First-Trimester Screening for Miscarriage or Stillbirth—Prediction Model Based on MicroRNA Biomarkers
Abstract
:1. Introduction
2. Results
2.1. Identification of Risk Factors Predisposed to Miscarriage/Stillbirth
2.2. Combination of MicroRNA Biomarkers Differentiating between Miscarriage/Stillbirth and Normal Term Pregnancies in Early Stages of Gestation
2.3. Combination of MicroRNA Biomarkers Differentiating between Miscarriages and Normal Term Pregnancies in Early Stages of Gestation
2.4. Combination of MicroRNA Biomarkers Differentiating between Early Miscarriages, Late Miscarriages, and Normal Term Pregnancies in Early Stages of Gestation
2.5. Combination of MicroRNA Biomarkers Differentiating between Stillbirths and Normal Term Pregnancies
2.6. Correlation between microRNA Gene Expression and Maternal Age and BMI
3. Discussion
4. Materials and Methods
4.1. Patient Cohort
4.2. Collection and Processing of Samples
4.3. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, G.E. Pregnancy loss. Best. Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 169–178. [Google Scholar] [CrossRef]
- Savitz, D.A.; Hertz-Picciotto, I.; Poole, C.; Olshan, A.F. Epidemiologic measures of the course and outcome of pregnancy. Epidemiol. Rev. 2002, 24, 91–101. [Google Scholar] [CrossRef] [Green Version]
- DeVilbiss, E.A.; Mumford, S.L.; Sjaarda, L.A.; Connell, M.T.; Plowden, T.C.; Andriessen, V.C.; Perkins, N.J.; Hill, M.J.; Silver, R.M.; Schisterman, E.F. Prediction of pregnancy loss by early first trimester ultrasound characteristics. Am. J. Obstet. Gynecol. 2020, 223, 242.e1–242.e22. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012, 98, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Linnakaari, R.; Helle, N.; Mentula, M.; Bloigu, A.; Gissler, M.; Heikinheimo, O.; Niinimäki, M. Trends in the incidence, rate and treatment of miscarriage-nationwide register-study in Finland, 1998–2016. Hum. Reprod. 2019, 34, 2120–2128. [Google Scholar] [CrossRef]
- Makrydimas, G.; Sebire, N.J.; Lolis, D.; Vlassis, N.; Nicolaides, K.H. Fetal loss following ultrasound diagnosis of a live fetus at 6–10 weeks of gestation. Ultrasound Obstet. Gynecol. 2003, 22, 368–372. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology. ACOG Practice Bulletin No. 200: Early Pregnancy Loss. Obstet. Gynecol. 2018, 132, e197–e207. [Google Scholar] [CrossRef] [PubMed]
- Redinger, A.; Nguyen, H. Incomplete Abortions. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kim, C.; Barnard, S.; Neilson, J.P.; Hickey, M.; Vazquez, J.C.; Dou, L. Medical treatments for incomplete miscarriage. Cochrane Database Syst. Rev. 2017, 1, CD007223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørn, A.M.; Nielsen, R.B.; Nørgaard, M.; Nohr, E.A.; Ehrenstein, V. Risk of miscarriage among users of corticosteroid hormones: A population-based nested case-control study. Clin. Epidemiol. 2013, 5, 287–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, E.C.; Christiansen, O.B.; Kolte, A.M.; Macklon, N. New insights into mechanisms behind miscarriage. BMC Med. 2013, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Michels, T.C.; Tiu, A.Y. Second trimester pregnancy loss. Am. Fam. Physician 2007, 76, 1341–1346. [Google Scholar] [PubMed]
- American College of Obstetricians and Gynecologists. ACOG practice bulletin. Management of recurrent pregnancy loss. (Replaces Technical Bulletin Number 212, September 1995). American College of Obstetricians and Gynecologists. Int. J. Gynaecol. Obstet. 2002, 78, 179–190. [Google Scholar]
