin of the tumor cells of lymphocyte-rich classical Hodgkin’s lymphoma in relation to tumor cells of classical and lymphocyte-predominance Hodgkin’s lymphoma. Cancer Res. 2003, 63, 1644–1651. [Google Scholar]
- Marafioti, T.; Hummel, M.; Foss, H.D.; Laumen, H.; Korbjuhn, P.; Anagnostopoulos, I.; Lammert, H.; Demel, G.; Theil, J.; Wirth, T.; et al. Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000, 95, 1443–1450. [Google Scholar] [CrossRef]
- Müschen, M.; Rajewsky, K.; Bräuninger, A.; Baur, A.S.; Oudejans, J.J.; Roers, A.; Hansmann, M.-L.; Küppers, R. Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J. Exp. Med. 2000, 191, 387–394. [Google Scholar] [CrossRef]
- Weniger, M.A.; Tiacci, E.; Schneider, S.; Arnolds, J.; Rüschenbaum, S.; Duppach, J.; Seifert, M.; Döring, C.; Hansmann, M.-L.; Küppers, R. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J. Clin. Investig. 2018, 128, 2996–3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bräuninger, A.; Schmitz, R.; Bechtel, D.; Renné, C.; Hansmann, M.L.; Küppers, R. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int. J. Cancer 2006, 118, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Weniger, M.A.; Küppers, R. NF-κB deregulation in Hodgkin lymphoma. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Weniger, M.; Melzner, I.; Menz, C.; Wegener, S.; Bucur, A.; Dorsch, K.; Mattfeldt, T.; Barth, T.; Möller, P. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 2006, 25, 2679–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, N.L.; Jaffe, E.S.; Stein, H.; Banks, P.M.; Chan, J.K.; Cleary, M.L.; Delsol, G.; De Wolf-Peeters, C.; Falini, B.; Gatter, K.C.; et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood 1994, 84, 1361–1392. [Google Scholar] [CrossRef] [Green Version]
- Shanbhag, S.; Ambinder, R.F. Hodgkin lymphoma: A review and update on recent progress. CA Cancer J. Clin. 2018, 68, 116–132. [Google Scholar] [CrossRef] [Green Version]
- Colby, T.V.; Hoppe, R.T.; Warnke, R.A. Hodgkin’s disease: A clinicopathologic study of 659 cases. Cancer 1982, 49, 1848–1858. [Google Scholar] [CrossRef]
- Gulley, M.L.; Eagan, P.A.; Quintanilla-Martinez, L.; Picado, A.L.; Smir, B.N.; Childs, C.; Dunn, C.D.; Craig, F.E.; Williams, J.J.; Banks, P.M. Epstein-Barr virus DNA is abundant and monoclonal in the Reed-Sternberg cells of Hodgkin’s disease: Association with mixed cellularity subtype and Hispanic American ethnicity. Blood 1994, 83, 1595–1602. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro-Vornhagen, A.; Haverkamp, H.; Engert, A.; Balleisen, L.; Majunke, P.; Heil, G.; Eich, H.T.; Stein, H.; Diehl, V.; Josting, A. Lymphocyte-rich classical Hodgkin’s lymphoma: Clinical presentation and treatment outcome in 100 patients treated within German Hodgkin’s Study Group trials. J. Clin. Oncol. 2005, 23, 5739–5745. [Google Scholar] [CrossRef]
- Diehl, V.; Sextro, M.; Franklin, J.; Hansmann, M.-L.; Harris, N.; Jaffe, E.; Poppema, S.; Harris, M.; Franssila, K.; van Krieken, J. Clinical presentation, course, and prognostic factors in lymphocyte-predominant Hodgkin’s disease and lymphocyte-rich classical Hidgkin’s disease: Report from the European Task Force on Lymphoma Project on Lymphocyte-Predominant Hodgkin’s Disease. J. Clin. Oncol. 1999, 17, 776–783. [Google Scholar] [CrossRef]
- Allemani, C.; Sant, M.; De Angelis, R.; Marcos-Gragera, R.; Coebergh, J.W.; Group, E.W. Hodgkin disease survival in Europe and the US: Prognostic significance of morphologic groups. Cancer 2006, 107, 352–360. [Google Scholar] [CrossRef]
- Küppers, R. The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 2009, 9, 15–27. [Google Scholar] [CrossRef]
- Flerlage, J.E.; Hiniker, S.M.; Armenian, S.; Benya, E.C.; Bobbey, A.J.; Chang, V.; Cooper, S.; Coulter, D.W.; Cuglievan, B.; Hoppe, B.S.; et al. Pediatric Hodgkin Lymphoma, Version 3.2021. J. Natl. Compr. Cancer Netw. 2021, 19, 733–754. [Google Scholar] [CrossRef]
- Allen, C.E.; Kelly, K.M.; Bollard, C.M. Pediatric lymphomas and histiocytic disorders of childhood. Pediatr. Clin. N. Am. 2015, 62, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.W.; Balakrishna, J.P.; Pittaluga, S.; Jaffe, E.S. Diagnosis of Hodgkin lymphoma in the modern era. Br. J. Haematol. 2019, 184, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Mauch, P.M.; Kalish, L.A.; Kadin, M.; Coleman, C.N.; Osteen, R.; Hellman, S. Patterns of presentation of Hodgkin disease. Implications for etiology and pathogenesis. Cancer 1993, 71, 2062–2071. [Google Scholar] [CrossRef]
- Ranganath, S.H.; Lee, E.Y.; Restrepo, R.; Eisenberg, R.L. Mediastinal masses in children. AJR Am. J. Roentgenol. 2012, 198, W197–W216. [Google Scholar] [CrossRef]
- Chen, C.H.; Wu, K.H.; Chao, Y.H.; Weng, D.F.; Chang, J.S.; Lin, C.H. Clinical manifestation of pediatric mediastinal tumors, a single center experience. Medicine 2019, 98, e16732. [Google Scholar] [CrossRef]
- Pearson, J.K.; Tan, G.M. Pediatric Anterior Mediastinal Mass: A Review Article. Semin. Cardiothorac. Vasc. Anesth. 2015, 19, 248–254. [Google Scholar] [CrossRef]
- Hudson, M.M.; Donaldson, S.S. Hodgkin’s disease. Pediatr. Clin. N. Am. 1997, 44, 891–906. [Google Scholar] [CrossRef]
- Gobbi, P.G.; Cavalli, C.; Gendarini, A.; Crema, A.; Ricevuti, G.; Federico, M.; Di Prisco, U.; Ascari, E. Reevaluation of prognostic significance of symptoms in Hodgkin’s disease. Cancer 1985, 56, 2874–2880. [Google Scholar] [CrossRef]
- Lister, T.A.; Crowther, D.; Sutcliffe, S.B.; Glatstein, E.; Canellos, G.P.; Young, R.C.; Rosenberg, S.A.; Coltman, C.A.; Tubiana, M. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J. Clin. Oncol. 1989, 7, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Gruchała, A. Hodgkin lymphoma: Differences and differential diagnosis. Acta Haematol. Pol. 2021, 52, 305–308. [Google Scholar]
- Cerhan, J.R.; Slager, S.L. Familial predisposition and genetic risk factors for lymphoma. Blood 2015, 126, 2265–2273. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Avila Mdel, P.; Gonzalez-Longoria, A.A.; Admirand, J.H.; Medeiros, L.J. Hodgkin lymphoma involving Waldeyer ring: A clinicopathologic study of 22 cases. Am. J. Clin. Pathol. 2005, 123, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Grewal, R.; Irimie, A.; Naidoo, N.; Mohamed, N.; Petrushev, B.; Chetty, M.; Tomuleasa, C.; Abayomi, E.A. Hodgkin’s lymphoma and its association with EBV and HIV infection. Crit. Rev. Clin. Lab. Sci. 2018, 55, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Padma, M.; Kumar, N.; Munireddy, J.; Kumar, A.; Gujjal, P.C.; Premalata, S.C. Tuberculosis Coexistence in Pediatric Hodgkin’s Lymphoma: A Tropical Country Experience. S. Asian J. Cancer 2020, 9, 236–239. [Google Scholar] [CrossRef]
- Kaseb, H.; Babiker, H.M. Hodgkin Lymphoma. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lo, A.C.; Dieckmann, K.; Pelz, T.; Gallop-Evans, E.; Engenhart-Cabillic, R.; Vordermark, D.; Kelly, K.M.; Schwartz, C.L.; Constine, L.S.; Roberts, K.; et al. Pediatric classical Hodgkin lymphoma. Pediatr. Blood Cancer 2021, 68, e28562. [Google Scholar] [CrossRef]
- Hodgkin Lymphoma Stages. Available online: https://www.cancer.org/cancer/hodgkin-lymphoma/detection-diagnosis-staging/staging.html (accessed on 20 September 2022).
