Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities
Abstract
:1. Concept, Classification and the Role of Experimental Models in the Study of Diabetes Mellitus
2. Available Models for the Study of DM-1 and DM-2
2.1. The Spontaneous DM Rat Models
2.1.1. The Bio-Breeding Diabetic Rats
2.1.2. The LEW.1AR1-iddm Rats
2.1.3. The Zucker Diabetic Fatty Rats
2.1.4. The Goto-kakizaki Rats
2.2. The Surgical Induced DM Rat Models
2.3. The Diet-Induced DM Rat Models
2.4. The Chemical-Induced DM Rat Models
2.4.1. The Alloxan Model
2.4.2. The Streptozotocin Model
3. Are the Current Rat Models to Study the Human Diabetic Kidney Disease Enough?
4. Use of Rat Models for the Study of Antidiabetic Drugs
5. Similarity of the Histological Finding in the Experimental and Human DKD
6. Experimental Model of DM and Partial Correction of the Hyperglycaemia Using Insulin
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation IDF Diabetes Atlas. Available online: https://www.diabetesatlas.org/en/ (accessed on 19 August 2022).
- Farag, Y.M.; Gaballa, M.R. Diabesity: An overview of a rising epidemic. Nephrol. Dial. Transpl. 2011, 26, 28–35. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. S1), S62–S69. [Google Scholar] [CrossRef] [Green Version]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.; Zoungas, S.; Rossing, P.; Groop, P.H.; Cooper, M.E. Diabetic kidney disease. Nat. Rev. Dis. Prim. 2015, 1, 15018. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Agarwal, R.; Alpers, C.E.; Bakris, G.L.; Brosius, F.C.; Kolkhof, P.; Uribarri, J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022, 102, 248–260. [Google Scholar] [CrossRef]
- Silva, J.A.D.; Souza, E.C.F.; Echazu Boschemeier, A.G.; Costa, C.; Bezerra, H.S.; Feitosa, E. Diagnosis of diabetes mellitus and living with a chronic condition: Participatory study. BMC Public Health 2018, 18, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Birgelen, C.; Kok, M.M.; Sattar, N.; Zocca, P.; Doelman, C.; Kant, G.D.; Lowik, M.M.; van der Heijden, L.C.; Sen, H.; van Houwelingen, K.G.; et al. “Silent” Diabetes and Clinical Outcome After Treatment With Contemporary Drug-Eluting Stents: The BIO-RESORT Silent Diabetes Study. JACC Cardiovasc. Interv. 2018, 11, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Stehouwer, C.D.A. Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle With Widespread Consequences. Diabetes 2018, 67, 1729–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C. Cardiorenal syndromes: Definition and classification. Contrib. Nephrol. 2010, 164, 33–38. [Google Scholar] [CrossRef]
- Preguica, I.; Alves, A.; Nunes, S.; Gomes, P.; Fernandes, R.; Viana, S.D.; Reis, F. Diet-Induced Rodent Models of Diabetic Peripheral Neuropathy, Retinopathy and Nephropathy. Nutrients 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- eBioMedicine. The 3Rs of Animal Research. EBioMedicine 2022, 76, 103900. [Google Scholar] [CrossRef]
- Lewis-Israeli, Y.R.; Abdelhamid, M.; Olomu, I.; Aguirre, A. Modeling the Effects of Maternal Diabetes on the Developing Human Heart Using Pluripotent Stem Cell-Derived Heart Organoids. Curr. Protoc. 2022, 2, e461. [Google Scholar] [CrossRef]
