Hydroxy Chalcones and Analogs with Chemopreventive Properties
Abstract
:1. Introduction
2. Chemistry and Health Benefits of Hydroxy Chalcones
2.1. Chalcones with Hydroxy Groups on Ring A
2.1.1. Antioxidant Properties
2.1.2. Anti-Inflammatory Properties
Compd. No. | Common Name | Structure | Biological Activity | Ref |
---|---|---|---|---|
17 | 1-Hydroxynaphthalene-4-trifluoromethylphenyl chalcone | Antioxidant | [67] | |
18 | 2′-Hydroxy-2,3,4′-trimethoxychalcone | Antioxidant | [70] | |
19 | Pinostrobin chalcone | Antioxidant | [71] | |
20 | 2-Benzyloxynaphthalene 3′-aminoalkylated-4′-hydroxychalcone | Antioxidant | [72] | |
21 | 4′-Hydroxy-3-m-tolylchalcone | Antioxidant | [73] | |
22 | 2′-Hydroxy-2,3,4′,6′-tetramethoxychalcone | Antioxidant | [74] | |
23 | 5-Carbomethoxy-4-hydroxy-2-methoxychalcone | Anti-inflammatory | [75] | |
24 | 2′-Hydroxy-6′-methoxychalcone | Anti-inflammatory | [76] | |
25 | 4-Bromo-2′-hydroxy-6′-methoxychalcone | Anti-inflammatory | [76] | |
26 | 4-Bromo-2′-hydroxy-4′,6′-dimethoxychalcone | Anti-inflammatory | [76] | |
27 | 2′-Hydroxy-4,3′,4′,6′-tetramethoxychalcone | Anti-inflammatory | [77] | |
28 | 2′-Hydroxy-4,4′-dimethoxychalcone | Anti-inflammatory | [78] | |
29 | 2′-Hydroxy-3,4,5-trimethoxychalcone | Anti-inflammatory | [81] | |
30 | 2′-Hydroxy-3,4,5,3′,4′-pentamethoxychalcone | Anti-inflammatory | [81] | |
31 | 2′-Hydroxy-3,5′,5-trimethoxychalcone | Anti-inflammatory | [82,83,84] | |
32 | 2′-Hydroxy-4-methoxychalcone | Antioxidant Anti-inflammatory | [86] | |
33 | 2′-Hydroxy-3′,4′,3,4-tetramethoxychalcone | Antioxidant Anti-inflammatory | [87] | |
34 | 2′-Hydroxy-3,4-dimethoxy-3′,4′-dimethylchalcone | Antioxidant Anti-inflammatory | [87] | |
35 | 4′-Fluoro-2′-hydroxy-2,3-dimethoxychalcone | Antioxidant Anti-inflammatory | [88] | |
36 | 5′-(2-Hydroxycyclohexyl)-6′-hydroxy-2′, 4′,4,6-tetramethoxychalcone | Antioxidant Anti-inflammatory | [89] |
2.1.3. Antioxidant and Anti-Inflammatory Properties
2.2. Chalcones with Hydroxy Groups on Ring B
2.2.1. Antioxidant Properties
2.2.2. Anti-Inflammatory Properties
2.2.3. Antioxidant and Anti-Inflammatory Properties
Compd. No. | Common Name | Structure | Biological Activity | Ref |
---|---|---|---|---|
37 | 3,4-Dihydroxychalcone | Antioxidant | [91] | |
38 | Aminoalkyl-substituted 3,4,4′-trihydroxychalcone chalcones | Antioxidant | [92] | |
39 | 4-Hydroxy-4′-methoxychalcone | Anti-inflammatory | [93] | |
40 | 4-Hydroxy-3,4′-dimethoxychalcone | Anti-inflammatory | [93] | |
41 | Tris chalcone | Antioxidant Anti-inflammatory | [96] |
2.3. Chalcones with Hydroxy Groups on Rings A and B
2.3.1. Antioxidant Properties
2.3.2. Anti-Inflammatory Properties
2.4. Related Chalcones with Hydroxy Groups
2.4.1. Antioxidant Properties
2.4.2. Anti-Inflammatory Properties
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C4H | Cinnamate-4-hydroxylase |
CHI | Chalcone isomerase |
CHR | Chalcone reductase |
CHS | Chalcone synthase |
COX | Cyclooxygenase |
CoA | Coenzyme A |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
HepG2 | Liver hepatocellular carcinoma |
hTERT | Human telomerase reverse transcriptase |
IL | Interleukin |
iNOS | Inducible nitric oxide synthase |
LDH | Lactate dehydrogenase |
LOX | Lipoxygenase |
LPO | Lipid peroxidation |
LPS | Lipopolysaccharides |
MDA | Malondialdehyde |
mRNA | Messenger RNA |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NF-κB | Nuclear factor kappa B |
NO | Nitric oxide |
PAL | phenylalanine ammonia-lyase |
PGE2 | Prostaglandin E2 |
ROS | Reactive oxygen species |
SOD | Superoxid dismutase |
TNF-α | Tumor necrosis factor alpha |
References
- Zhou, B.; Xing, C. Diverse Molecular Targets for Chalcones with Varied Bioactivities. Med. Chem. 2015, 5, 388–404. [Google Scholar] [CrossRef]
- Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010, 5, 1–29. [Google Scholar] [CrossRef]
- Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014, 85, 758–777. [Google Scholar] [CrossRef]
- Rajendran, G.; Bhanu, D.; Aruchamy, B.; Ramani, P.; Pandurangan, N.; Bobba, K.N.; Oh, E.J.; Chung, H.Y.; Gangadaran, P.; Ahn, B.-C. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals 2022, 15, 1250. [Google Scholar] [CrossRef]
- Sebti, S.; Solhy, A.; Smahi, A.; Kossir, A.; Oumimoun, H. Dramatic activity enhancement of natural phosphate catalyst by lithium nitrate. An efficient synthesis of chalcones. Catal. Commun. 2002, 3, 335–339. [Google Scholar] [CrossRef]
- Williams, C.A.; Grayer, J. Anthocyanins and other flavonoids. Nat. Prod. Rep. 2004, 21, 539. [Google Scholar] [CrossRef]
- Bukhari, S.N.; Franzblau, S.G.; Jantan, I.; Jasamai, M. Current prospects of synthetic curcumin analogs and chalcone derivatives against mycobacterium tuberculosis. Med. Chem. 2013, 9, 897–903. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016, 148, 154–172. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015, 98, 69–114. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015, 101, 496–524. [Google Scholar] [CrossRef]
- Leon-Gonzalez, A.J.; Acero, N.; Munoz-Mingarro, D.; Navarro, I.; Martin-Cordero, C. Chalcones as Promising Lead Compounds on Cancer Therapy. Curr. Med. Chem. 2015, 22, 3407–3425. [Google Scholar] [CrossRef]
- Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem. 2005, 12, 483–499. [Google Scholar] [CrossRef]
- Dimmock, J.R.; Elias, D.W.; Beazely, M.A.; Kandepu, N.M. Bioactivities of chalcones. Curr. Med. Chem. 1999, 6, 1125–1149. [Google Scholar] [CrossRef]
- Ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem. 2019, 87, 335–365. [Google Scholar] [CrossRef]
- Caruso, F.; Incerpi, S.; Pedersen, J.; Belli, S.; Kaur, S.; Rossi, M. Aromatic Polyphenol π-π Interactions with Superoxide Radicals Contribute to Radical Scavenging and Can Make Polyphenols Mimic Superoxide Dismutase Activity. Curr. Issues Mol. Biol. 2022, 44, 5209–5220. [Google Scholar] [CrossRef]
- Mellado, M.; González, C.; Mella, J.; Aguilar, L.F.; Viña, D.; Uriarte, E.; Cuellar, M.; Matos, M.J. Combined 3D-QSAR and docking analysis for the design and synthesis of chalcones as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem. 2021, 108, 104689. [Google Scholar] [CrossRef]
- Kerek, A.L.; de Castro Rosada, T.; Fiorin, B.C. Synthesis, Characterization, Antioxidant Activity and Conformational Study of 4-Hydroxychalcone. Orbital Electron. J. Chem. 2021, 13, 120–123. [Google Scholar] [CrossRef]
- dos Santos, M.B.; Marques, B.C.; Ayusso, G.M.; Garcia, M.A.R.; Paracatu, L.C.; Pauli, I.; Bolzani, V.S.; Andricopulo, A.D.; Ximenes, V.F.; Zeraik, M.L.; et al. Chalcones and their B-aryl analogues as myeloperoxidase inhibitors: In silico, in vitro and ex vivo investigations. Bioorg. Chem. 2021, 110, 104773. [Google Scholar] [CrossRef]
- WalyEldeen, A.A.; Sabet, S.; El-Shorbagy, H.M.; Abdelhamid, I.A.; Ibrahim, S.A. Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem. Biol. Interact. 2023, 369, 110297. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Dong, J.; Gao, J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Chem. 2020, 95, 103530. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; et al. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front. Pharmacol. 2021, 11, 592654. [Google Scholar] [CrossRef]
- Venturelli, S.; Burkard, M.; Biendl, M.; Lauer, U.M.; Frank, J.; Busch, C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 2016, 32, 1171–1178. [Google Scholar] [CrossRef]
- Slaga, T.J. Inhibition of the induction of cancer by antioxidants. Adv. Exp. Med. Biol. 1995, 369, 167–174. [Google Scholar] [CrossRef]