- Friedman, D.L.; Chen, L.; Wolden, S.; Buxton, A.; McCarten, K.; FitzGerald, T.J.; Kessel, S.; De Alarcon, P.A.; Chen, A.R.; Kobrinsky, N.; et al. Dose-intensive response-based chemotherapy and radiation therapy for children and adolescents with newly diagnosed intermediate-risk hodgkin lymphoma: A report from the Children’s Oncology Group Study AHOD0031. J. Clin. Oncol. 2014, 32, 3651–3658. [Google Scholar] [CrossRef]
- Carbone, P.P.; Kaplan, H.S.; Musshoff, K.; Smithers, D.W.; Tubiana, M. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res. 1971, 31, 1860–1861. [Google Scholar]
- Olweny, C.L. Cotswolds modification of the Ann Arbor staging system for Hodgkin’s disease. J. Clin. Oncol. 1990, 8, 1598. [Google Scholar]
- Bazzeh, F.; Rihani, R.; Howard, S.; Sultan, I. Comparing adult and pediatric Hodgkin lymphoma in the Surveillance, Epidemiology and End Results Program, 1988–2005: An analysis of 21 734 cases. Leuk. Lymphoma 2010, 51, 2198–2207. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
- Jacobs, E.M.; Peters, F.C.; Luce, J.K.; Zippin, C.; Wood, D.A. Mechlorethamine HCl and cyclophosphamide in the treatment of Hodgkin’s disease and the lymphomas. JAMA 1968, 203, 392–398. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Bishop, K.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2014; National Cancer Institute: Bethesda, MD, USA, 2017. Available online: https://seer.cancer.gov/csr/1975_2014/ (accessed on 9 November 2022).
- Duühmke, E.; Franklin, J.; Pfreundschuh, M.; Sehlen, S.; Willich, N.; Rühl, U.; Müller, R.-P.; Lukas, P.; Atzinger, A.; Paulus, U. Low-dose radiation is sufficient for the noninvolved extended-field treatment in favorable early-stage Hodgkin’s disease: Long-term results of a randomized trial of radiotherapy alone. J. Clin. Oncol. 2001, 19, 2905–2914. [Google Scholar] [CrossRef]
- Gustavsson, A.; Osterman, B.; Cavallin-Ståhl, E. A systematic overview of radiation therapy effects in Hodgkin’s lymphoma. Acta Oncol. 2003, 42, 589–604. [Google Scholar] [CrossRef]
- Bonadonna, G.; Bonfante, V.; Viviani, S. ABVD plus subtotal nodal versus involved-field radiotherapy in early-stage Hodgkin’s disease: Long-term results. J. Clin. Oncol. 2004, 22, 2835–2841. [Google Scholar] [CrossRef]
- Engert, A.; Plütschow, A.; Eich, H. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N. Engl. J. Med. 2010, 363, 640–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, M.P.; Girinsky, T.; Federico, M.; Reman, O.; Fortpied, C.; Gotti, M.; Casasnovas, O.; Brice, P.; Van Der Maazen, R.; Re, A. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: Final results of the randomized EORTC/LYSA/FIL H10 trial. J. Clin. Oncol. 2017, 35, 1786–1794. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, M.; Goergen, H.; Kobe, C.; Eich, H.; Baues, C.; Greil, R.; Sasse, S.; Zijlstra, J.M.; Lohri, A.; Rosenwald, A. PET-guided treatment of early-stage favorable Hodgkin lymphoma: Final results of the international, randomized phase 3 trial HD16 by the German Hodgkin Study Group. Blood 2018, 132, 925. [Google Scholar] [CrossRef]
- Radford, J.; Illidge, T.; Counsell, N. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 1598–1607. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, M.; Goergen, H.; Kobe, C.; Kuhnert, G.; Lohri, A.; Greil, R.; Sasse, S.; Topp, M.S.; Schäfer, E.; Hertenstein, B. Positron emission tomography-guided treatment in early-stage favorable Hodgkin lymphoma: Final results of the international, randomized phase III HD16 trial by the German Hodgkin Study Group. J. Clin. Oncol. 2019, 37, 2835–2845. [Google Scholar] [CrossRef]
- Engert, A.; Schiller, P.; Josting, A.; Herrmann, R.; Koch, P.; Sieber, M.; Boissevain, F.; De Wit, M.; Mezger, J.; Dühmke, E. Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin’s lymphoma: Results of the HD8 trial of the German Hodgkin’s Lymphoma Study Group. J. Clin. Oncol. 2003, 21, 3601–3608. [Google Scholar] [PubMed]
- Fermé, C.; Thomas, J.; Brice, P.; Casasnovas, O.; Vranovsky, A.; Bologna, S.; Lugtenburg, P.J.; Bouabdallah, R.; Carde, P.; Sebban, C. ABVD or BEACOPPbaseline along with involved-field radiotherapy in early-stage Hodgkin Lymphoma with risk factors: Results of the European Organisation for Research and Treatment of Cancer (EORTC)–Groupe d’Étude des Lymphomes de l’Adulte (GELA) H9-U intergroup randomised trial. Eur. J. Cancer 2017, 81, 45–55. [Google Scholar] [PubMed]
- Viviani, S.; Zinzani, P.L.; Rambaldi, A.; Brusamolino, E.; Levis, A.; Bonfante, V.; Vitolo, U.; Pulsoni, A.; Liberati, A.M.; Specchia, G. ABVD versus BEACOPP for Hodgkin’s lymphoma when high-dose salvage is planned. N. Engl. J. Med. 2011, 365, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Eich, H.T.; Diehl, V.; Görgen, H.; Pabst, T.; Markova, J.; Debus, J.; Ho, A.; Dörken, B.; Rank, A.; Grosu, A.-L. Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavorable Hodgkin’s lymphoma: Final analysis of the German Hodgkin Study Group HD11 trial. J. Clin. Oncol. 2010, 28, 4199–4206. [Google Scholar] [CrossRef] [PubMed]
- Von Tresckow, B.; Plutschow, A.; Fuchs, M.; Klimm, B.; Markova, J.; Lohri, A.; Kral, Z.; Greil, R.; Topp, M.S.; Meissner, J. Dose-intensification in early unfavorable Hodgkin’s lymphoma: Final analysis of the German Hodgkin Study Group HD14 trial. J. Clin. Oncol. 2012, 30, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Gallamini, A.; Rossi, A.; Patti, C.; Picardi, M.; Romano, A.; Cantonetti, M.; Oppi, S.; Viviani, S.; Bolis, S.; Trentin, L. Consolidation radiotherapy could be safely omitted in advanced Hodgkin lymphoma with large nodal mass in complete metabolic response after ABVD: Final analysis of the randomized GITIL/FIL HD0607 trial. J. Clin. Oncol. 2020, 38, 3905–3913. [Google Scholar] [CrossRef]
- Gallamini, A.; Tarella, C.; Viviani, S. Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage Hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: Long-term results of the GITIL/FIL HD 0607 Trial. J. Clin. Oncol. 2018, 36, 454–462. [Google Scholar] [CrossRef]
- Stephens, D.; Li, H.; Schöder, H. Five-year follow-up of SWOG S0816: Limitations and values of a PET-adapted approach with stage III/IV Hodgkin lymphoma. Blood 2019, 134, 1238–1246. [Google Scholar] [CrossRef]
- Press, O.; Li, H.; Schöder, H. US Intergroup Trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose-positron emission tomography imaging: Southwest Oncology Group S0816. J. Clin. Oncol. 2016, 34, 2020–2027. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Federico, M.; Kirkwood, A. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N. Engl. J. Med. 2016, 374, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Kriz, J.; Reinartz, G.; Dietlein, M. Relapse analysis of irradiated patients within the HD15 trial of the German Hodgkin Study Group. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Borchmann, P.; Haverkamp, H.; Diehl, V. Eight cycles of escalated-dose BEACOPP compared with four cycles of escalated-dose BEACOPP followed by four cycles of baseline-dose BEACOPP with or without radiotherapy in patients with advanced-stage hodgkin’s lymphoma: Final analysis of the HD12 trial of the German Hodgkin Study Group. J. Clin. Oncol. 2011, 29, 4234–4242. [Google Scholar] [PubMed]