- Zbinden, A.; Marzi, J.; Schlunder, K.; Probst, C.; Urbanczyk, M.; Black, S.; Brauchle, E.M.; Layland, S.L.; Kraushaar, U.; Duffy, G.; et al. Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model. Matrix Biol. 2020, 85–86, 205–220. [Google Scholar] [CrossRef]
- Mathews, C.E. Utility of murine models for the study of spontaneous autoimmune type 1 diabetes. Pediatr. Diabetes 2005, 6, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Rossini, A.A. Autoimmune diabetes and the circle of tolerance. Diabetes 2004, 53, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharjee, S.; Ghosh, B.; Al-Dhubiab, B.E.; Nair, A.B. Understanding type 1 diabetes: Etiology and models. Can. J. Diabetes 2013, 37, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Whalen, B.J.; Marounek, J.; Weiser, P.; Appel, M.C.; Greiner, D.L.; Mordes, J.P.; Rossini, A.A. BB rat thymocytes cultured in the presence of islets lose their ability to transfer autoimmune diabetes. Diabetes 2001, 50, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Nourelden, A.Z.; Elshanbary, A.A.; El-Sherif, L.; Benmelouka, A.Y.; Rohim, H.I.; Helmy, S.K.; Sayed, M.K.; Ismail, A.; Ali, A.S.; Ragab, K.M.; et al. Safety and Efficacy of Teplizumab for Treatment of Type One Diabetes Mellitus: A Systematic Review and Meta-Analysis. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N. Engl. J. Med. 2020, 382, 586. [CrossRef]
- Sherry, N.; Hagopian, W.; Ludvigsson, J.; Jain, S.M.; Wahlen, J.; Ferry, R.J., Jr.; Bode, B.; Aronoff, S.; Holland, C.; Carlin, D.; et al. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet 2011, 378, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignogna, C.; Maddaloni, E.; D’Onofrio, L.; Buzzetti, R. Investigational therapies targeting CD3 for prevention and treatment of type 1 diabetes. Expert Opin. Investig. Drugs 2021, 30, 1209–1219. [Google Scholar] [CrossRef]
- Bresson, D.; Togher, L.; Rodrigo, E.; Chen, Y.; Bluestone, J.A.; Herold, K.C.; von Herrath, M. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J. Clin. Investig. 2006, 116, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, S. Animal models of human type 1 diabetes for evaluating combination therapies and successful translation to the patient with type 1 diabetes. Diabetes Metab. Res. Rev. 2017, 33, e2915. [Google Scholar] [CrossRef] [PubMed]
- Jorns, A.; Gunther, A.; Hedrich, H.J.; Wedekind, D.; Tiedge, M.; Lenzen, S. Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 2005, 54, 2041–2052. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, S.; Tiedge, M.; Elsner, M.; Lortz, S.; Weiss, H.; Jorns, A.; Kloppel, G.; Wedekind, D.; Prokop, C.M.; Hedrich, H.J. The LEW.1AR1/Ztm-iddm rat: A new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 2001, 44, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.S.; Liu, Q.; Hammond, H.A.; Dugan, V.; Hey, P.J.; Caskey, C.J.; Hess, J.F. Leptin receptor missense mutation in the fatty Zucker rat. Nat. Genet 1996, 13, 18–19. [Google Scholar] [CrossRef]
- Leonard, B.L.; Watson, R.N.; Loomes, K.M.; Phillips, A.R.; Cooper, G.J. Insulin resistance in the Zucker diabetic fatty rat: A metabolic characterisation of obese and lean phenotypes. Acta Diabetol. 2005, 42, 162–170. [Google Scholar] [CrossRef]
- Shiota, M.; Printz, R.L. Diabetes in Zucker diabetic fatty rat. Methods Mol. Biol. 2012, 933, 103–123. [Google Scholar] [CrossRef]