- Liu, Y.; Han, C.; Dai, R.; Li, B. Rational design, synthesis and activities of hydroxylated chalcones as highly potent dual functional agents against Alzheimer’s disease. Bioorg. Chem. 2022, 122, 105662. [Google Scholar] [CrossRef]
- Thapa, P.; Upadhyay, S.P.; Suo, W.Z.; Singh, V.; Gurung, P.; Lee, E.S.; Sharma, R.; Sharma, M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg. Chem. 2021, 108, 104681. [Google Scholar] [CrossRef]
- Anto, R.J.; Sukumaran, K.; Kuttan, G.; Rao, M.N.A.; Subbaraju, V.; Kuttan, R. Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Lett. 1995, 97, 33–37. [Google Scholar] [CrossRef]
- García-Calderón, M.; Pérez-Delgado, C.M.; Palove-Balang, P.; Betti, M.; Márquez, A.J. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration. Plants 2020, 9, 774. [Google Scholar] [CrossRef]
- Nayak, Y.N.; Gaonkar, S.L.; Sabu, M. Chalcones: Versatile intermediates in heterocyclic synthesis. J. Heterocycl. Chem. 2023, 60, 1–25. [Google Scholar] [CrossRef]
- Du, Y.; Liang, F.; Hu, M.; Bu, R.; Wang, M.; Tsuda, A.; Eerdun, C. Hydroxychalcone dyes that serve as color indicators for pH and fluoride ions. RSC Adv. 2020, 10, 37463–37472. [Google Scholar] [CrossRef]
- Paulino, M.; Perez-Juste, I.; Cid, M.M.; Da Silva, J.P.; Pereira, M.M.A.; Basilio, N. 2-Hydroxychalcone−β-Cyclodextrin Conjugate with pH-Modulated Photoresponsive Binding Properties. J. Org. Chem. 2022, 87, 14422–14432. [Google Scholar] [CrossRef]
- Jeong, J.B.; Hong, S.C.; Jeong, H.J. 3,4-Dihydroxybenzaldehyde Purified from the Barley Seeds (Hordeum vulgare) Inhibits Oxidative DNA Damage and Apoptosis via Its Antioxidant Activity. Phytomedicine 2009, 16, 85–94. [Google Scholar] [CrossRef]
- Abe, I.; Morita, H. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat. Prod. Rep. 2010, 27, 809–838. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone Scaffolds, Bioprecursors of Flavonoids: Chemistry, Bioactivities, and Pharmacokinetics. Molecules 2021, 26, 7177. [Google Scholar] [CrossRef]
- Hong, K.; Wang, L.; Johnpaul, A.; Lv, C.; Ma, C. Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications. Int. J. Mol. Sci. 2021, 22, 9373. [Google Scholar] [CrossRef]
- Jez, J.M.; Noel, J.P. Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 2002, 277, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016, 15, 87–120. [Google Scholar] [CrossRef]
- Jasim, H.A.; Nahar, L.; Jasim, M.A.; Moore, S.A.; Ritchie, K.J.; Sarker, S.D. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021, 11, 1203. [Google Scholar] [CrossRef]
- Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Let. 2020, 18, 433–458. [Google Scholar] [CrossRef]
- Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa, W.; Zahou, F.M.; Bakr, R.B. Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. ACS Omega 2022, 7, 27769–27786. [Google Scholar] [CrossRef]
- Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: A review. Res. Chem. Intermed. 2017, 43, 6043–6077. [Google Scholar] [CrossRef]
- Rateb, N.M.; Zohdi, H.F. Atom-efficient, solvent-free, green synthesis of chalcones by grinding. Synth. Commun. 2009, 39, 2789–2794. [Google Scholar] [CrossRef]
- Gupta, P.; Mahajan, A. Sustainable approaches for steroid synthesis. Environ. Chem. Lett. 2019, 17, 879–895. [Google Scholar] [CrossRef]
- López, G.; Mellado, M.; Werner, E.; Said, B.; Godoy, P.; Caro, N.; Besoain, X.; Montenegro, I.; Madrid, A. Sonochemical Synthesis of 2’-Hydroxy-Chalcone Derivatives with Potential Anti-Oomycete Activity. Antibiotics 2020, 9, 576. [Google Scholar] [CrossRef]
- Díaz Sánchez, M.; Díaz García, D.; Prashar, S.; Gómez Ruiz, S. Palladium nanoparticles supported on silica, alumina or titania: Greener alternatives for Suzuki–Miyaura and other C–C coupling reactions. Environ. Chem. Lett. 2019, 17, 1585–1602. [Google Scholar] [CrossRef]