- Skoetz, N.; Trelle, S.; Rancea, M.; Haverkamp, H.; Diehl, V.; Engert, A.; Borchmann, P. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: A systematic review and network meta-analysis. Lancet Oncol. 2013, 14, 943–952. [Google Scholar] [CrossRef]
- Borchmann, P.; Goergen, H.; Kobe, C. PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): Final results of an open-label, international, randomised phase 3 trial by the German Hodgkin Study Group. Lancet 2017, 390, 2790–2802. [Google Scholar] [CrossRef]
- Casasnovas, R.-O.; Bouabdallah, R.; Brice, P.; Lazarovici, J.; Ghesquieres, H.; Stamatoullas, A.; Dupuis, J.; Gac, A.-C.; Gastinne, T.; Joly, B. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): A randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2019, 20, 202–215. [Google Scholar] [CrossRef]
- Eichenauer, D.A.; Plütschow, A.; Kreissl, S.; Sökler, M.; Hellmuth, J.C.; Meissner, J.; Mathas, S.; Topp, M.S.; Behringer, K.; Klapper, W. Incorporation of brentuximab vedotin into first-line treatment of advanced classical Hodgkin’s lymphoma: Final analysis of a phase 2 randomised trial by the German Hodgkin Study Group. Lancet Oncol. 2017, 18, 1680–1687. [Google Scholar] [CrossRef]
- Connors, J.; Jurczak, W.; Straus, D. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med. 2018, 378, 331–344. [Google Scholar] [CrossRef]
- Ramchandren, R.; Advani, R.; Ansell, S. Brentuximab vedotin plus chemotherapy in North American subjects with newly diagnosed stage III or IV Hodgkin lymphoma. Clin. Cancer Res. 2019, 25, 1718–1726. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, J.; Basso, J.; Shi, Q.; Klejmont, L.; Flower, A.; Bortfeld, K.; Harrison, L.; van de Ven, C.; Moorthy, C.; Islam, H.; et al. Risk-adapted chemoimmunotherapy using brentuximab vedotin and rituximab in children, adolescents, and young adults with newly diagnosed Hodgkin’s lymphoma: A phase, I.I.; non-randomized controlled trial. J. Immunother. Cancer 2022, 10, e004445. [Google Scholar] [CrossRef]
- Tebbi, C.; Mendenhall, N.; London, W.; Williams, J.; De Alarcon, P.; Chauvenet, A.; Group ArftCsO. Treatment of stage, I.; IIA, IIIA1 pediatric Hodgkin disease with doxorubicin, bleomycin, vincristine and etoposide (DBVE) and radiation: A Pediatric Oncology Group (POG) study. Pediatr. Blood Cancer 2006, 46, 198–202. [Google Scholar] [CrossRef]
- Donaldson, S.S.; Link, M.P.; Weinstein, H.J.; Rai, S.N.; Brain, S.; Billett, A.L.; Hurwitz, C.A.; Krasin, M.; Kun, L.E.; Marcus, K.C.; et al. Final results of a prospective clinical trial with VAMP and low-dose involved-field radiation for children with low-risk Hodgkin’s disease. J. Clin. Oncol. 2007, 25, 332–337. [Google Scholar] [CrossRef]
- Nachman, J.B.; Sposto, R.; Herzog, P.; Gilchrist, G.S.; Wolden, S.L.; Thomson, J.; Kadin, M.E.; Pattengale, P.; Davis, P.C.; Hutchinson, R.J.; et al. Randomized comparison of low-dose involved-field radiotherapy and no radiotherapy for children with Hodgkin’s disease who achieve a complete response to chemotherapy. J. Clin. Oncol. 2002, 20, 3765–3771. [Google Scholar] [CrossRef]
- Tebbi, C.K.; Mendenhall, N.P.; London, W.B.; Williams, J.L.; Hutchison, R.E.; FitzGerald, T.J.; de Alarcón, P.A.; Schwartz, C.; Chauvenet, A. Response-dependent and reduced treatment in lower risk Hodgkin lymphoma in children and adolescents, results of P9426: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2012, 59, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Keller, F.; Castellino, S.; Chen, L. Results of the AHOD0431 trial of response adapted therapy and a salvage strategy for limited stage, classical Hodgkin lymphoma: A report from the Children’s Oncology Group. Cancer 2018, 124, 3210–3219. [Google Scholar] [CrossRef] [Green Version]
- Mauz-Körholz, C.; Hasenclever, D.; Dörffel, W. Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: The GPOH-HD-2002 study. J. Clin. Oncol. 2010, 28, 3680–3686. [Google Scholar] [CrossRef]
- Dörffel, W.; Lüders, H.; Rühl, U. Preliminary results of the multicenter trial GPOH-HD 95 for the treatment of Hodgkin’s disease in children and adolescents: Analysis and outlook. Klin. Padiatr. 2003, 215, 139–145. [Google Scholar]
- Charpentier, A.-M.; Friedman, D.L.; Wolden, S.; Schwartz, C.; Gill, B.; Sykes, J.; Albert-Green, A.; Kelly, K.M.; Constine, L.S.; Hodgson, D.C. Predictive factor analysis of response-adapted radiation therapy for chemotherapy-sensitive pediatric Hodgkin lymphoma: Analysis of the Children’s Oncology Group AHOD 0031 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.L.; Chen, L.; McCarten, K.; Wolden, S.; Constine, L.S.; Hutchison, R.E.; de Alarcon, P.A.; Keller, F.G.; Kelly, K.M.; Trippet, T.A. Childhood Hodgkin International Prognostic Score (CHIPS) predicts event-free survival in Hodgkin lymphoma: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2017, 64, e26278. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.M.; Sposto, R.; Hutchinson, R.; Massey, V.; McCarten, K.; Perkins, S.; Lones, M.; Villaluna, D.; Weiner, M. BEACOPP chemotherapy is a highly effective regimen in children and adolescents with high-risk Hodgkin lymphoma: A report from the Children’s Oncology Group. Blood J. Am. Soc. Hematol. 2011, 117, 2596–2603. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.; Constine, L.; Villaluna, D. A risk-adapted, response-based approach using ABVE-PC for children and adolescents with intermediate- and high-risk Hodgkin lymphoma: The results of P9425. Blood 2009, 114, 2051–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, K.; Cole, P.; Pei, Q. Response-adapted therapy for the treatment of children with newly diagnosed high risk Hodgkin lymphoma (AHOD0831): A report from the Children’s Oncology Group. Br. J. Haematol. 2019, 187, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Castellino, S.M.; Pei, Q.; Parsons, S.K.; Hodgson, D.C.; McCarten, K.; Punnett, A.; Horton, T.M.; Dave, H.K.; Cho, S.Y.; Wu, Y.; et al. Brentuximab vedotin and association with event-free survival (EFS) in children with newly diagnosed high-risk Hodgkin lymphoma (HL): A report from the Children’s Oncology Group phase 3 study AHOD1331 (NCT 02166463). J. Clin. Oncol. 2022, 40, 7504. [Google Scholar] [CrossRef]
- Kelly, K. Management of children with high-risk Hodgkin lymphoma. Br. J. Haematol. 2012, 157, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Landman-Parker, J.; Wallace, H.; Hasenclever, D. 10th International Symposium on Hodgkin Lymphoma Symposium, in First International Inter-Group Study for Classical Hodgkin Lymphoma in Children and Adolescents: EuroNet-PHL-C1 European protocol Euronet PHL-C1. Haematologica 2016, 10, 34–41. Available online: https://haematologica.org/article/view/7868/51251 (accessed on 22 February 2023).