- ESHRE Guideline Group on RPL; Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Mcheik, S.; Peramo, B.; Quenby, S.; et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open 2023, 2023, hoad002. [Google Scholar] [PubMed]
- Christiansen, O.B.; Steffensen, R.; Nielsen, H.S.; Varming, K. Multifactorial etiology of recurrent miscarriage and its scientific and clinical implications. Gynecol. Obstet. Investig. 2008, 66, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Macklon, N.S.; Geraedts, J.P.; Fauser, B.C. Conception to ongoing pregnancy: The ‘black box’ of early pregnancy loss. Hum. Reprod. Update 2002, 8, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Tavares Da Silva, F.; Gonik, B.; McMillan, M.; Keech, C.; Dellicour, S.; Bhange, S.; Tila, M.; Harper, D.M.; Woods, C.; Kawai, A.T.; et al. Stillbirth: Case definition and guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine 2016, 34, 6057–6068. [Google Scholar] [CrossRef] [Green Version]
- Management of stillbirth. ACOG Obstetric Care Consensus No. 10. American College of Obstetricians and Gynecologists. Obstet. Gynecol. 2020, 135, e110–e132. [Google Scholar]
- MacDorman, M.F.; Gregory, E.C. Fetal and Perinatal Mortality: United States, 2013. Natl. Vital. Stat. Rep. 2015, 64, 1–24. [Google Scholar]
- Smith, G.C.; Fretts, R.C. Stillbirth. Lancet 2007, 370, 1715–1725. [Google Scholar] [CrossRef]
- Lawn, J.E.; Blencowe, H.; Pattinson, R.; Cousens, S.; Kumar, R.; Ibiebele, I.; Gardosi, J.; Day, L.T.; Stanton, C.; Lancet’s Stillbirths Series steering committee. Stillbirths: Where? When? Why? How to make the data count? Lancet 2011, 377, 1448–1463. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, L.J.; Varas-Godoy, M.; Acuña-Gallardo, S.; Correa, P.; Passalacqua, G.; Monckeberg, M.; Rice, G.E.; Illanes, S.E. Increased Circulating Levels of Tissue-Type Plasminogen Activator Are Associated with the Risk of Spontaneous Abortion during the First Trimester of Pregnancy. Diagnostics 2020, 10, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.; Sun, R.; Du, J.; Wu, X.; Ma, L.; Wang, M.; Lv, Q. Prediction of miscarriage in first trimester by serum estradiol, progesterone and β-human chorionic gonadotropin within 9 weeks of gestation. BMC Pregnancy Childbirth 2022, 22, 112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Du, Y.; Lu, Y.; Wu, X.; Tong, X. Monitoring of hemostatic parameters for early prediction of first-trimester miscarriage. Biomarkers 2021, 26, 532–538. [Google Scholar] [CrossRef]
- Bahado-Singh, R.O.; Syngelaki, A.; Mandal, R.; Han, B.; Li, L.; Bjorndahl, T.C.; Wang, N.; Maulik, D.; Dong, E.; Turkoglu, O.; et al. First-trimester metabolomic prediction of stillbirth. J. Matern. Fetal Neonatal Med. 2019, 32, 3435–3441. [Google Scholar] [CrossRef]
- Kleinrouweler, C.E.; Cheong-See, F.M.; Collins, G.S.; Kwee, A.; Thangaratinam, S.; Khan, K.S.; Mol, B.W.; Pajkrt, E.; Moons, K.G.; Schuit, E. Prognostic models in obstetrics: Available, but far from applicable. Am. J. Obstet. Gynecol. 2016, 214, 79–90.e36. [Google Scholar] [CrossRef] [PubMed]
- Conde-Agudelo, A.; Bird, S.; Kennedy, S.H.; Villar, J.; Papageorghiou, A.T. First- and second-trimester tests to predict stillbirth in unselected pregnant women: A systematic review and meta-analysis. BJOG 2015, 122, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Åmark, H.; Westgren, M.; Persson, M. Prediction of stillbirth in women with overweight or obesity-A register-based cohort study. PLoS ONE 2018, 13, e0206940. [Google Scholar] [CrossRef] [Green Version]