- Kitada, M.; Ogura, Y.; Koya, D. Rodent models of diabetic nephropathy: Their utility and limitations. Int. J. Nephrol. Renovasc. Dis. 2016, 9, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Portha, B.; Serradas, P.; Bailbe, D.; Suzuki, K.; Goto, Y.; Giroix, M.H. Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Diabetes 1991, 40, 486–491. [Google Scholar] [CrossRef]
- Ostenson, C.G.; Khan, A.; Abdel-Halim, S.M.; Guenifi, A.; Suzuki, K.; Goto, Y.; Efendic, S. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia 1993, 36, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, B.; Ludwig, S. Transplantable bioartificial pancreas devices: Current status and future prospects. Langenbecks Arch. Surg. 2015, 400, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Garcia Ribeiro, R.S.; Gysemans, C.; da Cunha, J.; Manshian, B.B.; Jirak, D.; Kriz, J.; Gallo, J.; Banobre-Lopez, M.; Struys, T.; De Cuyper, M.; et al. Magnetoliposomes as Contrast Agents for Longitudinal in vivo Assessment of Transplanted Pancreatic Islets in a Diabetic Rat Model. Sci. Rep. 2018, 8, 11487. [Google Scholar] [CrossRef] [Green Version]
- Omori, K.; Kobayashi, E.; Rawson, J.; Takahashi, M.; Mullen, Y. Mechanisms of islet damage mediated by pancreas cold ischemia/rewarming. Cryobiology 2016, 73, 126–134. [Google Scholar] [CrossRef]
- Martin-Pelaez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Napoleao, A.; Fernandes, L.; Miranda, C.; Marum, A.P. Effects of Calorie Restriction on Health Span and Insulin Resistance: Classic Calorie Restriction Diet vs. Ketosis-Inducing Diet. Nutrients 2021, 13, 1302. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, T.; Sun, J.; Huang, Y.; Liu, T.; Ye, Z.; Hu, J.; Zhang, G.; Chen, H.; Ye, Z.; et al. Calorie restriction ameliorates hyperglycemia, modulates the disordered gut microbiota, and mitigates metabolic endotoxemia and inflammation in type 2 diabetic rats. J. Endocrinol. Investig. 2023, 46, 699–711. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of Intermittent Fasting Diet on Glucose and Lipid Metabolism and Insulin Resistance in Patients with Impaired Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2022, 2022, 6999907. [Google Scholar] [CrossRef]
- Campbell, A.P. Diabetes and Dietary Supplements. Clin. Diabetes 2010, 28, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Huang, Y.J.; Sun, J.P.; Zhang, T.Y.; Liu, T.L.; Ke, B.; Shi, X.F.; Li, H.; Zhang, G.P.; Ye, Z.Y.; et al. Protective effects of calorie restriction on insulin resistance and islet function in STZ-induced type 2 diabetes rats. Nutr. Metab. 2021, 18, 48. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Farooq, U.; Saleem, A.; Saleem, M.; Rahman, M.H.; Ashraf, G.M. Ameliorating Effect of Malva neglecta Wallr on Obesity and Diabetes in Wistar Rats: A Mechanistic Study. BioMed Res. Int. 2022, 2022, 2614599. [Google Scholar] [CrossRef]
- Liu, H.; Li, N.; Jin, M.; Miao, X.; Zhang, X.; Zhong, W. Magnesium supplementation enhances insulin sensitivity and decreases insulin resistance in diabetic rats. Iran. J. Basic Med. Sci. 2020, 23, 990–998. [Google Scholar] [CrossRef]
- Abdel-Rehim, W.M.; El-Tahan, R.A.; El-Tarawy, M.A.; Shehata, R.R.; Kamel, M.A. The possible antidiabetic effects of vitamin D receptors agonist in rat model of type 2 diabetes. Mol. Cell. Biochem. 2019, 450, 105–112. [Google Scholar] [CrossRef]
