Various Forms of Programmed Cell Death Are Concurrently Activated in the Population of Retinal Ganglion Cells after Ischemia and Reperfusion
Abstract
:1. Introduction
2. Results
2.1. High-Throughput Gene Expression Analysis Revealed Significant Changes in the Biological Processes Occurring in Ischemic vs. Control RGCs
2.2. The Signaling Cascades That Regulate Ferrous Iron (Fe2+) Metabolism Undergo Significant Changes in Ischemic RGCs
2.3. Ischemia–Reperfusion Activate Simultaneously a Variety of Signaling Cascades That Regulate Many Types of PCD in RGCs
3. Discussion
4. Materials and Methods
4.1. Animals and Ethics Statement
4.2. Transient Retinal Ischemia
4.3. Isolation of Retinal Ganglion Cells (RGCs)
4.4. Immunocytochemistry
4.5. RNA Extraction, RNA Quality Control, RNA-seq Library Preparation and Sequencing
4.6. RNA-seq Data Analysis
4.7. Immunohistochemistry and Counting RGCs in the Ganglion Cell Layer
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osborne, N.N.; Casson, R.J.; Wood, J.P.; Chidlow, G.; Graham, M.; Melena, J. Retinal ischemia: Mechanisms of damage and potential therapeutic strategies. Prog. Retin. Eye Res. 2004, 23, 91–147. [Google Scholar] [CrossRef]
- Osborne, N.N.; Melena, J.; Chidlow, G.; Wood, J.P.M. A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: Possible implication for the treatment of glaucoma. Br. J. Ophthalmol. 2001, 85, 1252–1259. [Google Scholar] [CrossRef] [Green Version]
- Hayreh, S.S. Ischemic optic neuropathy. Prog. Retin. Eye Res. 2009, 28, 34–62. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Klein, R.; Gardner, T.W. Diabetic retinopathy. N. Engl. J. Med. 2012, 366, 1227–1239. [Google Scholar] [CrossRef] [Green Version]
- Fujita, R.; Ueda, M.; Fujiwara, K.; Ueda, H. Prothymosin-α plays a defensive role in retinal ischemia through necrosis and apoptosis inhibition. Cell Death Differ. 2009, 16, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Q.; Yu, N.; Gu, Y.; Ke, W.; Zhang, Q.; Liu, X.; Wang, K.; Chen, M. Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury. Cell Death Dis. 2022, 13, 507. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Barakat, D.J.; Hernandez, E.; Shestopalov, V.I.; Ivanov, D. Liposome-delivered ATP effectively protects the retina against ischemia-reperfusion injury. Mol. Vis. 2010, 16, 2882–2890. [Google Scholar]
- Vanden Berghe, T.; Linkermann, A.; Jouan-Lanhouet, S.; Walczak, H.; Vandenabeele, P. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 2014, 15, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Elbadawi, M.; Efferth, T. Multiple cell death modalities and their key features (Review). World Acad. Sci. J. 2020, 2, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Lewerenz, J.; Ates, G.; Methner, A.; Conrad, M.; Maher, P. Oxytosis/Ferroptosis—(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System. Front. Neurosci. 2018, 12, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Li, J.; Ke, Y.; Zeng, X.; Gao, J.; Ba, X.; Wang, R. The key players of parthanatos: Opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell. Mol. Life Sci. 2022, 79, 60. [Google Scholar] [CrossRef] [PubMed]