- Akolekar, R.; Machuca, M.; Mendes, M.; Paschos, V.; Nicolaides, K.H. Prediction of stillbirth from placental growth factor at 11–13 weeks. Ultrasound Obstet. Gynecol. 2016, 48, 618–623. [Google Scholar] [CrossRef]
- Akolekar, R.; Bower, S.; Flack, N.; Bilardo, C.M.; Nicolaides, K.H. Prediction of miscarriage and stillbirth at 11–13 weeks and the contribution of chorionic villus sampling. Prenat. Diagn. 2011, 31, 38–45. [Google Scholar] [CrossRef]
- Mastrodima, S.; Akolekar, R.; Yerlikaya, G.; Tzelepis, T.; Nicolaides, K.H. Prediction of stillbirth from biochemical and biophysical markers at 11–13 weeks. Ultrasound Obstet. Gynecol. 2016, 48, 613–617. [Google Scholar] [CrossRef]
- Townsend, R.; Manji, A.; Allotey, J.; Heazell, A.; Jorgensen, L.; Magee, L.A.; Mol, B.W.; Snell, K.; Riley, R.D.; Sandall, J.; et al. Can risk prediction models help us individualise stillbirth prevention? A systematic review and critical appraisal of published risk models. BJOG 2021, 128, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Bottomley, C.; Van Belle, V.; Kirk, E.; Van Huffel, S.; Timmerman, D.; Bourne, T. Accurate prediction of pregnancy viability by means of a simple scoring system. Hum. Reprod. 2013, 28, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Van Belle, V.; Bottomley, C.; Preisler, J.; Vathanan, V.; Sayasneh, A.; Stalder, C.; Timmerman, D.; Bourne, T. External validation of models and simple scoring systems to predict miscarriage in intrauterine pregnancies of uncertain viability. Hum. Reprod. 2013, 28, 2905–2911. [Google Scholar] [CrossRef]
- Wan, O.Y.K.; Chan, S.S.C.; Chung, J.P.W.; Kwok, J.W.K.; Lao, T.T.H.; Sahota, D.S. External validation of a simple scoring system to predict pregnancy viability in women presenting to an early pregnancy assessment clinic. Hong Kong Med. J. 2020, 26, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Ashoor, G.; Syngelaki, A.; Papastefanou, I.; Nicolaides, K.H.; Akolekar, R. Development and validation of model for prediction of placental dysfunction-related stillbirth from maternal factors, fetal weight and uterine artery Doppler at mid-gestation. Ultrasound Obstet. Gynecol. 2022, 59, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines 2022, 10, 256. [Google Scholar] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. First-Trimester Screening for HELLP Syndrome-Prediction Model Based on MicroRNA Biomarkers and Maternal Clinical Characteristics. Int. J. Mol. Sci. 2023, 24, 5177. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines 2022, 10, 718. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers. Int. J. Mol. Sci. 2022, 23, 3951. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2022, 23, 10635. [Google Scholar] [CrossRef]
- The Fetal Medicine Foundation. Stratification of Pregnancy Management 11–13 Weeks’ Gestation. Available online: https://courses.fetalmedicine.com/research/assess/ (accessed on 4 February 2023).
- Fretts, R.C.; Schmittdiel, J.; McLean, F.H.; Usher, R.H.; Goldman, M.B. Increased maternal age and the risk of fetal death. N. Engl. J. Med. 1995, 333, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Reddy, U.M.; Ko, C.W.; Willinger, M. Maternal age and the risk of stillbirth throughout pregnancy in the United States. Am. J. Obstet. Gynecol. 2006, 195, 764–770. [Google Scholar] [CrossRef]