- Sahin, K.; Onderci, M.; Tuzcu, M.; Ustundag, B.; Cikim, G.; Ozercan, I.H.; Sriramoju, V.; Juturu, V.; Komorowski, J.R. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: The fat-fed, streptozotocin-treated rat. Metabolism 2007, 56, 1233–1240. [Google Scholar] [CrossRef]
- Zhu, L.; Sha, L.; Li, K.; Wang, Z.; Wang, T.; Li, Y.; Liu, P.; Dong, X.; Dong, Y.; Zhang, X.; et al. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats. Lipids Health Dis. 2020, 19, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenzen, S.; Panten, U. Alloxan: History and mechanism of action. Diabetologia 1988, 31, 337–342. [Google Scholar] [CrossRef]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001, 50, 537–546. [Google Scholar] [PubMed]
- Junod, A.; Lambert, A.E.; Stauffacher, W.; Renold, A.E. Diabetogenic action of streptozotocin: Relationship of dose to metabolic response. J. Clin. Investig. 1969, 48, 2129–2139. [Google Scholar] [CrossRef] [Green Version]
- Bequer, L.; Gomez, T.; Molina, J.L.; Artiles, D.; Bermudez, R.; Clapes, S. Streptozotocin diabetogenic action in an experimental neonatal induction model. Biomedica 2016, 36, 230–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolzan, A.D.; Bianchi, M.S. Genotoxicity of streptozotocin. Mutat. Res. 2002, 512, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Rerup, C.C. Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol. Rev. 1970, 22, 485–518. [Google Scholar]
- Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Sembach, F.E.; Ostergaard, M.V.; Vrang, N.; Feldt-Rasmussen, B.; Fosgerau, K.; Jelsing, J.; Fink, L.N. Rodent models of diabetic kidney disease: Human translatability and preclinical validity. Drug Discov. Today 2021, 26, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R. Use of high-fat diets to study rodent obesity as a model of human obesity. Int. J. Obes. 2019, 43, 1491–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, C.A.; Gorriz, T.J.; Navarro, G.J. Datos epidemiológicos. Historia natural. In Aspectos Clínicos; Lorenzo, V., López Gómez, J.M., Eds.; Nefrología al día; Sociedad Española de Nefrología: Santander, Spain, 2022; ISSN 2659-2606. Available online: https://www.nefrologiaaldia.org/246 (accessed on 13 June 2023).
- Mogensen, C.E.; Christensen, C.K.; Vittinghus, E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983, 32 (Suppl. S2), 64–78. [Google Scholar] [CrossRef] [PubMed]
- Tervaert, T.W.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Diabetic Complications Consortium Home Page. Available online: https://www.diacomp.org (accessed on 2 March 2023).
- Brosius, F.C., 3rd; Alpers, C.E.; Bottinger, E.P.; Breyer, M.D.; Coffman, T.M.; Gurley, S.B.; Harris, R.C.; Kakoki, M.; Kretzler, M.; Leiter, E.H.; et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 2009, 20, 2503–2512. [Google Scholar] [CrossRef] [Green Version]
- Zelniker, T.A.; Braunwald, E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 422–434. [Google Scholar] [CrossRef]
- Trang, N.N.; Chung, C.C.; Lee, T.W.; Cheng, W.L.; Kao, Y.H.; Huang, S.Y.; Lee, T.I.; Chen, Y.J. Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. Int. J. Mol. Sci. 2021, 22, 1177. [Google Scholar] [CrossRef]