- Wolden, S.L.; Chen, L.; Kelly, K.M.; Herzog, P.; Gilchrist, G.S.; Thomson, J.; Sposto, R.; Kadin, M.E.; Hutchinson, R.J.; Nachman, J. Long-term results of CCG 5942: A randomized comparison of chemotherapy with and without radiotherapy for children with Hodgkin’s lymphoma--a report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 3174–3180. [Google Scholar] [CrossRef]
- Ozuah, N.W.; Marcus, K.J.; LaCasce, A.S.; Billett, A.L. Excellent Outcomes Following Response-based Omission of Radiotherapy in Children and Adolescents With Intermediate or High-risk Hodgkin Lymphoma. J. Pediatr. Hematol. Oncol. 2018, 40, e338–e342. [Google Scholar] [CrossRef]
- Sripada, P.V.; Tenali, S.G.; Vasudevan, M.; Viswanadhan, S.; Sriraman, D.; Kandasamy, R. Hybrid (COPP/ABV) therapy in childhood Hodgkin’s disease: A study of 53 cases during 1989-1993 at the Cancer Institute, Madras. Pediatr. Hematol. Oncol. 1995, 12, 333–341. [Google Scholar] [CrossRef]
- Baez, F.; Ocampo, E.; Conter, V.; Flores, A.; Gutierrez, T.; Malta, A.; Pacheco, C.; Palacios, R.; Biondi, A.; Riva, L.; et al. Treatment of childhood Hodgkin’s disease with COPP or COPP-ABV (hybrid) without radiotherapy in Nicaragua. Ann. Oncol. 1997, 8, 247–250. [Google Scholar] [CrossRef]
- Dörffel, W.; Rühl, U.; Lüders, H.; Claviez, A.; Albrecht, M.; Bökkerink, J.; Holte, H.; Karlen, J.; Mann, G.; Marciniak, H.; et al. Treatment of children and adolescents with Hodgkin lymphoma without radiotherapy for patients in complete remission after chemotherapy: Final results of the multinational trial GPOH-HD95. J. Clin. Oncol. 2013, 31, 1562–1568. [Google Scholar] [CrossRef]
- Lohri, A.; Barnett, M.; Fairey, R.N.; O’Reilly, S.E.; Phillips, G.L.; Reece, D.; Voss, N.; Connors, J.M. Outcome of treatment of first relapse of Hodgkin’s disease after primary chemotherapy: Identification of risk factors from the British Columbia experience 1970 to 1988. Blood 1991, 77, 2292–2298. [Google Scholar] [CrossRef]
- Nieto, Y.; Gruschkus, S.; Valdez, B.C.; Jones, R.B.; Anderlini, P.; Hosing, C.; Popat, U.; Qazilbash, M.; Kebriaei, P.; Alousi, A.; et al. Improved outcomes of high-risk relapsed Hodgkin lymphoma patients after high-dose chemotherapy: A 15-year analysis. Haematologica 2022, 107, 899–908. [Google Scholar] [CrossRef]
- Harris, R.E.; Termuhlen, A.M.; Smith, L.M.; Lynch, J.; Henry, M.M.; Perkins, S.L.; Gross, T.G.; Warkentin, P.; Vlachos, A.; Harrison, L. Autologous peripheral blood stem cell transplantation in children with refractory or relapsed lymphoma: Results of Children’s Oncology Group study A5962. Biol. Blood Marrow Transplant. 2011, 17, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Schellong, G.N.; Dörffel, W.; Claviez, A.; Körholz, D.; Mann, G.; Scheel-Walter, H.-G.; Bökkerink, J.P.; Riepenhausen, M.; Lüders, H.; Pötter, R. Salvage therapy of progressive and recurrent Hodgkin’s disease: Results from a multicenter study of the pediatric DAL/GPOH-HD study group. J. Clin. Oncol. 2005, 23, 6181–6189. [Google Scholar] [CrossRef]
- Satwani, P.; Jin, Z.; Martin, P.; Bhatia, M.; Garvin, J.; George, D.; Chaudhury, S.; Talano, J.; Morris, E.; Harrison, L. Sequential myeloablative autologous stem cell transplantation and reduced intensity allogeneic hematopoietic cell transplantation is safe and feasible in children, adolescents and young adults with poor-risk refractory or recurrent Hodgkin and non-Hodgkin lymphoma. Leukemia 2015, 29, 448–455. [Google Scholar]
- Metzger, M.L.; Hudson, M.M.; Krasin, M.J.; Wu, J.; Kaste, S.C.; Kun, L.E.; Sandlund, J.T.; Howard, S.C. Initial response to salvage therapy determines prognosis in relapsed pediatric Hodgkin lymphoma patients. Cancer 2010, 116, 4376–4384. [Google Scholar] [CrossRef] [Green Version]
- Claviez, A.; Klingebiel, T.; Beyer, J.; Nürnberger, W.; Ehninger, G.; Suttorp, M.; Dreger, P.; Dörffel, W.; Schmitz, N. Allogeneic peripheral blood stem cell transplantation following fludarabine-based conditioning in six children with advanced Hodgkin’s disease. Ann. Hematol. 2004, 83, 237–241. [Google Scholar] [CrossRef]
- Belgaumi, A.; Al-Kofide, A.A.; Khafaga, Y.; Joseph, N.; Jamil-Malik, R.; Siddiqui, K.S.; Sabbah, R.S. Clinical characteristics and outcome of pediatric patients with stage IV Hodgkin lymphoma. Hematol. Oncol. Stem Cell. Ther. 2009, 2, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Gorde-Grosjean, S.; Oberlin, O.; Leblanc, T.; Pacquement, H.; Donadieu, J.; Lambilliotte, A.; Schell, M.; Dommange, F.; Munzer, M.; Paillard, C. Outcome of children and adolescents with recurrent/refractory classical Hodgkin lymphoma, a study from the Societe Francaise de Lutte contre le Cancer des Enfants et des Adolescents (SFCE). Br. J. Haematol. 2012, 158, 649–656. [Google Scholar] [CrossRef]
- Lieskovsky, Y.E.; Donaldson, S.S.; Torres, M.A.; Wong, R.M.; Amylon, M.D.; Link, M.P.; Agarwal, R. High-dose therapy and autologous hematopoietic stem-cell transplantation for recurrent or refractory pediatric Hodgkin’s disease: Results and prognostic indices. J. Clin. Oncol. 2004, 22, 4532–4540. [Google Scholar] [CrossRef]
- Linch, D.; Goldstone, A.; McMillan, A.; Chopra, R.; Hudson, G.V.; Winfield, D.; Hancock, B.; Moir, D.; Milligan, D. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: Results of a BNLI randomised trial. Lancet 1993, 341, 1051–1054. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, C.H.; Nimer, S.D.; Zelenetz, A.D.; Trippett, T.; Hedrick, E.E.; Filippa, D.A.; Louie, D.; Gonzales, M.; Walits, J.; Coady-Lyons, N. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: Analysis by intent to treat and development of a prognostic model. Blood J. Am. Soc. Hematol. 2001, 97, 616–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trippett, T.M.; Schwartz, C.L.; Guillerman, R.P.; Gamis, A.S.; Gardner, S.; Hogan, S.; London, W.B.; Chen, L.; de Alarcon, P. Ifosfamide and vinorelbine is an effective reinduction regimen in children with refractory/relapsed Hodgkin lymphoma, AHOD00P1: A children’s oncology group report. Pediatr. Blood Cancer 2015, 62, 60–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, P.D.; Schwartz, C.L.; Drachtman, R.A.; De Alarcon, P.A.; Chen, L.; Trippett, T.M. Phase II study of weekly gemcitabine and vinorelbine for children with recurrent or refractory Hodgkin’s disease: A children’s oncology group report. J. Clin. Oncol. 2009, 27, 1456. [Google Scholar] [CrossRef] [Green Version]
- Auletta, J.J.; Kou, J.; Chen, M.; Shaw, B.E. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR US Summary Slides. In: CIBMTR, Editor 2021. Available online: https://cibmtr.org/CIBMTR/Resources/Summary-Slides-Reports (accessed on 28 April 2023).