- Catalano, P.M. Management of obesity in pregnancy. Obstet. Gynecol. 2007, 109, 419–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flenady, V.; Koopmans, L.; Middleton, P.; Frøen, J.F.; Smith, G.C.; Gibbons, K.; Coory, M.; Gordon, A.; Ellwood, D.; McIntyre, H.D.; et al. Major risk factors for stillbirth in high-income countries: A systematic review and meta-analysis. Lancet 2011, 377, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Saugstad, O.D.; Henriksen, T.; Tonstad, S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: A systematic review and meta-analysis. JAMA 2014, 311, 1536–1546. [Google Scholar] [CrossRef] [Green Version]
- Marufu, T.C.; Ahankari, A.; Coleman, T.; Lewis, S. Maternal smoking and the risk of still birth: Systematic review and meta-analysis. BMC Public Health 2015, 15, 239. [Google Scholar] [CrossRef] [Green Version]
- Stillbirth Collaborative Research Network Writing Group. Association between stillbirth and risk factors known at pregnancy confirmation. JAMA 2011, 306, 2469–2479. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.A.; Gibson, K.A.; Wu, Y.W.; Croughan, M.S. Perinatal outcomes in singletons following in vitro fertilization: A meta-analysis. Obstet. Gynecol. 2004, 103, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Marino, J.L.; Moore, V.M.; Willson, K.J.; Rumbold, A.; Whitrow, M.J.; Giles, L.C.; Davies, M.J. Perinatal outcomes by mode of assisted conception and sub-fertility in an Australian data linkage cohort. PLoS ONE 2014, 9, e80398. [Google Scholar] [CrossRef] [Green Version]
- Wisborg, K.; Ingerslev, H.J.; Henriksen, T.B. IVF and stillbirth: A prospective follow-up study. Hum. Reprod. 2010, 25, 1312–1316. [Google Scholar] [CrossRef] [Green Version]
- Bay, B.; Lyngsø, J.; Hohwü, L.; Kesmodel, U.S. Childhood growth of singletons conceived following in vitro fertilisation or intracytoplasmic sperm injection: A systematic review and meta-analysis. BJOG 2019, 126, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merritt, T.A.; Goldstein, M.; Philips, R.; Peverini, R.; Iwakoshi, J.; Rodriguez, A.; Oshiro, B. Impact of ART on pregnancies in California: An analysis of maternity outcomes and insights into the added burden of neonatal intensive care. J. Perinatol. 2014, 34, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Lamont, K.; Scott, N.W.; Jones, G.T.; Bhattacharya, S. Risk of recurrent stillbirth: Systematic review and meta-analysis. BMJ 2015, 350, h3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, K.E.; Velez Edwards, D.R.; Savitz, D.A.; Jonsson-Funk, M.L.; Wu, P.; Sundermann, A.C.; Baird, D.D. Prospective Cohort Study of Uterine Fibroids and Miscarriage Risk. Am. J. Epidemiol. 2017, 186, 1140–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, J.; Caughey, A.B.; Qidwai, G.I.; Jacoby, A.F. Neonatal outcomes in women with sonographically identified uterine leiomyomata. J. Matern. Fetal Neonatal Med. 2012, 25, 710–713. [Google Scholar] [CrossRef]
- Shavell, V.I.; Thakur, M.; Sawant, A.; Kruger, M.L.; Jones, T.B.; Singh, M.; Puscheck, E.E.; Diamond, M.P. Adverse obstetric outcomes associated with sonographically identified large uterine fibroids. Fertil. Steril. 2012, 97, 107–110. [Google Scholar] [CrossRef]
- Hosseinirad, H.; Yadegari, P.; Falahieh, F.M.; Shahrestanaki, J.K.; Karimi, B.; Afsharzadeh, N.; Sadeghi, Y. The impact of congenital uterine abnormalities on pregnancy and fertility: A literature review. JBRA Assist. Reprod. 2021, 25, 608–616. [Google Scholar] [CrossRef]
- Drakeley, A.J.; Quenby, S.; Farquharson, R.G. Mid-trimester loss--appraisal of a screening protocol. Hum. Reprod. 1998, 13, 1975–1980. [Google Scholar] [CrossRef] [Green Version]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [Green Version]