- Dvoriantchikova, G.; Degterev, A.; Ivanov, D. Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia–reperfusion-induced retinal damage. Exp. Eye Res. 2014, 123, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pronin, A.; Pham, D.; An, W.; Dvoriantchikova, G.; Reshetnikova, G.; Qiao, J.; Kozhekbaeva, Z.; Reiser, A.E.; Slepak, V.Z.; Shestopalov, V.I. Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury. Front. Mol. Neurosci. 2019, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, T.; Yamashita, T.; Tomita, H.; Sugano, E.; Ishiguro, S. The protection of rat retinal ganglion cells from ischemia/reperfusion injury by the inhibitory peptide of mitochondrial mu-calpain. Biochem. Biophys. Res. Commun. 2016, 478, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.T. The effect of 3-aminobenzamide, an inhibitor of poly-ADP-ribose polymerase, on ischemia/reperfusion damage in rat retina. Res. Commun. Mol. Pathol. Pharmacol. 1997, 95, 241–252. [Google Scholar] [PubMed]
- Chiang, S.K.; Lam, T.T. Post-treatment at 12 or 18 hours with 3-aminobenzamide ameliorates retinal ischemia-reperfusion damage. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3210–3214. [Google Scholar]
- Yao, F.; Peng, J.; Zhang, E.; Ji, D.; Gao, Z.; Tang, Y.; Yao, X.; Xia, X. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ. 2022, 30, 69–81. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Lypka, K.R.; Adis, E.V.; Ivanov, D. Multiple types of programmed necrosis such as necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos contribute simultaneously to retinal damage after ischemia-reperfusion. Sci. Rep. 2022, 12, 17152. [Google Scholar] [CrossRef] [PubMed]
- Barres, B.A.; Silverstein, B.E.; Corey, D.P.; Chun, L.L. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1988, 1, 791–803. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Grant, J.; Santos, A.R.C.; Hernandez, E.; Ivanov, D. Neuronal NAD(P)H Oxidases Contribute to ROS Production and Mediate RGC Death after Ischemia. Investig. Opthalmology Vis. Sci. 2012, 53, 2823–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvoriantchikova, G.; Ivanov, D. Tumor necrosis factor-alpha mediates activation of NF-kappaB and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways. Eur. J. Neurosci. 2014, 40, 3171–3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Stasi, K.; Nagel, D.; Yang, X.; Ren, L.; Mittag, T.; Danias, J. Ceruloplasmin Upregulation in Retina of Murine and Human Glaucomatous Eyes. Investig. Opthalmology Vis. Sci. 2007, 48, 727–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, R.H.; Chowers, I.; Hackam, A.S.; Kageyama, M.; Nickells, R.W.; Otteson, D.C.; Duh, E.J.; Wang, C.; Valenta, D.F.; Gunatilaka, T.L.; et al. Increased Expression of Iron-Regulating Genes in Monkey and Human Glaucoma. Investig. Opthalmology Vis. Sci. 2004, 45, 1410–1417. [Google Scholar] [CrossRef] [Green Version]
- Levin, L.A.; Geszvain, K.M. Expression of ceruloplasmin in the retina: Induction after optic nerve crush. Investig. Opthalmology Vis. Sci. 1998, 39, 157–163. [Google Scholar]
- Koppenol, W.H. The Haber-Weiss cycle—70 years later. Redox Rep. 2001, 6, 229–234. [Google Scholar] [CrossRef]
- Goralska, M.; Ferrell, J.; Harned, J.; Lall, M.; Nagar, S.; Fleisher, L.; McGahan, M. Iron metabolism in the eye: A review. Exp. Eye Res. 2009, 88, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadziahmetovic, M.; Song, Y.; Wolkow, N.; Iacovelli, J.; Grieco, S.; Lee, J.; Lyubarsky, A.; Pratico, D.; Connelly, J.; Spino, M.; et al. The Oral Iron Chelator Deferiprone Protects against Iron Overload–Induced Retinal Degeneration. Investig. Opthalmology Vis. Sci. 2011, 52, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Song, Y.; Hadziahmetovic, M.; Zhong, Y.; Dunaief, J.L. Systemic administration of the iron chelator deferiprone protects against light-induced photoreceptor degeneration in the mouse retina. Free. Radic. Biol. Med. 2012, 53, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Zhao, L.; Li, Y.; Hadziahmetovic, M.; Song, Y.; Connelly, J.; Spino, M.; Dunaief, J.L. The Oral Iron Chelator Deferiprone Protects Against Systemic Iron Overload–Induced Retinal Degeneration in Hepcidin Knockout Mice. Investig. Opthalmology Vis. Sci. 2014, 55, 4525–4532. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Kim, H.J.; Zhao, J.; Song, Y.; Dunaief, J.L.; Sparrow, J.R. Iron promotes oxidative cell death caused by bisretinoids of retina. Proc. Natl. Acad. Sci. USA 2018, 115, 4963–4968. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.N.; Bargoud, A.R.; Ross, A.G.; Song, Y.; Dunaief, J.L. Oral administration of the iron chelator deferiprone protects against loss of retinal ganglion cells in a mouse model of glaucoma. Exp. Eye Res. 2020, 193, 107961. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Barakat, D.J.; Hernandez, E.; Shestopalov, V.I.; Ivanov, D. Toll-like receptor 4 contributes to retinal ischemia/reperfusion injury. Mol. Vis. 2010, 16, 1907–1912. [Google Scholar] [PubMed]
- Dvoriantchikova, G.; Santos, A.R.; Danek, D.; Dvoriantchikova, X.; Ivanov, D. The TIR-domain-containing adapter inducing interferon-beta-dependent signaling cascade plays a crucial role in ischemia-reperfusion-induced retinal injury, whereas the contribution of the myeloid differentiation primary response 88-dependent signaling cascade is not as pivotal. Eur. J. Neurosci. 2014, 40, 2502–2512. [Google Scholar] [PubMed]
- Fontaine, V.; Mohand-Said, S.; Hanoteau, N.; Fuchs, C.; Pfizenmaier, K.; Eisel, U. Neurodegenerative and Neuroprotective Effects of Tumor Necrosis Factor (TNF) in Retinal Ischemia: Opposite Roles of TNF Receptor 1 and TNF Receptor 2. J. Neurosci. 2002, 22, RC216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challa, S.; Chan, F.K.-M. Going up in flames: Necrotic cell injury and inflammatory diseases. Cell. Mol. Life Sci. 2010, 67, 3241–3253. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, A.; Vandenabeele, P.; Krysko, D.V. Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance. Immunity 2013, 38, 209–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, Y.; Yamasaki, S. Sensing necrotic cells. Adv. Exp. Med. Biol. 2012, 738, 144–152. [Google Scholar]
- Huynh, M.L.; Fadok, V.A.; Henson, P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin. Investig. 2002, 109, 41–50. [Google Scholar] [CrossRef]
- Fadok, V.A.; Bratton, D.L.; Guthrie, L.; Henson, P.M. Differential Effects of Apoptotic Versus Lysed Cells on Macrophage Production of Cytokines: Role of Proteases. J. Immunol. 2001, 166, 6847–6854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, I.K.H.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: Basic biology and therapeutic potential. Nat. Rev. Immunol. 2014, 14, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Dvoriantchikova, G.; Santos, A.R.C.; Saeed, A.M.; Dvoriantchikova, X.; Ivanov, D. Putative role of protein kinase C in neurotoxic inflammation mediated by extracellular heat shock protein 70 after ischemia-reperfusion. J. Neuroinflammation 2014, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Dvoriantchikova, G.; Hernandez, E.; Grant, J.; Santos, A.R.C.; Yang, H.; Ivanov, D. The High-Mobility Group Box-1 Nuclear Factor Mediates Retinal Injury after Ischemia Reperfusion. Investig. Opthalmology Vis. Sci. 2011, 52, 7187–7194. [Google Scholar] [CrossRef] [Green Version]