- Guo, T.; Jiang, Q.; Yu, L.; Yu, Z. Synthesis of chalcones via domino dehydro chlorination/Pd(OAc)2-catalyzed Heck reaction. Chin. J. Catal. 2015, 36, 78–85. [Google Scholar] [CrossRef]
- Muller, T.J.; Ansorge, M.; Aktah, D. An unexpected coupling–isomerization sequence as an entry to novel three-componentpyrazoline syntheses. Angew. Chem. 2000, 39, 1253–1256. [Google Scholar] [CrossRef]
- Eddarir, S.; Cotelle, N.; Bakkour, Y.; Rolando, C. An effiecent synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett. 2003, 44, 5359–5363. [Google Scholar] [CrossRef]
- Funakoshi-Tago, M.; Okamoto, K.; Izumi, R.; Tago, K.; Yanagisawa, K.; Narukawa, Y.; Kiuchi, F.; Kasahara, T.; Tamura, H. Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway. Int. Immunopharmacol. 2015, 25, 189–198. [Google Scholar] [CrossRef]
- Jung, S.K.; Lee, M.H.; Lim, D.Y.; Kim, J.E.; Singh, P.; Lee, S.Y.; Jeong, C.H.; Lim, T.G.; Chen, H.; Chi, Y.I.; et al. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J. Biol. Chem. 2014, 289, 35839–35848. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, N.; Han, S.; Wang, D.; Mo, S.; Yu, L.; Huang, H.; Tsui, K.; Shen, J.; Chen, J. Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS ONE 2013, 8, e68566. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.B.; Zhang, K.; Cheng, L.Y.; Mack, P. Butein, a specific protein tyrosine kinase inhibitor. Biochem. Biophys. Res. Commun. 1998, 245, 435–438. [Google Scholar] [CrossRef]
- Yang, E.B.; Guo, Y.J.; Zhang, K.; Chen, Y.Z.; Mack, P. Inhibition of epidermal growth factor receptor tyrosine kinase by chalcone derivatives. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2001, 1550, 144–152. [Google Scholar] [CrossRef]
- Fu, L.C.; Huang, X.A.; Lai, Z.Y.; Hu, Y.J.; Liu, H.J.; Cai, X.L. A new 3-benzylchroman derivative from Sappan Lignum (Caesalpinia sappan). Molecules 2008, 13, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Washiyama, M.; Sasaki, Y.; Hosokawa, T.; Nagumo, S. Antiinflammatory constituents of Sappan Lignum. Biol. Pharm. Bull. 2009, 32, 941–944. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, H.; Inoue, J.; Tamura, Y.; Mizutani, K. Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother. Res. 2002, 16, 539–544. [Google Scholar] [CrossRef]
- Oh, K.Y.; Lee, J.H.; Curtis-Long, M.J.; Cho, J.K.; Kim, J.Y.; Lee, W.S.; Park, K.H. Glycosidase inhibitory phenolic compounds from the seed of Psoralea corylifolia. Food Chem. 2010, 121, 940–945. [Google Scholar] [CrossRef]
- Cui, Y.; Ao, M.; Hu, J.; Yu, L. Anti-inflammatory activity of licochalcone A isolated from Glycyrrhiza inflata. Z. Naturforsch. C J. Biosci. 2008, 63, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef]
- Ramli, F.; Rahmani, M.; Kassim, N.K.; Hashim, N.M.; Sukari, M.A.; Akim, A.M.; Go, R. New diprenylated dihyrochalcones from leaves of Artocarpus elasticus. Phytochem. Lett. 2013, 6, 582–585. [Google Scholar] [CrossRef]
- Żołnierczyk, A.K.; Baczyńska, D.; Potaniec, B.; Kozlowska, J.; Grabarczyk, M.; Wozniak, E.; Aniol, M. Antiproliferative and antioxidant activity of xanthohumol acyl derivatives. Med. Chem. Res. 2017, 26, 1764–1771. [Google Scholar] [CrossRef]
- Ember, I.; Ne’meth, A.; Varga, C.S.; Perje’si, P.; Arany, I.; Fehe’r, K.; Ne’meth, K.; Dombi, Z.; Kiss, I. Molecular and epidemiological markers: A new concept in the preventive medicine with special attention to the prevention of cancer. Cent. Eur. J. Occup. Environ. Med. 2005, 11, 3–15. [Google Scholar]
- Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011, 6, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Detsi, A.; Majdalani, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Kefalas, P. Natural and synthetic 2’-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg. Med. Chem. 2009, 17, 8073–8085. [Google Scholar] [CrossRef]