- De Vivo, A.; Mancuso, A.; Giacobbe, A.; Moleti, M.; Maggio Savasta, L.; De Dominici, R.; Priolo, A.M.; Vermiglio, F. Thyroid function in women found to have early pregnancy loss. Thyroid 2010, 20, 633–637. [Google Scholar] [CrossRef]
- Stagnaro-Green, A.; Roman, S.H.; Cobin, R.H.; el-Harazy, E.; Alvarez-Marfany, M.; Davies, T.F. Detection of at-risk pregnancy by means of highly sensitive assays for thyroid autoantibodies. JAMA 1990, 264, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hu, R. Thyroid autoimmunity and miscarriage: A meta-analysis. Clin. Endocrinol. 2011, 74, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Tan, A.; Knox, E.; Kilby, M.D.; Franklyn, J.; Coomarasamy, A. Association between thyroid autoantibodies and miscarriage and preterm birth: Meta-analysis of evidence. BMJ 2011, 342, d2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Practice bulletin, no. 124: Inherited thrombophilias in pregnancy. Obstet. Gynecol. 2011, 118, 730–740. [Google Scholar]
- Bates, S.M.; Greer, I.A.; Middeldorp, S.; Veenstra, D.L.; Prabulos, A.M.; Vandvik, P.O. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, e691S–e736S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marik, P.E.; Plante, L.A. Venous thromboembolic disease and pregnancy. N. Engl. J. Med. 2008, 359, 2025–2033. [Google Scholar] [CrossRef]
- Tian, Q.X.; Xia, S.H.; Wu, Y.H.; Zhang, J.H.; Wang, L.Y.; Zhu, W.P. Comprehensive analysis of the differential expression profile of microRNAs in missed abortion. Kaohsiung J. Med. Sci. 2020, 36, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.K.; Gunel, T.; Gumusoglu, E.; Benian, A.; Aydinli, K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol. Med. Rep. 2018, 17, 4941–4952. [Google Scholar] [CrossRef] [Green Version]
- Winger, E.E.; Reed, J.L.; Ji, X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for predicting adverse pregnancy outcome. J. Reprod. Immunol. 2015, 110, 22–35. [Google Scholar] [CrossRef]
- Shahidi, M.; Nazari, F.; Ghanbarian, H.; Taheripanah, R.; Hajivalili, M.; Amani, D. miR-146b-5p and miR-520h Expressions Are Upregulated in Serum of Women with Recurrent Spontaneous Abortion. Biochem. Genet. 2022, 60, 1716–1732. [Google Scholar] [CrossRef]
- Zhao, L.; Han, L.; Hei, G.; Wei, R.; Zhang, Z.; Zhu, X.; Guo, Q.; Chu, C.; Fu, X.; Xu, K.; et al. Diminished miR-374c-5p negatively regulates IL (interleukin)-6 in unexplained recurrent spontaneous abortion. J. Mol. Med. 2022, 100, 1043–1056. [Google Scholar] [CrossRef]
- Tutunfroush, M.; Ghorbian, S.; Mohseni, J.; Danaii, S.; Rad, M.G. Down-Regulation of circulating miR-23a-3p, miR-101-3p, and miR-let-7c in Women with Idiopathic Recurrent Pregnancy Loss. Clin. Lab. 2022, 68. [Google Scholar] [CrossRef]
- Abbaskhani, H.; Seifati, S.M.; Salmani, T.; Vojdani, S.; Al-Rubaye, S.; Yaseen, R.; Hajiesmaeili, Y.; Ghaderian, S.M.H. Evaluating changes in the expression of BCL-2 gene, lncRNA SRA, and miR-361-3p in unexplained recurrent pregnancy loss. Nucleosides Nucleotides Nucleic Acids 2022, 41, 891–899. [Google Scholar] [CrossRef]
- Qin, W.; Tang, Y.; Yang, N.; Wei, X.; Wu, J. Potential role of circulating microRNAs as a biomarker for unexplained recurrent spontaneous abortion. Fertil. Steril. 2016, 105, 1247–1254.e3. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Kim, J.H.; An, H.J.; Kim, Y.R.; Ahn, E.H.; Lee, J.R.; Kim, J.O.; Ko, J.J.; Kim, N.K. Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2021, 22, 6127. [Google Scholar] [CrossRef]