- Al-Juhaishi, T.; Borogovac, A.; Ibrahimi, S.; Wieduwilt, M.; Ahmed, S. Reappraising the Role of Allogeneic Hematopoietic Stem Cell Transplantation in Relapsed and Refractory Hodgkin’s Lymphoma: Recent Advances and Outcomes. J. Pers. Med. 2022, 12, 125. [Google Scholar]
- Sureda, A.; Constans, M.; Iriondo, A.; Arranz, R.; Caballero, M.; Vidal, M.; Petit, J.; López, A.; Lahuerta, J.; Carreras, E. Prognostic factors affecting long-term outcome after stem cell transplantation in Hodgkin’s lymphoma autografted after a first relapse. Ann. Oncol. 2005, 16, 625–633. [Google Scholar] [CrossRef]
- Lazarus, H.; Loberiza, F.; Zhang, M.; Armitage, J.; Ballen, K.; Bashey, A.; Bolwell, B.; Burns, L.; Freytes, C.; Gale, R. Autotransplants for Hodgkin’s disease in first relapse or second remission: A report from the autologous blood and marrow transplant registry (ABMTR). Bone Marrow Transplant. 2001, 27, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Kumar, L.; Iqbal, N. Update on salvage options in relapsed/refractory hodgkin lymphoma after autotransplant. ISRN Oncol. 2014, 2014, 605691. [Google Scholar] [CrossRef] [Green Version]
- Küppers, R. Clonotypic B cells in classic Hodgkin lymphoma. Blood J. Am. Soc. Hematol. 2009, 114, 3970–3971. [Google Scholar] [CrossRef]
- Jones, R.J.; Gocke, C.D.; Kasamon, Y.L.; Miller, C.B.; Perkins, B.; Barber, J.P.; Vala, M.S.; Gerber, J.M.; Gellert, L.L.; Siedner, M. Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood J. Am. Soc. Hematol. 2009, 113, 5920–5926. [Google Scholar] [CrossRef] [Green Version]
- Anagnostou, D.S. The 2008 WHO Classification of B-Cell Lymphomas by the Pathologist’s Clinical Point of View. In PET/CT in Lymphomas: A Case-Based Atlas; Andreou, J.A., Kosmidis, P.A., Gouliamos, A.D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–19. [Google Scholar]
- Rassidakis, G.Z.; Medeiros, L.J.; Viviani, S.; Bonfante, V.; Nadali, G.-P.; Vassilakopoulos, T.P.; Mesina, O.; Herling, M.; Angelopoulou, M.K.; Giardini, R. CD20 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s disease: Associations with presenting features and clinical outcome. J. Clin. Oncol. 2002, 20, 1278–1287. [Google Scholar] [PubMed]
- Lin, A.Y.; Schnitter, J.M.; Gordon, L.I. Immune Checkpoint Blockade for the Treatment of Hodgkin Lymphoma. Immunotargets 2022, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.J.; Chapuy, B.; Ouyang, J.; Sun, H.H.; Roemer, M.G.; Xu, M.L.; Yu, H.; Fletcher, C.D.; Freeman, G.J.; Shipp, M.A.; et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. 2013, 19, 3462–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachier, C.; Schade, H.; Zoghi, B.; Ramakrishnan, A.; Shah, N.N. A Phase II Single Arm Study of Nivolumab As Maintenance Therapy after Autologous Stem Cell Transplantation in Patients with Hodgkin Lymphoma at Risk of Relapse or Progression. Blood 2021, 138, 2455. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; Fogliatto, L.M.; Goncalves, I.; de Oliveira, J.S.R.; Buccheri, V.; et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): An interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021, 22, 512–524. [Google Scholar] [CrossRef]
- Moskowitz, C.H.; Walewski, J.; Nademanee, A.; Masszi, T.; Agura, E.; Holowiecki, J.; Abidi, M.H.; Chen, A.I.; Stiff, P.; Viviani, S. Five-year PFS from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse. Blood J. Am. Soc. Hematol. 2018, 132, 2639–2642. [Google Scholar] [CrossRef] [Green Version]
- FDA Approves Brentuximab Vedotin in Combination with Chemotherapy for Pediatric Patients with Classical Hodgkin Lymphoma. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-brentuximab-vedotin-combination-chemotherapy-pediatric-patients-classical-hodgkin?utm_source=sfmc&utm_medium=email&utm_campaign=FDA+Alert+11.10.22&utm_term=https%3a%2f%2fwww.fda.gov%2fdrugs%2fresources-information-approved-drugs%2ffda-approves-brentuximab-vedotin-combination-chemotherapy-pediatric-patients-classical-hodgkin&utm_id=206669&sfmc_id=19416737 (accessed on 2 March 2023).