- Asensio Lopez, M.D.C.; Lax, A.; Hernandez Vicente, A.; Saura Guillen, E.; Hernandez-Martinez, A.; Fernandez Del Palacio, M.J.; Bayes-Genis, A.; Pascual Figal, D.A. Empagliflozin improves post-infarction cardiac remodeling through GTP enzyme cyclohydrolase 1 and irrespective of diabetes status. Sci. Rep. 2020, 10, 13553. [Google Scholar] [CrossRef]
- Saleh, S.; Hanna, G.; El-Nabi, S.H.; El-Domiaty, H.; Shabaan, A.; Fayez Ewida, S. Dapagliflozin, a sodium glucose cotransporter 2 inhibitors, protects cardiovascular function in type-2 diabetic murine model. J. Genet 2020, 99, 1–8. [Google Scholar] [CrossRef]
- Guo, D.; Mizukami, H.; Osonoi, S.; Takahashi, K.; Ogasawara, S.; Kudo, K.; Sasaki, T.; Yagihashi, S. Beneficial effects of combination therapy of canagliflozin and teneligliptin on diabetic polyneuropathy and beta-cell volume density in spontaneously type 2 diabetic Goto-Kakizaki rats. Metabolism 2020, 107, 154232. [Google Scholar] [CrossRef]
- Lv, Q.; Le, L.; Xiang, J.; Jiang, B.; Chen, S.; Xiao, P. Liver Transcriptomic Reveals Novel Pathways of Empagliflozin Associated With Type 2 Diabetic Rats. Front. Endocrinol. 2020, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Sayed, N.; Abdalla, O.; Kilany, O.; Dessouki, A.; Yoshida, T.; Sasaki, K.; Shimoda, M. Effect of dapagliflozin alone and in combination with insulin in a rat model of type 1 diabetes. J. Vet. Med. Sci. 2020, 82, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Hodrea, J.; Balogh, D.B.; Hosszu, A.; Lenart, L.; Besztercei, B.; Koszegi, S.; Sparding, N.; Genovese, F.; Wagner, L.J.; Szabo, A.J.; et al. Reduced O-GlcNAcylation and tubular hypoxia contribute to the antifibrotic effect of SGLT2 inhibitor dapagliflozin in the diabetic kidney. Am. J. Physiol. Ren. Physiol. 2020, 318, F1017–F1029. [Google Scholar] [CrossRef]
- Hussein, A.M.; Eid, E.A.; Taha, M.; Elshazli, R.M.; Bedir, R.F.; Lashin, L.S. Comparative Study of the Effects of GLP1 Analog and SGLT2 Inhibitor against Diabetic Cardiomyopathy in Type 2 Diabetic Rats: Possible Underlying Mechanisms. Biomedicines 2020, 8, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashrafi Jigheh, Z.; Ghorbani Haghjo, A.; Argani, H.; Roshangar, L.; Rashtchizadeh, N.; Sanajou, D.; Nazari Soltan Ahmad, S.; Rashedi, J.; Dastmalchi, S.; Mesgari Abbasi, M. Empagliflozin Attenuates Renal and Urinary Markers of Tubular Epithelial Cell Injury in Streptozotocin-induced Diabetic Rats. Indian J. Clin. Biochem. 2020, 35, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Muto, S.; Fukuda, K.; Watanabe, M.; Ohara, K.; Koepsell, H.; Vallon, V.; Nagata, D. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol. Rep. 2020, 8, e14360. [Google Scholar] [CrossRef] [Green Version]
- Aragon-Herrera, A.; Feijoo-Bandin, S.; Otero Santiago, M.; Barral, L.; Campos-Toimil, M.; Gil-Longo, J.; Costa Pereira, T.M.; Garcia-Caballero, T.; Rodriguez-Segade, S.; Rodriguez, J.; et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem. Pharmacol. 2019, 170, 113677. [Google Scholar] [CrossRef]