- Al-Rubaye, S.; Ghaderian, S.M.H.; Salehpour, S.; Salmani, T.; Vojdani, S.; Yaseen, R.; Akbarzadeh, R. Aberrant expression of BAX, MEG3, and miR-214-3P genes in recurrent pregnancy loss. Gynecol. Endocrinol. 2021, 37, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Gu, W.W.; Gu, Y.; Yan, N.N.; Mao, Y.Y.; Zhen, X.X.; Wang, J.M.; Yang, J.; Shi, H.J.; Zhang, X.; et al. Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process. J. Transl. Med. 2018, 16, 186. [Google Scholar] [CrossRef] [Green Version]
- Jairajpuri, D.S.; Malalla, Z.H.; Mahmood, N.; Khan, F.; Almawi, W.Y. Differentially expressed circulating microRNAs associated with idiopathic recurrent pregnancy loss. Gene 2021, 768, 145334. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zhang, Y.; Cai, X.; Zhang, Y.; Yan, S.; Wang, J.; Zhang, S.; Yin, T.; Yang, C.; Yang, J. Extracellular vesicles derived from M1 macrophages deliver miR-146a-5p and miR-146b-5p to suppress trophoblast migration and invasion by targeting TRAF6 in recurrent spontaneous abortion. Theranostics 2021, 11, 5813–5830. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of re-al-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hromadnikova, I.; Kotlabova, K.; Hympanova, L.; Krofta, L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripher-al blood. Thromb. Res. 2016, 137, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
Normal Term Pregnancies (n = 80) | Miscarriages or Stillbirths (n= 101) | Miscarriages (n = 77) | Stillbirths (n = 24) | p-Value 1 | p-Value 2 | p-Value 3 | |
---|---|---|---|---|---|---|---|
Maternal history | |||||||
Venous thromboembolism in history | 0 (0%) | 2 (1.98%) | 2 (3.90%) | 0 (0%) | 0.369 OR: 4.045 95% CI: 0.191–85.468 | 0.283 OR: 5.331 95% CI: 0.252–112.863 | 0.555 OR: 3.286 95% CI: 0.063–169.964 |
Diabetes mellitus (T1DM, T2DM) | 0 (0%) | 1 (0.99%) 1 T1DM | 1 (1.30%) 1 T1DM | 0 (0%) | 0.593 OR: 2.403 95% CI: 0.096–59.786 | 0.483 OR: 3.157 95% CI: 0.127–78.689 | 0.555 OR: 3.286 95% CI: 0.063–169.964 |
Chronic hypertension on treatment | 0 (0%) | 2 (1.98%) | 1 (1.30%) | 1 (4.17%) | 0.369 OR: 4.045 95% CI: 0.191–85.468 | 0.483 OR: 3.157 95% CI: 0.127–78.689 | 0.158 OR: 10.277 95% CI: 0.405–260.697 |
Congenital heart disease | 0 (0%) | 1 (0.99%) 1 WPW syndrome | 0 (0%) | 1 (4.17%) 1 WPW syndrome | 0.593 OR: 2.403 95% CI: 0.096–59.786 | 0.985 OR: 1.039 95% CI: 0.020–53.004 | 0.158 OR: 10.277 95% CI: 0.405–260.697 |
Nonautoimmune hypothyroidism | 2 (2.50%) | 11 (10.89%) | 9 (11.69%) | 2 (8.33%) | 0.046 OR: 4.767 95% CI: 1.025–22.165 | 0.040 OR: 5.162 95% CI: 1.078–24.720 | 0.219 OR: 3.545 95% CI: 0.472–26.628 |
Uncontrolled | 0 (0%) | 2 (1.98%) | 2 (3.90%) | 0 (0%) | 0.369 OR: 4.045 95% CI: 0.191–85.468 | 0.283 OR: 5.331 95% CI: 0.252–112.863 | 0.555 OR: 3.286 95% CI: 0.063–169.964 |
Any kind of autoimmune disease (SLE/APS/SS/RA/T1DM/other) | 0 (0%) | 13 (18.87%) 2 APS 1 SS 1 RA 1 T1DM 5 AIT 1 psoriasis 1 UCTD 1 Henoch-Schonlein purpura | 11 (14.29%) 2 APS 1 RA 1 T1DM 4 AIT 1 psoriasis 1 UCTD 1 Henoch-Schonlein purpura | 2 (8.33%) 1 SS 1 AIT | 0.027 OR: 24.559 95% CI: 1.437–419.855 | 0.022 OR: 27.842 95% CI: 1.610–481.349 | 0.066 OR: 17.889 95% CI: 0.829–386.202 |
Thrombophilia gene mutations | 0 (0%) | 18 (17.82%) | 13 (16.88%) | 5 (20.83%) | 0.013 OR: 35.671 95% CI: 2.114–601.862 | 0.015 OR: 33.698 95% CI: 1.965–577.721 | 0.011 OR: 45.410 95% CI: 2.408–856.463 |