- Mahaling, B.; Low, S.W.Y.; Beck, M.; Kumar, D.; Ahmed, S.; Connor, T.B.; Ahmad, B.; Chaurasia, S.S. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int. J. Mol. Sci. 2022, 23, 2591. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Agudelo, C.; Hernandez, E.; Shestopalov, V.I.; Ivanov, D. Phosphatidylserine-containing liposomes promote maximal survival of retinal neurons after ischemic injury. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2009, 29, 1755–1759. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, T.; Kosaka, J.; Hommura, S. Up-regulation of Hrk, a regulator of cell death, in retinal ganglion cells of axotomized rat retina. Neurosci. Lett. 2002, 318, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilbride, S.M.; Prehn, J.H. Central roles of apoptotic proteins in mitochondrial function. Oncogene 2013, 32, 2703–2711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, N.; Silverman, S.M.; Liu, Y.; Wang, X.; Kim, B.J.; Tang, L.; Clark, A.F.; Liu, X.; Pang, I.H. Rapid repeatable in vivo detection of retinal reactive oxygen species. Exp. Eye Res. 2017, 161, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qi, Y.; Yang, X. Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina. Ophthalmic Res. 2015, 54, 157–168. [Google Scholar] [CrossRef]
- Rayner, C.L.; Bottle, S.E.; Gole, G.A.; Ward, M.S.; Barnett, N.L. Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants. Neurochem. Int. 2016, 92, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barakat, D.J.; Dvoriantchikova, G.; Ivanov, D.; Shestopalov, V.I. Astroglial NF-kappaB mediates oxidative stress by regulation of NADPH oxidase in a model of retinal ischemia reperfusion injury. J. Neurochem. 2012, 120, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Conti, F.; Lazzara, F.; Romano, G.L.; Platania, C.B.M.; Drago, F.; Bucolo, C. Caffeine Protects Against Retinal Inflammation. Front. Pharmacol. 2021, 12, 824885. [Google Scholar] [CrossRef]
- Conti, F.; Romano, G.L.; Eandi, C.M.; Toro, M.D.; Rejdak, R.; Di Benedetto, G.; Lazzara, F.; Bernardini, R.; Drago, F.; Cantarella, G.; et al. Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage. Front. Pharmacol. 2021, 12, 705405. [Google Scholar] [CrossRef]
- Lazzara, F.; Amato, R.; Platania CB, M.; Conti, F.; Chou, T.H.; Porciatti, V.; Drago, F.; Bucolo, C. 1alpha,25-dihydroxyvitamin D(3) protects retinal ganglion cells in glaucomatous mice. J. Neuroinflammation 2021, 18, 206. [Google Scholar] [CrossRef]
- Xiong, X.; Xu, L.; Wei, L.; White, R.E.; Ouyang, Y.B.; Giffard, R.G. IL-4 Is Required for Sex Differences in Vulnerability to Focal Ischemia in Mice. Stroke 2015, 46, 2271–2276. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.M.; Shekhar, K.; Whitney, I.E.; Jacobi, A.; Benhar, I.; Hong, G.; Yan, W.; Adiconis, X.; Arnold, M.E.; Lee, J.M.; et al. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 2019, 104, 1039–1055.e12. [Google Scholar] [CrossRef]
- Zhang, Y.; Sloan, S.A.; Clarke, L.E.; Caneda, C.; Plaza, C.A.; Blumenthal, P.D.; Vogel, H.; Steinberg, G.K.; Edwards, M.S.; Li, G.; et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2016, 89, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Pita-Thomas, W.; Goncalves, T.M.; Kumar, A.; Zhao, G.; Cavalli, V. Genome-wide chromatin accessibility analyses provide a map for enhancing optic nerve regeneration. Sci. Rep. 2021, 11, 14924. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef] [PubMed]
Gene | Function | logFC | logCPM | F | p Value | FDR |
---|---|---|---|---|---|---|
Tnfrsf1a | activation of apoptosis, necroptosis | 2.277 | 5.9533 | 260.28 | 2 × 10−8 | 6 × 10−6 |
Tnfrsf10b | 1.9381 | 1.9099 | 56.346 | 2 × 10−5 | 0.0004 | |
Fas | 1.9164 | 1.6485 | 51.171 | 3 × 10−5 | 0.0005 | |
Fadd | 0.9508 | 2.7288 | 38.059 | 0.0001 | 0.0013 | |
Tlr4 | activation of necroptosis, pyroptosis | 1.1634 | 0.0889 | 17.894 | 0.0018 | 0.0101 |
Ticam1 | 1.5626 | 2.9744 | 133.39 | 4 × 10−7 | 3 × 10−5 | |