- Ashrafi Jigheh, Z.; Ghorbani Haghjo, A.; Argani, H.; Roshangar, L.; Rashtchizadeh, N.; Sanajou, D.; Nazari Soltan Ahmad, S.; Rashedi, J.; Dastmalchi, S.; Mesgari Abbasi, M. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran. J. Basic Med. Sci. 2019, 22, 384–390. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.P.; Jenkins, E.C.; Estes, S.K.; Castaneda, A.V.; Ueta, K.; Farmer, T.D.; Puglisi, A.E.; Swift, L.L.; Printz, R.L.; Shiota, M. Correcting Postprandial Hyperglycemia in Zucker Diabetic Fatty Rats With an SGLT2 Inhibitor Restores Glucose Effectiveness in the Liver and Reduces Insulin Resistance in Skeletal Muscle. Diabetes 2017, 66, 1172–1184. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.Y.; Yu, T.T.; Liu, S.; Liu, Y.J.; Liu, J.J.; Qin, J. Effect of liraglutide on endoplasmic reticulum stress in the renal tissue of type 2 diabetic rats. World J. Diabetes 2020, 11, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, R.G.; Ahmed, A.F.; Heeba, G.H. Low-dose lixisenatide protects against early-onset nephropathy induced in diabetic rats. Life Sci. 2020, 263, 118592. [Google Scholar] [CrossRef]
- Arora, M.K.; Singh, U.K. Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update. Vasc. Pharmacol. 2013, 58, 259–271. [Google Scholar] [CrossRef]
- Xue, L.; Feng, X.; Wang, C.; Zhang, X.; Sun, W.; Yu, K. Benazepril hydrochloride improves diabetic nephropathy and decreases proteinuria by decreasing ANGPTL-4 expression. BMC Nephrol. 2017, 18, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaikini, A.A.; Dhodi, D.; Muke, S.; Peshattiwar, V.; Bagle, S.; Korde, A.; Sarnaik, J.; Kadwad, V.; Sachdev, S.; Sathaye, S. Standardization of type 1 and type 2 diabetic nephropathy models in rats: Assessment and characterization of metabolic features and renal injury. J. Pharm. Bioallied Sci. 2020, 12, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Zhou, Z.; Tian, F.; Yang, H.; Yan, J. Combination of leflunomide and benazepril reduces renal injury of diabetic nephropathy rats and inhibits high-glucose induced cell apoptosis through regulation of NF-kappaB, TGF-beta and TRPC6. Ren. Fail 2019, 41, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Zhai, R.; Chen, T.; Gao, C.; Xue, R.; Wang, N.; Wang, J.; Xu, Y.; Gui, D. Panax Notoginseng Ameliorates Podocyte EMT by Targeting the Wnt/beta-Catenin Signaling Pathway in STZ-Induced Diabetic Rats. Drug Des. Devel Ther. 2020, 14, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Zubiri, I.; Posada-Ayala, M.; Benito-Martin, A.; Maroto, A.S.; Martin-Lorenzo, M.; Cannata-Ortiz, P.; de la Cuesta, F.; Gonzalez-Calero, L.; Barderas, M.G.; Fernandez-Fernandez, B.; et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Transl. Res. 2015, 166, 474–484.e4. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luo, J.; Wu, M.; Pan, Z.; Xie, Y.; Wang, H.; Chen, B.; Zhu, H. Study on Association of Pentraxin 3 and Diabetic Nephropathy in a Rat Model. J. Diabetes Res. 2018, 2018, 8968573. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Martinez, L.; Rodriguez-Munoz, R.; Namorado-Tonix, M.D.C.; Missirlis, F.; Del Valle-Mondragon, L.; Sanchez-Mendoza, A.; Reyes-Sanchez, J.L.; Cervantes-Perez, L.G. Hyperglycemic levels in early stage of diabetic nephropathy affect differentially renal expression of claudins-2 and -5 by oxidative stress. Life Sci. 2021, 268, 119003. [Google Scholar] [CrossRef] [PubMed]