Uterine fibroids or abnormal-shaped womb | 0 (0%) | 16 (15.84%) 12 uterine fibroids 4 abnormal-shaped womb | 12 (15.58%) 8 uterine fibroids 4 abnormal-shaped womb | 4 (16.67%) 4 uterine fibroids | 0.017 OR: 31.070 95% CI: 1.834–526.478 | 0.018 OR: 30.725 95% CI: 1.785–528.788 | 0.018 OR: 35.341 95% CI: 1.828–683.218 |
Cervical incompetence | 0 (0%) | 4 (3.96%) | 1 (1.30%) | 3 (12.50%) | 0.181 OR: 7.431 95% CI: 0.394–140.092 | 0.483 OR: 3.157 95% CI: 0.127–78.689 | 0.033 OR: 26.209 95% CI: 1.303–527.060 |
Polycystic ovary syndrome | 1 (1.25%) | 2 (1.98%) | 2 (2.60%) | 0 (0%) | 0.705 OR: 1.596 95% CI: 0.142–17.924 | 0.546 OR: 2.107 95% CI: 0.187–23.720 | 0.962 OR: 1.082 95% CI: 0.043–27.413 |
Endometriosis | 1 (1.25%) | 3 (2.97%) | 3 (3.90%) | 0 (0%) | 0.448 OR: 2.418 95% CI: 0.247–23.704 | 0.318 OR: 3.203 95% CI: 0.326–31.479 | 0.962 OR: 1.082 95% CI: 0.043–27.413 |
Smoking (currently or in the past) | 3 (3.75%) | 9 (8.91%) | 5 (6.49%) | 4 (16.67%) | 0.178 OR: 2.511 95% CI: 0.657–9.601 | 0.440 OR: 1.782 95% CI: 0.411–7.729 | 0.042 OR: 5.133 95% CI: 1.062–24.816 |
Nulliparity | 40 (50.0%) | 55 (54.45%) | 36 (46.75%) | 19 (79.17%) | 0.551 OR: 1.196 95% CI: 0.664–2.152 | 0.684 OR: 0.878 95% CI: 0.469–1.643 | 0.015 OR: 3.800 95% CI: 1.293–11.170 |
Previous pregnancy-related complications | |||||||
Previous GH or PE | 0 (0%) | 1 (0.99%) | 1 (1.30%) | 0 (0%) | 0.593 OR: 2.403 95% CI: 0.096–59.786 | 0.483 OR: 3.157 95% CI: 0.127–78.689 | 0.555 OR: 3.286 95% CI: 0.063–169.964 |
Previous SGA or FGR | 0 (0%) | 1 (0.99%) | 1 (1.30%) | 0 (0%) | 0.593 OR: 2.403 95% CI: 0.096–59.786 | 0.483 OR: 3.157 95% CI: 0.127–78.689 | 0.555 OR: 3.286 95% CI: 0.063–169.964 |
Previous GDM | 1 (1.25%) | 1 (0.99%) | 0 (0%) | 1 (4.17%) | 0.868 OR: 0.790 95% CI: 0.049–12.830 | 0.513 OR: 0.342 95% CI: 0.014–8.523 | 0.389 OR: 3.435 95% CI: 0.207–57.079 |
Previous preterm delivery | 0 (0%) | 3 (2.97%) | 2 (2.60%) | 1 (4.17%) | 0.251 OR: 5.721 95% CI: 0.291–112.387 | 0.283 OR: 5.331 95% CI: 0.253–112.863 | 0.158 OR: 10.277 95% CI: 0.405–260.697 |
| 16 (20.0%) | 31 (30.69%) | 26 (33.77%) | 5 (20.83%) | 0.105 OR: 1.771 95% CI: 0.887–3.539 | 0.053 OR: 2.039 95% CI: 0.989–4.203 | 0.929 OR: 1.053 95% CI: 0.341–3.250 |
| 4 (5.0%) | 6 (5.94%) | 2 (2.60%) | 4 (16.67%) | 0.783 OR: 1.200 95% CI: 0.327–4.406 | 0.440 OR: 0.507 95% CI: 0.090–2.850 | 0.075 OR: 3.800 95% CI: 0.873–16.541 |
| 0 (0%) | 6 (5.94%) | 4 (5.19%) | 2 (8.33%) | 0.105 OR: 10.958 95% CI: 0.608–197.516 | 0.127 OR: 9.857 95% CI: 0.523–186.243 | 0.066 OR: 17.889 95% CI: 0.829–386.202 |
Method of conception | |||||||
Spontaneous | 78 (97.5%) | 90 (89.11%) | 69 (89.61%) | 21 (87.50%) | 0.046 OR: 4.767 95% CI: 1.025–22.165 | 0.062 OR: 4.522 95% CI: 0.929–22.019 | 0.069 OR: 5.571 95% CI: 0.873–35.539 |
Assisted (IVF/ICSI/other) | 2 (2.5%) | 11 (10.89%) | 8 (10.39%) | 3 (12.50%) | |||
Pregnancy details (first trimester of gestation) | |||||||
Maternal age (years) | 32 (25–42) | 35 (21–57) | 35 (21–57) | 34 (21–42) | <0.001 | <0.001 | 1.0 |
Advanced maternal age (≥35 years old at early stages of gestation) | 18 (22.50%) | 56 (55.45%) | 46 (59.74%) | 10 (41.67%) | <0.001 OR: 4.286 95% CI: 2.226–8.254 | <0.001 OR: 5.111 95% CI: 2.551–10.240 | 0.068 OR: 2.460 95% CI: 0.936–6.467 |
BMI (kg/m2) | 21.28 (17.16–29.76) | 21.97 (16.71–52.47) | 21.51 (17.47–52.47) | 23.94 (16.71–33.13) | 0.152 | 1.0 | 0.052 |
BMI ≥ 30 kg/m2 | 0 (0%) | 10 (9.90%) | 8 (10.39%) | 2 (8.33%) | 0.045 OR: 18.475 95% CI: 1.066–320.312 | 0.042 OR: 19.691 95% CI: 1.116–347.360 | 0.066 OR: 17.889 95% CI: 0.829–386.202 |