Irf9 | 1.2944 | 5.1371 | 200.16 | 6 × 10−8 | 1 × 10−5 | |
Eif2ak2 | 1.0321 | 3.583 | 25.279 | 0.0005 | 0.0042 | |
Zbp1 | 1.8483 | −0.349 | 26.42 | 0.0004 | 0.0037 | |
Bcl2l11 | apoptosis | 0.6175 | 3.5875 | 22.442 | 0.0008 | 0.0058 |
Bid | 0.6971 | 3.5261 | 36.141 | 0.0001 | 0.0015 | |
Hrk | 2.9852 | 1.8421 | 190.93 | 8 × 10−8 | 1 × 10−5 | |
Bax | 0.5085 | 4.4379 | 13.477 | 0.0043 | 0.0196 | |
Bak1 | 0.6404 | 4.3704 | 34.732 | 0.0002 | 0.0017 | |
Bnip3 | −0.698 | 7.1945 | 53.409 | 3 × 10−5 | 0.0005 | |
Casp8 | 2.532 | 2.3705 | 103.56 | 1 × 10−6 | 6 × 10−5 | |
Casp9 | −0.036 | 5.3958 | 0.1677 | 0.6909 | 0.7845 | |
Casp3 | 0.4875 | 4.175 | 15.429 | 0.0028 | 0.0144 | |
Casp7 | 0.2869 | 1.9767 | 2.3646 | 0.1552 | 0.271 | |
Ddit3 | 0.8363 | 6.177 | 64.697 | 1 × 10−5 | 0.0003 | |
Capn2 | 0.8192 | 6.5436 | 42.149 | 7 × 10−5 | 0.001 | |
Ripk1 | necroptosis | 0.827 | 3.9544 | 28.649 | 0.0003 | 0.003 |
Ripk3 | 2.7732 | −1.603 | 12.124 | 0.0059 | 0.0247 | |
Mlkl | 2.1475 | −1.25 | 24.814 | 0.0006 | 0.0044 | |
Pycard | pyroptosis | 0.673 | 0.4375 | 7.5547 | 0.0206 | 0.0618 |
Casp1 | 2.1096 | −1.467 | 19.142 | 0.0014 | 0.0086 | |
Gsdma | 2.015 | 0.3007 | 39.133 | 1 × 10−4 | 0.0012 | |
Gsdmd | 0.2458 | 0.7427 | 0.7417 | 0.4093 | 0.545 | |
Nek7 | 0.0218 | 4.9421 | 0.0459 | 0.8346 | 0.8918 | |
Acsl3 | oxytosis/ferroptosis | −1.142 | 8.9786 | 111.39 | 1 × 10−6 | 5 × 10−5 |
Acsl5 | 0.8749 | 5.7817 | 71.994 | 7 × 10−6 | 0.0002 | |
Ftl1 | 1.6616 | 8.5491 | 162.33 | 2 × 10−7 | 2 × 10−5 | |
Gpx1 | 1.0313 | 5.5895 | 119.59 | 7 × 10−7 | 4 × 10−5 | |
Gpx4 | 0.6991 | 7.9878 | 64.656 | 1 × 10−5 | 0.0003 | |
Gss | 0.6487 | 3.9966 | 40.957 | 8 × 10−5 | 0.0011 | |
Hmox1 | 3.2467 | 5.534 | 422.53 | 2 × 10−9 | 2 × 10−6 | |
Lpcat3 | 0.7455 | 4.1796 | 28.441 | 0.0003 | 0.003 | |
Sat1 | 0.5846 | 6.9977 | 7.0402 | 0.0242 | 0.0695 | |
Slc39a14 | 0.5834 | 5.6381 | 28.949 | 0.0003 | 0.0029 | |
Slc39a8 | −0.774 | 0.551 | 8.5526 | 0.0152 | 0.0495 | |
Steap3 | 1.238 | 6.09 | 164.72 | 2 × 10−7 | 2 × 10−5 | |
Tfrc | −1.018 | 7.6702 | 74.799 | 6 × 10−6 | 0.0002 | |
Trf | 0.817 | 7.6323 | 37.729 | 0.0001 | 0.0014 | |
Trp53 | 1.024 | 5.2341 | 99.392 | 2 × 10−6 | 7 × 10−5 | |
Aifm1 | parthanatos | 0.1282 | 4.8196 | 2.0983 | 0.1782 | 0.2989 |
Parp1 | 0.467 | 6.2068 | 27.417 | 0.0004 | 0.0033 | |
Mif | 0.2033 | 7.7412 | 5.5227 | 0.0407 | 0.1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvoriantchikova, G.; Adis, E.; Lypka, K.; Ivanov, D. Various Forms of Programmed Cell Death Are Concurrently Activated in the Population of Retinal Ganglion Cells after Ischemia and Reperfusion. Int. J. Mol. Sci. 2023, 24, 9892. https://doi.org/10.3390/ijms24129892
Dvoriantchikova G, Adis E, Lypka K, Ivanov D. Various Forms of Programmed Cell Death Are Concurrently Activated in the Population of Retinal Ganglion Cells after Ischemia and Reperfusion. International Journal of Molecular Sciences. 2023; 24(12):9892. https://doi.org/10.3390/ijms24129892
Chicago/Turabian StyleDvoriantchikova, Galina, Emily Adis, Karin Lypka, and Dmitry Ivanov. 2023. "Various Forms of Programmed Cell Death Are Concurrently Activated in the Population of Retinal Ganglion Cells after Ischemia and Reperfusion" International Journal of Molecular Sciences 24, no. 12: 9892. https://doi.org/10.3390/ijms24129892
APA StyleDvoriantchikova, G., Adis, E., Lypka, K., & Ivanov, D. (2023). Various Forms of Programmed Cell Death Are Concurrently Activated in the Population of Retinal Ganglion Cells after Ischemia and Reperfusion. International Journal of Molecular Sciences, 24(12), 9892. https://doi.org/10.3390/ijms24129892