- Kozlowski, D.; Trouillas, P.; Calliste, C.; Marsal, P.; Lazzaroni, R.; Duroux, J.L. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J. Phys. Chem. A 2007, 111, 1138–1145. [Google Scholar] [CrossRef]
- Bentes, A.L.A.; Borges, R.S.; Monteiro, W.R.; de Macedo, L.G.M.; Alves, C.N. Structure of dihydrochalcones and related derivatives and their scavenging and antioxidant activity against oxygen and nitrogen radical species. Molecules 2011, 16, 1749–1760. [Google Scholar] [CrossRef] [Green Version]
- Mehreen Ghias, M.; Ahmed, M.N.; Sajjad, B.; Ibrahim, M.A.A.; Rashid, U.; Shah, S.W.A.; Shoaib, M.; Madni, M.; Muhammad Nawaz Tahir, M.N.; Mario, A.; et al. 1-Hydroxynaphthalene-4-trifluoromethylphenyl chalcone and 3-hydroxy-4-trifluoromethylphenyl flavone: A combined experimental, structural, in vitro AChE, BChE and in silico studies. J. Mol. Struc. 2022, 1253, 132253. [Google Scholar] [CrossRef]
- Kaur, M.; Raj Kaushal, R. Spectroscopic investigations, ab-initio DFT calculations, molecular docking and in-vitro assay studies of novel oxovanadium(V)chalcone complexes as potential antidiabetic agents. J. Mol. Struc. 2023, 1271, 133994. [Google Scholar] [CrossRef]
- Kaur, M.; Raj Kaushal, R. Synthesis and in-silico molecular modelling, DFT studies, antiradical and antihyperglycemic activity of novel vanadyl complexes based on chalcone derivatives. J. Mol. Struc. 2022, 1252, 132176. [Google Scholar] [CrossRef]
- Ramirez-Tagle, R.; Escobar, C.A.; Romero, V.; Montorfano, I.; Armisén, R.; Borgna, V.; Jeldes, E.; Pizarro, L.; Simon, F.; Echeverria, C. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2016, 17, 260. [Google Scholar] [CrossRef] [Green Version]
- Xuan, T.D.; Fukuta, M.; Wei, A.C.; Elzaawely, A.A.; Khanh, T.D.; Tawata, S. Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots. J. Nat. Med. 2008, 62, 188–194. [Google Scholar] [CrossRef]
- Aljohani, G.; Al-Sheikh Ali, A.; Said, M.A.; Hughes, D.L.; Alraqa, S.Y.; Amran, S.; Ahmad, F.; Basar, N. 2-Benzyloxynaphthalene aminoalkylated chalcone designed as acetylcholinesterase inhibitor: Structural characterisation, in vitro biological activity and molecular docking studies. J. Mol. Struc. 2020, 1222, 128898. [Google Scholar] [CrossRef]
- Dhiyaaldeen, S.M.; Amin, Z.A.; Darvish, P.H.; Mustafa, I.F.; Jamil, M.M.; Rouhollahi, E.; Abdulla, M.A. Protective effects of (1-(4-hydroxy-phenyl)-3-m-tolyl-propenone chalcone in indomethacin-induced gastric erosive damage in rats. BMC Vet. Res. 2014, 10, 961. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.K.; Kao, T.Y.; Wu, M.F.; Ko, J.L.; Tzeng, Y.M. Identification of small molecule inhibitors of telomerase activity through transcriptional regulation of hTERT and calcium induction pathway in human lung adenocarcinoma A549 cells. Bioorg. Med. Chem. 2010, 18, 6987–6994. [Google Scholar] [CrossRef]
- Zhu, Q.; Ouyang, C.; Liu, Y.; Xu, Z.; Zhang, Y.; Liu, R.; Chen, L. Anti-inflammatory Continents from the Heartwood of Dalbergia melanoxylon. Rec. Nat. Prod. 2023, 17, 446–452. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, J.; Park, H.; Kim, H.P. Anti-inflammatory activity of the synthetic chalcone derivatives: Inhibition of inducible nitric oxide synthase-catalyzed nitric oxide production from lipopolysaccharide-treated RAW 264.7 cells. Biol. Pharm. Bull. 2007, 30, 1450–1455. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.-L.; Liu, S.-Y.; Wang, L.-J.; Zhang, Q.-Y.; Xu, P.; Pan, L.-L.; Hu, J.-F. A tetramethoxychalcone from Chloranthus henryi suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia. Eur. J. Phar. 2016, 774, 135–143. [Google Scholar] [CrossRef]