GA at time of blood sampling (weeks) | 10.29 (9.57–13.71) | 10.43 (9.29–13.71) | 10.43 (9.29–13.71) | 10.29 (9.71–13.71) | 0.173 | 0.740 | 0.758 |
MAP (mmHg) | 88.75 (67.67–103.83) | 91.21 (72.92–110.58) | 92.0 (72.92–110.58) | 88.75 (73.92–105.50) | 0.143 | 0.610 | 0.869 |
MAP (MoM) | 1.05 (0.84–1.25) | 1.09 (0.85–1.22) | 1.09 (0.85–1.22) | 1.07 (0.89–1.22) | 0.282 | 0.856 | 1.0 |
Mean UtA-PI | 1.39 (0.56–2.43) | 1.58 (0.69–24.0) | 1.60 (0.69–24.0) | 1.56 (0.78–2.63) | 0.054 | 0.394 | 0.357 |
Mean UtA-PI (MoM) | 0.90 (0.37–1.55) | 1.04 (0.42–1.71) | 1.04 (0.42–1.67) | 1.05 (0.52–1.71) | 0.057 | 0.324 | 0.464 |
PIGF serum levels (pg/mL) | 27.1 (8.1–137.0) | 21.0 (3.60–57.40) | 20.9 (3.60–57.40) | 25.2 (5.20–45.40) | <0.001 | <0.001 | 0.246 |
PIGF serum levels (MoM) | 1.04 (0.38–2.61) | 0.78 (0.17–1.58) | 0.78 (0.25–1.56) | 0.80 (0.17–1.58) | <0.001 | 0.004 | 0.017 |
PAPP-A serum levels (IU/L) | 1.49 (0.48–15.69) | 1.21 (0.07–9.21) | 1.15 (0.07–9.21) | 1.40 (0.33–5.03) | 0.013 | 0.031 | 0.823 |
PAPP-A serum levels (MoM) | 1.17 (0.37–3.18) | 0.86 (0.27–3.08) | 0.87 (0.27–3.08) | 0.85 (0.32–2.49) | 0.003 | 0.251 | 0.009 |
Free b-hCG serum levels (μg/L) | 60.21 (9.9–200.6) | 34.01 (5.40–239.1) | 29.48 (5.40–177.1) | 47.13 (10.01–239.1) | <0.001 | <0.001 | 0.137 |
Free b-hCG serum levels (MoM) | 1.02 (0.31–3.57) | 0.86 (0.08–20.08) | 0.67 (0.08–20.08) | 0.95 (0.27–3.78) | 0.013 | 0.053 | 0.409 |
Screen-positive for PE and/or FGR by FMF algorithm | 0 (0%) | 13 (12.87%) | 6 (7.79%) | 7 (29.17%) | 0.027 OR: 24.559 95% CI: 1.437–419.855 | 0.069 OR: 14.636 95% CI: 0.810–264.432 | 0.004 OR: 69.000 95% CI: 3.762–1265.434 |
Screen-positive for preterm delivery (<34 weeks) by FMF algorithm | 5 (6.25%) | 16 (15.84%) | 7 (9.09%) | 9 (37.50%) | 0.053 OR: 2.823 95% CI: 0.987–8.078 | 0.505 OR: 1.500 95% CI: 0.455–4.945 | <0.001 OR: 9.000 95% CI: 2.642–30.661 |
Aspirin intake during pregnancy | 0 (0%) | 11 (10.89%) | 6 (7.79%) | 5 (20.83%) | 0.038 OR: 20.459 95% CI: 1.186–352.748 | 0.069 OR: 14.636 95% CI: 0.810–264.432 | 0.011 OR: 45.410 95% CI: 2.408–856.463 |
Pregnancy details | |||||||
GA at miscarriage (weeks) | - | - | 12.86 (9.71–19.86) | - | - | - | - |
GA at stillbirth (weeks) | - | - | - | 27.65 (20.71–38.71) | - | - | - |
Invasive prenatal testing (CVS, AMC) | 0 (0%) | 5 (4.95%) | 1 (1.30%) | 4 (16.67%) | 0.135 OR: 9.176 95% CI: 0.500–168.477 | 0.483 OR: 3.157 95% CI: 0.127–78.689 | 0.018 OR: 35.341 95% CI: 1.828–683.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hromadnikova, I.; Kotlabova, K.; Krofta, L. First-Trimester Screening for Miscarriage or Stillbirth—Prediction Model Based on MicroRNA Biomarkers. Int. J. Mol. Sci. 2023, 24, 10137. https://doi.org/10.3390/ijms241210137
Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Miscarriage or Stillbirth—Prediction Model Based on MicroRNA Biomarkers. International Journal of Molecular Sciences. 2023; 24(12):10137. https://doi.org/10.3390/ijms241210137
Chicago/Turabian StyleHromadnikova, Ilona, Katerina Kotlabova, and Ladislav Krofta. 2023. "First-Trimester Screening for Miscarriage or Stillbirth—Prediction Model Based on MicroRNA Biomarkers" International Journal of Molecular Sciences 24, no. 12: 10137. https://doi.org/10.3390/ijms241210137
APA StyleHromadnikova, I., Kotlabova, K., & Krofta, L. (2023). First-Trimester Screening for Miscarriage or Stillbirth—Prediction Model Based on MicroRNA Biomarkers. International Journal of Molecular Sciences, 24(12), 10137. https://doi.org/10.3390/ijms241210137