- Scridon, A.; Perian, M.; Marginean, A.; Vantu, A.; Ghertescu, D.; Fisca, C.; Halatiu, V.; Grigoras, T.; Serban, R.C. Streptozotocin-Induced Diabetes Mellitus—A Paradox of High Intrinsic Platelet Reactivity and Low in Vitro Platelet Aggregation. Acta Endocrinol. 2019, 5, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Martin-Carro, B.; Martin-Virgala, J.; Fernandez-Villabrille, S.; Fernandez-Fernandez, A.; Perez-Basterrechea, M.; Navarro-Gonzalez, J.F.; Donate-Correa, J.; Mora-Fernandez, C.; Dusso, A.S.; Carrillo-Lopez, N.; et al. Role of Klotho and AGE/RAGE-Wnt/beta-Catenin Signalling Pathway on the Development of Cardiac and Renal Fibrosis in Diabetes. Int. J. Mol. Sci. 2023, 24, 5241. [Google Scholar] [CrossRef] [PubMed]
Reference | Specie and Sex | Age (Weeks) or Weight (g) | DM Model (Induced or Spontaneous) | DM Establishment | Dietary Strategy | Intervention Period (Weeks) |
---|---|---|---|---|---|---|
[41] | SD ♂ | 6–8 (180–190 g) | HFD + STZ (30 mg/Kg) | 10 weeks → Glc > 300 mg/dL | Caloric restriction (30%) | 20 |
[42] | Wistar ♂/♀ | 2 | HFD + Alloxan (150 mg/Kg) | 48 h → Glc > 200 mg/dL | Malva neglecta Wallr | 2 |
[43] | SD ♂ | 48 | HFD + STZ (25 mg/Kg) | 3 weeks → Glc > 180 mg/dL | Magnesium supplement | 4 |
[44] | SD ♂ | 200–250 g | HFD + STZ (55 mg/Kg) | 4 weeks → Glc > 200 mg/dL | Alfacalcidol | 4 |
[45] | SD ♂ | 8 (200–250 g) | HFD + STZ (40 mg/Kg) | 2 weeks → Glc > 140 mg/dL | Chromium picolinate | 10 |
[46] | SD ♂ | 200–250 g | NA (110 mg/kg) + STZ (65 mg/Kg) | 1 week → Glc > 250 mg/dL | Dietary flaxseed oil rich in omega-3 | 5 |
Stage | Description | |
---|---|---|
1 |
| |
2 |
| |
3 | Incipient DKD |
|
4 | Established DKD |
|
5 | Severe kidney failure |
|
Criteria | Description |
---|---|
1 | A decline in GFR greater than 50% over the lifetime of the animal |
2 | At least 10-fold increase in albuminuria compared to controls of the same strain, age and gender |
3 | Relevant histopathological changes such as mesangial sclerosis (50% increase in mesangial volume), any degree of arteriolar hyalinosis, GBM thickening (>25% compared to baseline by electron microscopy morphometry) and tubulointerstitial fibrosis. |
Reference | Specie and Sex | Age (Weeks) or Weight (g) | DM Model (Induced or Spontaneous) | Type of DM | DM Establishment | Time from DM to Treatment (Weeks) | Drug Studied | Treatment Duration (Weeks) |
---|---|---|---|---|---|---|---|---|
[62] | Wistar ♂ | 10 | STZ (65 mg/Kg) | 1 | Glc > 270 mg/dL | 2 | SGLT2i GLP-1RA | 4 |
[63] | Wistar ♂ | 2 | STZ (50 mg/Kg) + myocardial infarction (coronary artery ligation) | 1 | 3 days → Glc > 300 mg/dL | 3 days | SGLT2i | 4 pre- + 4 post-infarctions = 8 |
[64] | Wistar ♂ | 120–150 g | HFD + STZ (35 mg/Kg) | 2 | Glc > 113 mg/dL | 4 | SGLT2i | 4 |
[65] | GK ♂ | 5 | Spontaneous | 2 | - | - | SGLT2i | 24 |
[66] | Wistar ♂ | 200 ± 20 g | HFD + STZ (30 mg/Kg) | 2 | - | (4 HFD) + (4 STZ + HFD) = 8 | SGLT2i | 4 |
[67] | SD ♂ | 8 | STZ (60 mg/Kg) | 1 | 3 days | 3 days | SGLT2i | 3 8 |
[68] | Wistar ♂ | 6 | STZ (65 mg/Kg) | 1 | 3 days → Glc > 270 mg/dL | 3 days | SGLT2i | 6 |
[69] | SD ♂ | 10–12 | HFD + STZ (35 mg/Kg) | 2 | 4 weeks → Glc > 270 mg/dL | (4 HFD) + (2 days STZ + HFD) | SGLT2i GLP-1RA | 4 |
[70] | Wistar ♂ | 8 | STZ (50 mg/Kg) | 1 | 2 days → Glc > 250 mg/dL | 8 | SGLT2i | 4 |
[71] | GK ♂ | 18–22 | Spontaneous | 2 | - | - | SGLT2i | 8 |