- Horton, T.M.; Sheehan, A.M.; López-Terrada, D.; Hutchison, R.E.; Narendra, S.; Wu, M.F.; Liu, H. Analysis of NF-κB Pathway Proteins in Pediatric Hodgkin Lymphoma: Correlations with EBV Status and Clinical Outcome-A Children’s Oncology Group Study. Lymphoma 2012, 2012, 341629. [Google Scholar] [CrossRef] [Green Version]
- Citrin, R.; Foster, J.B.; Teachey, D.T. The role of proteasome inhibition in the treatment of malignant and non-malignant hematologic disorders. Expert. Rev. Hematol. 2016, 9, 873–889. [Google Scholar] [CrossRef]
- Horton, T.M.; Drachtman, R.A.; Chen, L.; Cole, P.D.; McCarten, K.; Voss, S.; Guillerman, R.P.; Buxton, A.; Howard, S.C.; Hogan, S.M.; et al. A phase 2 study of bortezomib in combination with ifosfamide/vinorelbine in paediatric patients and young adults with refractory/recurrent Hodgkin lymphoma: A Children’s Oncology Group study. Br. J. Haematol. 2015, 170, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Kyriakidis, I.; Mantadakis, E.; Stiakaki, E.; Groll, A.H.; Tragiannidis, A. Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas. Cancers 2022, 14, 5022. [Google Scholar] [CrossRef]
- Advani, R.H.; Horning, S.J.; Hoppe, R.T.; Daadi, S.; Allen, J.; Natkunam, Y.; Bartlett, N.L. Mature results of a phase II study of rituximab therapy for nodular lymphocyte–predominant Hodgkin lymphoma. J. Clin. Oncol. 2014, 32, 912–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Fridlender, Z.G.; Dunn, R.; Kehry, M.R.; Kapoor, V.; Blouin, A.; Kaiser, L.R.; Albelda, S.M. B-cell depletion using an anti-CD20 antibody augments antitumor immune responses and immunotherapy in nonhematopoetic murine tumor models. J. Immunother. 2008, 31, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Rehwald, U.; Schulz, H.; Reiser, M.; Sieber, M.; Staak, J.O.; Morschhauser, F.; Driessen, C.; Rüdiger, T.; Müller-Hermelink, K.; Diehl, V. Treatment of relapsed CD20+ Hodgkin lymphoma with the monoclonal antibody rituximab is effective and well tolerated: Results of a phase 2 trial of the German Hodgkin Lymphoma Study Group. Blood J. Am. Soc. Hematol. 2003, 101, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younes, A.; Romaguera, J.; Hagemeister, F.; McLaughlin, P.; Rodriguez, M.A.; Fiumara, P.; Goy, A.; Jeha, S.; Manning, J.T., Jr.; Jones, D. A pilot study of rituximab in patients with recurrent, classic Hodgkin disease. Cancer 2003, 98, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Oki, Y.; McLaughlin, P.; Copeland, A.R.; Goy, A.; Pro, B.; Feng, L.; Yuan, Y.; Chuang, H.H.; Macapinlac, H.A. Phase 2 study of rituximab plus ABVD in patients with newly diagnosed classical Hodgkin lymphoma. Blood J. Am. Soc. Hematol. 2012, 119, 4123–4128. [Google Scholar] [CrossRef]
- Kasamon, Y.L.; Jacene, H.A.; Gocke, C.D.; Swinnen, L.J.; Gladstone, D.E.; Perkins, B.; Link, B.K.; Popplewell, L.L.; Habermann, T.M.; Herman, J.M. Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood J. Am. Soc. Hematol. 2012, 119, 4129–4132. [Google Scholar] [CrossRef] [Green Version]
- Paolo, S.; Michelle, A.F.; Yasuhiro, O.; Francesco, T.; Luis, E.F.; Nancy, L.B.; Douglas, E.G.; Yvette, L.K.; Carol, S.P.; Wyndham, H.W.; et al. ABVD plus rituximab versus ABVD alone for advanced stage, high-risk classical Hodgkin lymphoma: A randomized phase 2 study. Haematologica 2019, 104, e65–e67. [Google Scholar]
- Borchmann, P.; Haverkamp, H.; Lohri, A.; Mey, U.; Kreissl, S.; Greil, R.; Markova, J.; Feuring-Buske, M.; Meissner, J.; Dührsen, U. Progression-free survival of early interim PET-positive patients with advanced stage Hodgkin’s lymphoma treated with BEACOPPescalated alone or in combination with rituximab (HD18): An open-label, international, randomised phase 3 study by the German Hodgkin Study Group. Lancet Oncol. 2017, 18, 454–463. [Google Scholar]
- Abuelgasim, K.A.; Shammari, R.A.; Alshieban, S.; Alahmari, B.; Alzahrani, M.; Alhejazi, A.; Alaskar, A.; Damlaj, M. Impact of cluster of differentiation 20 expression and rituximab therapy in classical Hodgkin lymphoma: Real world experience. Leuk. Res. Rep. 2021, 15, 100240. [Google Scholar] [CrossRef]
- Yamamoto, R.; Nishikori, M.; Kitawaki, T.; Sakai, T.; Hishizawa, M.; Tashima, M.; Kondo, T.; Ohmori, K.; Kurata, M.; Hayashi, T.; et al. PD-1–PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 2008, 111, 3220–3224. [Google Scholar] [CrossRef] [Green Version]
- Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010, 116, 3268–3277. [Google Scholar] [CrossRef] [Green Version]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N. Engl. J. Med. 2014, 372, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasamon, Y.L.; de Claro, R.A.; Wang, Y.; Shen, Y.L.; Farrell, A.T.; Pazdur, R. FDA Approval Summary: Nivolumab for the Treatment of Relapsed or Progressive Classical Hodgkin Lymphoma. Oncologist 2017, 22, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.L.; Fox, E.; Merchant, M.S.; Reid, J.M.; Kudgus, R.A.; Liu, X.; Minard, C.G.; Voss, S.; Berg, S.L.; Weigel, B.J.; et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020, 21, 541–550. [Google Scholar] [CrossRef]
- Hanel, W.; Herrera, A.F.; Epperla, N. Management of classical Hodgkin lymphoma: A look at up to date evidence and current treatment approaches. Exp. Hematol. Oncol. 2022, 11, 108. [Google Scholar] [CrossRef]
- Pembrolizumab Approved for Hodgkin Lymphoma. Cancer Discov. 2017, 7, OF1. [CrossRef] [Green Version]
- U.S. Food and Drug Administration. FDA Extends Approval of Pembrolizumab for Classical Hodgkin Lymphoma. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-extends-approval-pembrolizumab-classical-hodgkin-lymphoma (accessed on 7 November 2022).