- Ding, Y.; Nguyen, H.T.; Kim, S.I.; Kim, H.W.; Kim, Y.H. The regulation of inflammatory cytokine secretion in macrophage cell line by the chemical constituents of Rhus sylvestris. Bioorg. Med. Chem. Lett. 2009, 19, 3607–3610. [Google Scholar] [CrossRef]
- Nchiozem-Ngnitedem, V.-A.; Omosa, L.K.; Kibrom Gebreheiwot Bedane, K.G.; Derese, S.; Lukas Brieger, L.; Strohmann, C.; Spiteller, M. Anti-inflammatory steroidal sapogenins and a conjugated chalcone-stilbene from Dracaena usambarensis Engl. Fitoterapia 2020, 146, 104717. [Google Scholar] [CrossRef]
- Hsieh, H.K.; Tsao, L.T.; Wang, J.P.; Lin, C.N. Synthesis and anti-inflammatory effect of chalcones. J. Pharm. Pharmacol. 2000, 52, 163–171. [Google Scholar] [CrossRef]
- Mateeva, N.; Gangapuram, M.; Mazzio, E.; Eyunni, S.; Soliman, K.F.; Redda, K.K. Biological evaluation of synthetic chalcone and flavone derivatives as anti-inflammatory agents. Med. Chem. Res. 2015, 24, 1672–1680. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Jeon, S.; Kim, S.; Kim, C.; Lee, S.; Koh, D.; Lim, Y.; Ha, K.; Shin, S. A new synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp. Mol. Med. 2012, 44, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Gil, H.-N.; Koh, D.; Lim, Y.; Lee, Y.H.; Shin, S.Y. The synthetic chalcone derivative 2-hydroxy-3′,5,5′-trimethoxychalcone induces unfolded protein response-mediated apoptosis in A549 lung cancer cells. Bioorg. Med. Chem. Lett. 2018, 17, 2969–2975. [Google Scholar] [CrossRef]
- Gil, H.-N.; Euitaek Jung, E.; Koh, D.; Lim, Y.; Lee, Y.H.; Shin, S.Y. A synthetic chalcone derivative, 2-hydroxy-3’,5,5’-trimethoxychalcone (DK-139), triggers reactive oxygen species-induced apoptosis independently of p53 in A549 lung cancer cells. Chem. Biol. Interact. 2019, 298, 72–79. [Google Scholar] [CrossRef]
- Jin, Y.L.; Jin, X.Y.; Jin, F.; Sohn, D.H.; Kim, H.S. Structure activity relationship studies of anti-inflammatory TMMC derivatives: 4-dimethylamino group on the B ring responsible for lowering the potency. Arch. Pharm. Res. 2008, 31, 1145–1152. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wu, S.-N.; Gao, J.-M.; Liao, Z.-Y.; Tseng, Y.-T.; Fülöp, F.; Chang, F.-R.; Lo, Y.-C. The Antioxidant, Anti-Inflammatory, and Neuroprotective Properties of the Synthetic Chalcone Derivative AN07. Molecules 2020, 25, 2907. [Google Scholar] [CrossRef]
- Ballesteros, J.F.; Sanz, M.J.; Ubeda, A.; Miranda, M.A.; Iborra, S.; Paya, M.; Alcaraz, M.J. Synthesis and Pharmacological Evaluation of 2′-Hydroxychalcones and Flavones as Inhibitors of Inflammatory Mediators Generation. J. Med. Chem. 1995, 38, 2794–2797. [Google Scholar] [CrossRef]
- Abdellatif, K.R.; Elshemy, H.A.; Salama, S.A.; Omar, H.A. Synthesis, characterization and biological evaluation of novel 4′-fluoro-2′-hydroxy-chalcone derivatives as antioxidant, anti-inflammatory and analgesic agents. J. Enzym. Inhib. Med. Chem. 2015, 30, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Gacche, R.; Khsirsagar, M.; Kamble, S.; Bandgar, B.; Dhole, N.; Shisode, K.; Chaudhari, A. Antioxidant and anti-inflammatory related activities of selected synthetic chalcones: Structure-activity relationship studies using computational tools. Chem. Pharm. Bull. 2008, 56, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Todorova, I.T.; Batovska, D.I.; Stamboliyska, B.A.; Parushev, S.P. Evaluation of the radical scavenging activity of a series of synthetic hydroxychalcones towards the DPPH radical. J. Serb. Chem. Soc. 2011, 76, 491–497. [Google Scholar] [CrossRef]