[72] | ZDF ♂ | 12 | Spontaneous | 2 | - | - | SGLT2i | 6 |
[73] | Wistar ♂ | 8 | STZ (50 mg/Kg) | 1 | 2 days → Glc > 270 mg/dL | 8 | SGLT2i | 4 |
[74] | ZDF ♂ | 10 | Spontaneous | 2 | - | - | SGLT2i | 7 |
[75] | SD ♂ | 8 | HFD + STZ (40 mg/Kg) | 2 | 4 weeks → Glc > 300 mg/dL | (4 HFD) + (3 days STZ + HFD) | GLP-1RA | 8 |
[76] | Wistar ♂ | 200–250 g | HFD + STZ (35 mg/Kg) | 2 | 2 weeks → Glc > 300 mg/dL | (2 HFD) + (1 STZ + HFD | GLP-1RA | 2 |
Class | Description |
---|---|
I | Mild or nonspecific changes by OM, and GBM thickening |
IIa | Mild mesangial expansion in >25% of the observed mesangium |
IIb | Severe mesangial expansion in >25% of the observed mesangium |
III | Nodular sclerosis (at least one convincing lesion of Kimmelstiel-Wilson lesion) |
IV | Advanced diabetic glomerulosclerosis (global glomerular sclerosis in >50% of glomeruli and class I to III lesions) |
Reference | Specie and Sex | DM Induction | Type of DM | DM Establishment | Endpoint (Week) | Technique | Results |
---|---|---|---|---|---|---|---|
[78] | Wistar ♂ | STZ 60 mg/Kg | 1 | 3 days → Glc > 300 mg/dL | 8, 12 y 16 | H&E |
|
[79] | Wistar ♂ | STZ 50 mg/Kg or STZ 50 mg/Kg + NA 100 mg/Kg | 1 y 2 | 3 days → Glc > 250 mg/dL | 4 | H&E and PAS |
|
[80] | SD ♂ | STZ 60 mg/Kg | 1 | 3 days → Glc > 300 mg/dL | 12 | H&E |
|
[81] | SD ♂ | STZ 55 mg/Kg | 1 | 3 days → Glc > 300 mg/dL | 12 | H&E, PAS and TEM |
|
Reference | DM Establishment | Time from DM to DKD (Weeks) | DKD Establishment | Endpoint (Week) |
---|---|---|---|---|
[78] | 72 h → Glc > 300 mg/dL | 3 |
| 8, 12 y 16 |
[83] | 7 days → Glc > 300 mg/dL | 12 |
| 16 |
[79] | 72 h → Glc > 250 mg/dL | - |
| 4 |
[84] | 300–500 mg/dL | - |
| 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Carro, B.; Donate-Correa, J.; Fernández-Villabrille, S.; Martín-Vírgala, J.; Panizo, S.; Carrillo-López, N.; Martínez-Arias, L.; Navarro-González, J.F.; Naves-Díaz, M.; Fernández-Martín, J.L.; et al. Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities. Int. J. Mol. Sci. 2023, 24, 10309. https://doi.org/10.3390/ijms241210309
Martín-Carro B, Donate-Correa J, Fernández-Villabrille S, Martín-Vírgala J, Panizo S, Carrillo-López N, Martínez-Arias L, Navarro-González JF, Naves-Díaz M, Fernández-Martín JL, et al. Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities. International Journal of Molecular Sciences. 2023; 24(12):10309. https://doi.org/10.3390/ijms241210309
Chicago/Turabian StyleMartín-Carro, Beatriz, Javier Donate-Correa, Sara Fernández-Villabrille, Julia Martín-Vírgala, Sara Panizo, Natalia Carrillo-López, Laura Martínez-Arias, Juan F. Navarro-González, Manuel Naves-Díaz, José L. Fernández-Martín, and et al. 2023. "Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities" International Journal of Molecular Sciences 24, no. 12: 10309. https://doi.org/10.3390/ijms241210309
APA StyleMartín-Carro, B., Donate-Correa, J., Fernández-Villabrille, S., Martín-Vírgala, J., Panizo, S., Carrillo-López, N., Martínez-Arias, L., Navarro-González, J. F., Naves-Díaz, M., Fernández-Martín, J. L., Alonso-Montes, C., & Cannata-Andía, J. B. (2023). Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities. International Journal of Molecular Sciences, 24(12), 10309. https://doi.org/10.3390/ijms241210309