- Zinzani, P.L.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; de Oliveira, J.S.R.; Buccheri, V.; Perini, G.F.; Dickinson, M.; et al. Quality-of-life analysis of pembrolizumab vs brentuximab vedotin for relapsed/refractory classical Hodgkin lymphoma. Blood Adv. 2022, 6, 590–599. [Google Scholar] [CrossRef]
- Sheikh, I.; Nunez, C.; McCall, D.; Roth, M.; Cuglievan, B. Programmed cell death protein blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation in an adolescent patient. Pediatr. Blood Cancer 2022, 69, e29390. [Google Scholar] [CrossRef]
- Bartlett, N.L.; Herrera, A.F.; Domingo-Domenech, E.; Mehta, A.; Forero-Torres, A.; Garcia-Sanz, R.; Armand, P.; Devata, S.; Izquierdo, A.R.; Lossos, I.S.; et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2020, 136, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Whalen, K.A.; Rakhra, K.; Mehta, N.K.; Steinle, A.; Michaelson, J.S.; Baeuerle, P.A. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023, 15, 2208697. [Google Scholar] [CrossRef] [PubMed]
- Rothe, A.; Sasse, S.; Topp, M.S.; Eichenauer, D.A.; Hummel, H.; Reiners, K.S.; Dietlein, M.; Kuhnert, G.; Kessler, J.; Buerkle, C.; et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015, 125, 4024–4031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kewalramani, T.; Nimer, S.; Zelenetz, A.; Malhotra, S.; Qin, J.; Yahalom, J.; Moskowitz, C. Progressive disease following autologous transplantation in patients with chemosensitive relapsed or primary refractory Hodgkin’s disease or aggressive non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2003, 32, 673–679. [Google Scholar] [CrossRef]
- Arai, S.; Fanale, M.; Devos, S.; Engert, A.; Illidge, T.; Borchmann, P.; Younes, A.; Morschhauser, F.; McMillan, A.; Horning, S.J. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell transplant. Leuk. Lymphoma 2013, 54, 2531–2533. [Google Scholar] [CrossRef]
- Peggs, K.S.; Hunter, A.; Chopra, R.; Parker, A.; Mahendra, P.; Milligan, D.; Craddock, C.; Pettengell, R.; Dogan, A.; Thomson, K.J. Clinical evidence of a graft-versus-Hodgkin’s-lymphoma effect after reduced-intensity allogeneic transplantation. Lancet 2005, 365, 1934–1941. [Google Scholar] [CrossRef]
- Anderlini, P.; Swanston, N.; Rashid, A.; Bueso-Ramos, C.; Macapinlac, H.A.; Champlin, R.E. Evidence of a graft-versus-Hodgkin lymphoma effect in the setting of extensive bone marrow involvement. Biol. Blood Marrow Transplant. 2008, 14, 478–480. [Google Scholar] [CrossRef] [Green Version]
- Butcher, B.; Collins, R.H. The graft-versus-lymphoma effect: Clinical review and future opportunities. Bone Marrow Transplant. 2005, 36, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Urbano-Ispizua, A.; Pavletic, S.Z.; Flowers, M.E.; Klein, J.P.; Zhang, M.-J.; Carreras, J.; Montoto, S.; Perales, M.-A.; Aljurf, M.D.; Akpek, G. The impact of graft-versus-host disease on the relapse rate in patients with lymphoma depends on the histological subtype and the intensity of the conditioning regimen. Biol. Blood Marrow Transplant. 2015, 21, 1746–1753. [Google Scholar] [CrossRef] [Green Version]
- Brierley, C.K.; Jones, F.M.; Hanlon, K.; Peniket, A.J.; Hatton, C.; Collins, G.P.; Schuh, A.; Medd, P.; Clark, A.; Ward, J. Impact of graft-versus-lymphoma effect on outcomes after reduced intensity conditioned-alemtuzumab allogeneic haematopoietic stem cell transplantation for patients with mature lymphoid malignancies. Br. J. Haematol. 2019, 184, 547–557. [Google Scholar] [CrossRef]
- Sureda, A.; Domenech, E.; Schmitz, N.; Dreger, P. The role of allogeneic stem cell transplantation in Hodgkin’s lymphoma. Curr. Treat. Options Oncol. 2014, 15, 238–247. [Google Scholar] [CrossRef]
- Moskowitz, C.H. Counterpoint: Should all patients with HL who relapse after ASCT be considered for allogeneic SCT? A consult, yes; a transplant, not necessarily. Blood Adv. 2018, 2, 821. [Google Scholar] [CrossRef] [Green Version]
- Peggs, K.S. Point: Should all patients with Hodgkin lymphoma who relapse after autologous SCT be considered for allogeneic SCT? Blood Adv. 2018, 2, 817. [Google Scholar] [CrossRef] [Green Version]
- Paviglianiti, A.; Maio, K.T.; Rocha, V.; Gehlkopf, E.; Milpied, N.; Esquirol, A.; Chevallier, P.; Blaise, D.; Gac, A.-C.; Leblond, V. Outcomes of advanced Hodgkin lymphoma after umbilical cord blood transplantation: A Eurocord and EBMT Lymphoma and Cellular Therapy & Immunobiology Working Party study. Biol. Blood Marrow Transplant. 2018, 24, 2265–2270. [Google Scholar]
- Smith, S.M.; van Besien, K.; Carreras, J.; Bashey, A.; Cairo, M.S.; Freytes, C.O.; Gale, R.P.; Hale, G.A.; Hayes-Lattin, B.; Holmberg, L.A.; et al. Second autologous stem cell transplantation for relapsed lymphoma after a prior autologous transplant. Biol. Blood Marrow Transpl. 2008, 14, 904–912. [Google Scholar] [CrossRef] [Green Version]
- Broccoli, A.; Zinzani, P.L. The role of transplantation in Hodgkin lymphoma. Br. J. Haematol. 2019, 184, 93–104. [Google Scholar] [CrossRef]
- Raiola, A.; Dominietto, A.; Varaldo, R.; Ghiso, A.; Galaverna, F.; Bramanti, S.; Todisco, E.; Sarina, B.; Giordano, L.; Ibatici, A. Unmanipulated haploidentical BMT following non-myeloablative conditioning and post-transplantation CY for advanced Hodgkin’s lymphoma. Bone Marrow Transplant. 2014, 49, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.; Gayoso, J.; Canals, C.; Finel, H.; Peggs, K.; Dominietto, A.; Castagna, L.; Afanasyev, B.; Robinson, S.P.; Blaise, D. Post-transplantation cyclophosphamide-based haploidentical transplantation as alternative to matched sibling or unrelated donor transplantation for Hodgkin lymphoma: A registry study of the Lymphoma Working Party of the European Society for Blood and Marrow Transplantation. J. Clin. Oncol. 2017, 35, 3425–3435. [Google Scholar]
- Baron, F.; Storb, R.; Storer, B.E.; Maris, M.B.; Niederwieser, D.; Shizuru, J.A.; Chauncey, T.R.; Bruno, B.; Forman, S.J.; McSweeney, P.A. Factors associated with outcomes in allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning after failed myeloablative hematopoietic cell transplantation. J. Clin. Oncol. 2006, 24, 4150–4157. [Google Scholar] [CrossRef]
- Messer, M.; Steinzen, A.; Vervölgyi, E.; Lerch, C.; Richter, B.; Dreger, P.; Herrmann-Frank, A. Unrelated and alternative donor allogeneic stem cell transplant in patients with relapsed or refractory Hodgkin lymphoma: A systematic review. Leuk. Lymphoma 2014, 55, 296–306. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
- Ruella, M.; Klichinsky, M.; Kenderian, S.S.; Shestova, O.; Ziober, A.; Kraft, D.O.; Feldman, M.; Wasik, M.A.; June, C.H.; Gill, S. Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discov. 2017, 7, 1154–1167. [Google Scholar] [CrossRef] [Green Version]
- Steidl, C.; Lee, T.; Shah, S.P.; Farinha, P.; Han, G.; Nayar, T.; Delaney, A.; Jones, S.J.; Iqbal, J.; Weisenburger, D.D.; et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med. 2010, 362, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, J.; Rheingold, S.R.; Gill, S.I.; Grupp, S.A.; Lacey, S.F.; Kulikovskaya, I.; Suhoski, M.M.; Melenhorst, J.J.; Loudon, B.; Mato, A.R.; et al. Nonviral RNA chimeric antigen receptor-modified T cells in patients with Hodgkin lymphoma. Blood 2018, 132, 1022–1026. [Google Scholar] [CrossRef]
- Locatelli, S.L.; Careddu, G.; Serio, S.; Consonni, F.M.; Maeda, A.; Viswanadha, S.; Vakkalanka, S.; Castagna, L.; Santoro, A.; Allavena, P.; et al. Targeting Cancer Cells and Tumor Microenvironment in Preclinical and Clinical Models of Hodgkin Lymphoma Using the Dual PI3Kδ/γ Inhibitor RP6530. Clin. Cancer Res. 2019, 25, 1098–1112. [Google Scholar] [CrossRef] [Green Version]