- Díaz-Carrillo, J.T.; Sylvia Páz Díaz-Camacho, S.P.; Delgado-Vargas, F.; Rivero, I.A.; Gabriela López-Angulo, G.; Sarmiento-Sánchez, J.I.; Montes-Avila, J. Synthesis of leading chalcones with high antiparasitic, against Hymenolepis nana, and antioxidant activities. Braz. J. Pharm. Sci. 2018, 54, e17343. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, S.H.; Lee, Y.H.; Kim, D.W.; Mo, K.; Kim, H.J.; Park, S.H.; Jin, C.; Kim, N.-J.; Lee, Y.S. Synthesis of 4-(2-Amino)ethoxy-3′,4′-dihydroxychalcones and Their Antioxidant and Cytotoxic Effects on Human Tumor Cells. Bull. Korean Chem. Soc. 2015, 36, 1335–1339. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Cai, Y.; Pan, Y.; Ye, F.; Zhang, Y.; Zhao, Y.; Yang, S.; Li, X.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem. 2011, 54, 4147–4159. [Google Scholar] [CrossRef]
- Wu, J.-Z.; Cheng, C.-C.; Shen, L.-L.; Wang, Z.-K.; Wu, S.-B.; Li, W.-L.; Chen, S.-H.; Zhou, R.-P.; Qiu, P.-H. Synthetic Chalcones with Potent Antioxidant Ability on H2O2-Induced Apoptosis in PC12 Cells. Int. J. Mol. Sci. 2014, 15, 18525–18539. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, B.; Johnson, T.E.; Lad, R.; Xing, C. Structure−Activity Relationship Studies of Chalcone Leading to 3-Hydroxy-4,3′,4′,5′-tetramethoxychalcone and Its Analogues as Potent Nuclear Factor κB Inhibitors and Their Anticancer Activities. J. Med. Chem. 2009, 52, 7228–7235. [Google Scholar] [CrossRef]
- Jung, J.-C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Practical Synthesis of Chalcone Derivatives and Their Biological Activities. Molecules 2017, 22, 1872. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, X.; Cai, R.; Ren, Z.; Zhang, A.; Deng, F.; Chen, D. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and (S)-Butin. Molecules 2020, 25, 674. [Google Scholar] [CrossRef] [Green Version]
- Martins, T.; Silva, V.L.M.; Silva, A.M.S.; Lima, J.L.F.C.; Fernandes, E.; Ribeiro, D. Chalcones as Scavengers of HOCl and Inhibitors of Oxidative Burst: Structure-Activity Relationship Studies. Med. Chem. 2022, 18, 88–96. [Google Scholar] [CrossRef]
- Ammaji, S.; Masthanamma, S.; Bhandare, R.R.; Annadurai, S.; Shaik, A.B. Antitubercular and antioxidant activities of hydroxy and chloro substituted chalcone analogues: Synthesis, biological and computational studies. Arab. J. Chem. 2022, 15, 103581. [Google Scholar] [CrossRef]
- Kostopoulou, I.; Tzani, A.; Polyzos, N.-I.; Karadendrou, M.-A.; Kritsi, E.; Pontiki, E.; Liargkova, T.; Hadjipavlou-Litina, D.; Zoumpoulakis, P.; Detsi, A. Exploring the 2′-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents. Molecules 2021, 26, 2777. [Google Scholar] [CrossRef]
- Forejtníková, H.; Lunerová, K.; Kubínová, R.; Jankovská, D.; Marek, R.; Kares, R.; Suchý, V.; Vondrácek, J.; Machala, M. Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Toxicology 2005, 208, 81–93. [Google Scholar] [CrossRef]
- Arty, I.S.; Timmerman, H.; Samhoedi, M.; Sastrohamidjojo, S.; van der Goot, H. Synthesis of benzylideneacetophenones and their inhibition of lipid peroxidation. Eur. J. Med. Chem. 2000, 35, 449–457. [Google Scholar] [CrossRef]
- Daikonya, A.; Katsuki, S.; Kitanaka, S. Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae). Chem. Pharm. Bull. 2004, 52, 1326–1329. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Sakata, Y.; Morimoto, K.; Tambe, Y.; Watanabe, Y.; Honda, G.; Tabata, M.; Oshima, T.; Masuda, T.; Umezawa, T.; et al. Influence of natural and synthetic compounds on cell surface expression of cell adhesion molecules, ICAM-1 and VCAM-1. Planta Med. 2001, 67, 108–113. [Google Scholar] [CrossRef]
- Hamdi, N.; Fischmeister, C.; Puerta, M.C.; Valerga, P. A rapid access to new coumarinyl chalcone and substituted chromeno [4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities. Med. Chem. Res. 2011, 20, 522–530. [Google Scholar] [CrossRef]
- Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M.J.; Herrera-Morales, A.; Villamena, F.A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. Synthesis and electrochemical and biological studies of novel coumarin-chalcone hybrid compounds. J. Med. Chem. 2013, 56, 6136–6145. [Google Scholar] [CrossRef]
- Yang, X.W.; Wang, J.S.; Wang, Y.H.; Xiao, H.T.; Hu, X.J.; Mu, S.Z.; Ma, Y.L.; Lin, H.; He, H.P.; Li, L.; et al. Tarennane and tarennone, two novel chalcone constituents from Tarenna attenuata. Planta Med. 2007, 73, 496–498. [Google Scholar] [CrossRef]
- Lin, J.-A.; Wu, C.-H.; Fang, S.-C.; Yen, G.-C. Combining the observation of cell morphology with the evaluation of key inflammatory mediators to assess the anti-inflammatory effects of geranyl flavonoid derivatives in breadfruit. Food Chem. 2012, 132, 2118–2125. [Google Scholar] [CrossRef]
- Jin, F.; Jin, X.Y.; Jin, Y.L.; Sohn, D.W.; Kim, S.A.; Sohn, D.H.; Kim, Y.C.; Kim, H.S. Structural requirements of 2′,4′,6′-tris(methoxymethoxy) chalcone derivatives for anti-inflammatory activity: The importance of a 2′-hydroxy moiety. Arch. Pharm. Res. 2007, 30, 1359–1367. [Google Scholar] [CrossRef]
- Abdul-Ridha, N.A.; Salmaan, A.D.; Sabah, R.; Saeed, B.; Al-Masoudi, N.A. Synthesis, cytotoxicity and in silico study of some novel benzocoumarin-chalcone-bearing aryl ester derivatives and benzocoumarin-derived arylamide analogs. Z. Naturforsch. B 2021, 76, 201–210. [Google Scholar] [CrossRef]
- Shrestha, A.; Oh, H.J.; Kim, M.J.; Pun, N.T.; Magar, T.B.T.; Bist, G.; Choi, H.; Park, P.-H.; Lee, E.-S. Design, synthesis, and structure-activity relationship study of halogen containing 2-benzylidene-1-indanone derivatives for inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages. Eur. J. Med. Chem. 2017, 133, 121–138. [Google Scholar] [CrossRef]
Compd. No. | Common Name | Structure | Biological Activity | Ref |
---|---|---|---|---|
9 | Isoliquiritigenin | Antioxidant Anti-inflammatory | [49,50,51] | |
10 | Butein | Anti-inflammatory | [52,53] | |
11 | Sappanchalcone | Anti-inflammatory | [54] | |
12 | 3-Deoxysappanchalcone | Anti-inflammatory | [55] | |
13 | Isobavachalcone | Antioxidant | [56,57] | |
14 | Licochalcone | Anti-inflammatory | [58] | |
15 | Elastichalcone | Antioxidant | [59] | |
16 | Xanthohumol | Antioxidant Antiproliferative | [60,61] |
Compd. No. | Common Name | Structure | Biological Activity | Ref |
---|---|---|---|---|
42 | 2′,4′,6′,3,4-Pentahydroxychalcone | Antioxidant | [98] | |
43 | 3′-Chloro-4-fluoro-6′-hydroxychalcone | Antioxidant | [99] | |
44 | 5′-Bromo-3,4,2′,6′-tetrahydroxychalcone | Antioxidant | [100] | |
45 | 2′,4,4′-Trihydroxychalcone | Antioxidant | [101] | |
46 | 2,4,4′-Trihydroxychalcone | Antioxidant | [101] | |
47 | 3′,5′-Di-t-butyl- 4,4′-dihydroxychalcone | Antioxidant | [102] | |
48 | Chalcone from Mallotus philippinensis | Anti-inflammatory | [103] | |
49 | Chalcone from Mallotus philippinensis | Anti-inflammatory | [103] | |
50 | 2′,4,4′-Trihydroxychalcone | Anti-inflammatory | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birsa, M.L.; Sarbu, L.G. Hydroxy Chalcones and Analogs with Chemopreventive Properties. Int. J. Mol. Sci. 2023, 24, 10667. https://doi.org/10.3390/ijms241310667
Birsa ML, Sarbu LG. Hydroxy Chalcones and Analogs with Chemopreventive Properties. International Journal of Molecular Sciences. 2023; 24(13):10667. https://doi.org/10.3390/ijms241310667
Chicago/Turabian StyleBirsa, Mihail Lucian, and Laura G. Sarbu. 2023. "Hydroxy Chalcones and Analogs with Chemopreventive Properties" International Journal of Molecular Sciences 24, no. 13: 10667. https://doi.org/10.3390/ijms241310667
APA StyleBirsa, M. L., & Sarbu, L. G. (2023). Hydroxy Chalcones and Analogs with Chemopreventive Properties. International Journal of Molecular Sciences, 24(13), 10667. https://doi.org/10.3390/ijms241310667