- Cabaud-Gibouin, V.; Durand, M.; Quéré, R.; Girodon, F.; Garrido, C.; Jego, G. Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches. Cancers 2023, 15, 984. [Google Scholar] [CrossRef]
- Schoof, N.; von Bonin, F.; Trümper, L.; Kube, D. HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells. Cell. Commun. Signal. 2009, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Harker-Murray, P.; Mauz-Körholz, C.; Leblanc, T.; Mascarin, M.; Michel, G.; Cooper, S.; Beishuizen, A.; Leger, K.J.; Amoroso, L.; Buffardi, S.; et al. Nivolumab and brentuximab vedotin with or without bendamustine for R/R Hodgkin lymphoma in children, adolescents, and young adults. Blood 2023, 141, 2075–2084. [Google Scholar]
- Ng, A.K.; van Leeuwen, F.E. Hodgkin lymphoma: Late effects of treatment and guidelines for surveillance. Semin. Hematol. 2016, 53, 209–215. [Google Scholar] [CrossRef]
- Institute of Medicine (US); National Research Council (US) National Cancer Policy Board. Childhood Cancer Survivorship: Improving Care and Quality of Life; Hewitt, M., Weiner, S.L., Simone, J.V., Eds.; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Ng, A.K. Late complications after treatment for Hodgkin lymphoma. Curr. Hematol. Malig. Rep. 2008, 3, 119–125. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Liu, Q.; Yasui, Y.; Neglia, J.P.; Leisenring, W.; Robison, L.L.; Mertens, A.C. Late mortality among 5-year survivors of childhood cancer: A summary from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2009, 27, 2328–2338. [Google Scholar] [CrossRef] [Green Version]
Workup Component | Essential Elements |
---|---|
History |
|
Physical examination |
|
General laboratory tests |
|
Infectious disease laboratory tests | |
Imaging |
|
Procedures |
|
Miscellaneous studies |
|
Stage/Stage Suffix | Description |
---|---|
I | Disease limited to a single lymph node region or one type of extra-lymphatic lymphoid tissue (e.g., spleen, thymus, Waldeyer ring) |
II | Disease involving two or more nodal groups on the same side of the diaphragm |
III | Involvement of two or more lymph node regions or extra-lymphatic organs on both sides of the diaphragm |
III1: With or without splenic, hilar, celiac, or portal nodes | |
III2: With para-aortic, iliac, or mesenteric nodes | |
IV | Diffuse or disseminated disease (affecting one or more extra-lymphatic organs, e.g., lung, bone, liver) with or without nodal involvement |
A | Absence of B symptoms |
B | Presence of B symptoms: fever, night sweats, and/or ≥10% weight loss within the preceding 6 months |
X | Bulky disease (i.e., nodal mass greater than one-third of the intrathoracic diameter on a chest X-ray) For pediatric HL: bulky disease is also defined as extra-mediastinal mass ≥6 cm in diameter European Network: ≥200 mL of contiguous tumor volume |
E | Extra-nodal extension on one side of the diaphragm by limited direct extension |
Stage I—Involvement of a single lymph node region (e.g., cervical, axillary, inguinal, or mediastinal) or lymphoid structure such as the spleen, thymus, or Waldeyer’s ring. |
Stage II—Involvement of two or more lymph node regions or lymph node structures on the same side of the diaphragm. |
Stage III—Involvement of lymph node regions or lymphoid structures on both sides of the diaphragm. |
Stage IV—Diffuse or disseminated involvement of one or more extra-nodal organs ** or tissue with or without associated lymph node involvement. |
Treatment Group (TG) | Ann Arbor Stage |
---|---|
TG-1 | Stages IA/B and IIA |
TG-2 | Stages IEA/B, IIEA, IIB, and IIIA |
TG-3 | IIEB, IIIEA/B, IIIB, and IVA/B |
Risk Level | Definition | Chemotherapy Regimen |
---|---|---|
Low risk | Ann Arbor stages IA and IIA Non-bulky disease No B signs/symptoms | Four cycles of VAMP plus LD-IFRT for those who achieve a complete response [110]. |
Four cycles of COPP/ABV plus LD-IFRT [111,124]. | ||
High-dose ABVE administered for two to four courses (depending on response), plus LD-IFRT [109]. | ||
For males: OEPA; for females: OPPA. All patients follow with LD-IFRT [114,125]. | ||
Intermediate risk | Ann Arbor stages IB and IIB (both without bulk) OR Stages IA and IIA (both with bulk) OR Stages IIAE and IIIA (regardless of bulk) | Six cycles of COPP/ABV plus LD-IFRT [124,126,127]. |
ABVE-PC administered for three to five courses, depending upon response; followed by LD-IFRT [75,119]. | ||
Two cycles of OEPA (for males) or OPPA (for females), followed by two cycles of COPP (for females) or COPDAC (for males), plus LD-IFRT [75,114,125,128]. | ||
High risk | Ann Arbor stages IIIB and IV | ABVE-PC, administered for three to five courses (depending upon response), followed by LD-IFRT [75,119]. |
Two cycles of OEPA (for males) or OPPA (for females), followed by two cycles of COPP (for females) or COPDAC (for males) plus LD-IFRT [75,114,128]. | ||
Two cycles of cytarabine/etoposide, COPP/ABV, and CHOP plus LD-IFRT [126,127]. | ||
Four cycles of BEACOPP with subsequent therapy dependent upon response. Rapid responders: four cycles of COPP/ABV without IFRT (for females) or two cycles of ABVD with IFRT (for males). Slow responders: four additional cycles of BEACOPP plus IFRT [118]. |
Affected Area | Adverse Effects |
---|---|
Growth and development |
|
Endocrine system |
|
Reproductive system |
|
Pulmonary system |
|
Cardiovascular system |
|
Secondary malignancies # |
|
Items | Specification |
---|---|
Date of search | 1 September 2022 to 10 May 2023 |
Databases, search engines, and other resources utilized | PubMed, Google Scholar, clinicaltrials.gov (accessed on 9 May 2023), NCCN guidelines, American Society of Hematology conference presentations, American Society of Hematology conference presentations |
Search terms used | Hodgkin lymphoma, new drugs, brentuximab, checkpoint inhibitors, chimeric antigen T cells, targeted therapy |
Type of studies used | Review articles, systematic reviews, clinical trials, conference abstracts, basic science articles |
Inclusion and exclusion criteria | Only English-language studies were used |
Selection process | Studies were selected independently by the authors writing their respective sections; consensus was obtained by multiple revisions among the authors |
Total articles | Over 215 articles are cited in total |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, F.; Hardit, V.; Sheikh, I.N.; AlQahtani, S.; He, J.; Cuglievan, B.; Hosing, C.; Tewari, P.; Khazal, S. Classical Hodgkin Lymphoma: From Past to Future—A Comprehensive Review of Pathophysiology and Therapeutic Advances. Int. J. Mol. Sci. 2023, 24, 10095. https://doi.org/10.3390/ijms241210095
Munir F, Hardit V, Sheikh IN, AlQahtani S, He J, Cuglievan B, Hosing C, Tewari P, Khazal S. Classical Hodgkin Lymphoma: From Past to Future—A Comprehensive Review of Pathophysiology and Therapeutic Advances. International Journal of Molecular Sciences. 2023; 24(12):10095. https://doi.org/10.3390/ijms241210095
Chicago/Turabian StyleMunir, Faryal, Viney Hardit, Irtiza N. Sheikh, Shaikha AlQahtani, Jiasen He, Branko Cuglievan, Chitra Hosing, Priti Tewari, and Sajad Khazal. 2023. "Classical Hodgkin Lymphoma: From Past to Future—A Comprehensive Review of Pathophysiology and Therapeutic Advances" International Journal of Molecular Sciences 24, no. 12: 10095. https://doi.org/10.3390/ijms241210095
APA StyleMunir, F., Hardit, V., Sheikh, I. N., AlQahtani, S., He, J., Cuglievan, B., Hosing, C., Tewari, P., & Khazal, S. (2023). Classical Hodgkin Lymphoma: From Past to Future—A Comprehensive Review of Pathophysiology and Therapeutic Advances. International Journal of Molecular Sciences, 24(12), 10095. https://doi.org/10.3390/ijms241210095