Gene Therapy Approaches for the Treatment of Hemophilia B
Abstract
:1. Introduction
2. Clinical Gene Therapy Studies
3. Hemophilia B Models
4. Genome-Editing Studies
5. Current Challenges and Limitations
5.1. Immune Response to Factor IX
5.2. AAV Immune Response
5.3. Disadvantages of AAV as a Delivery System
6. Future Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodeve, A.C. Hemophilia B: Molecular Pathogenesis and Mutation Analysis. J. Thromb. Haemost. 2015, 13, 1184. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.H.; Bean, C.J. Genetic Causes of Haemophilia in Women and Girls. Haemophilia 2021, 27, e164. [Google Scholar] [CrossRef]
- Diagnosis & Severity of Registry Participants | Males With Hemophilia Registry Report 2014-2017 | CDC. Available online: https://www.cdc.gov/ncbddd/hemophilia/communitycounts/registry-report-males/diagnosis.html (accessed on 20 June 2023).
- Lambert, T.; Benson, G.; Dolan, G.; Hermans, C.; Jiménez-Yuste, V.; Ljung, R.; Morfini, M.; Zupančić-Šalek, S.; Santagostino, E. Practical Aspects of Extended Half-Life Products for the Treatment of Haemophilia. Ther. Adv. Hematol. 2018, 9, 295. [Google Scholar] [CrossRef] [PubMed]
- Santagostino, E.; Martinowitz, U.; Lissitchkov, T.; Pan-Petesch, B.; Hanabusa, H.; Oldenburg, J.; Boggio, L.; Negrier, C.; Pabinger, I.; Von Depka Prondzinski, M.; et al. Long-Acting Recombinant Coagulation Factor IX Albumin Fusion Protein (RIX-FP) in Hemophilia B: Results of a Phase 3 Trial. Blood 2016, 127, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Carcao, M.; Kearney, S.; Lu, M.Y.; Taki, M.; Rubens, D.; Shen, C.; Santagostino, E. Long-Term Safety and Efficacy of Nonacog Beta Pegol (N9-GP) Administered for at Least 5 Years in Previously Treated Children with Hemophilia B. Thromb. Haemost. 2020, 120, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Burke, T.; Asghar, S.; O’Hara, J.; Chuang, M.; Sawyer, E.K.; Li, N. Clinical, Humanistic, and Economic Burden of Severe Haemophilia B in Adults Receiving Factor IX Prophylaxis: Findings from the CHESS II Real-World Burden of Illness Study in Europe. Orphanet. J. Rare Dis. 2021, 16. [Google Scholar] [CrossRef]
- Burke, T.; Asghar, S.; O’Hara, J.; Sawyer, E.K.; Li, N. Clinical, Humanistic, and Economic Burden of Severe Hemophilia B in the United States: Results from the CHESS US and CHESS US+ Population Surveys. Orphanet. J. Rare Dis. 2021, 16, 143. [Google Scholar] [CrossRef]
- Yokoyama, S.; Bartlett, A.; Dar, F.S.; Heneghan, M.; O’Grady, J.; Rela, M.; Heaton, N. Outcome of Liver Transplantation for Haemophilia. HPB 2011, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Weyand, A.C.; Pipe, S.W. New Therapies for Hemophilia. Blood 2019, 133, 389–398. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Tonnu, N.; Tachikawa, K.; Limphong, P.; Vega, J.B.; Karmali, P.P.; Chivukula, P.; Verma, I.M. Systemic Delivery of Factor IX Messenger RNA for Protein Replacement Therapy. Proc. Natl. Acad. Sci. USA 2017, 114, E1941–E1950. [Google Scholar] [CrossRef] [Green Version]
- Pasi, K.J.; Lissitchkov, T.; Mamonov, V.; Mant, T.; Timofeeva, M.; Bagot, C.; Chowdary, P.; Georgiev, P.; Gercheva-Kyuchukova, L.; Madigan, K.; et al. Targeting of Antithrombin in Hemophilia A or B with Investigational SiRNA Therapeutic Fitusiran-Results of the Phase 1 Inhibitor Cohort. J. Thromb. Haemost. 2021, 19, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- VandenDriessche, T.; Chuah, M.K. Hyperactive Factor IX Padua: A Game-Changer for Hemophilia Gene Therapy. Mol. Ther. 2018, 26, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.M.; George, L.A.; Carr, M.E.; Samelson-Jones, B.J.; Arruda, V.R.; Murphy, J.E.; Rybin, D.; Rupon, J.; High, K.A.; Tiefenbacher, S. Factor IX Assay Discrepancies in the Setting of Liver Gene Therapy Using a Hyperfunctional Variant Factor IX-Padua. J. Thromb. Haemost. 2021, 19, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Samelson-Jones, B.J.; George, L.A. Adeno-Associated Virus Gene Therapy for Hemophilia. Annu. Rev. Med. 2023, 74, 231. [Google Scholar] [CrossRef]
- Von Drygalski, A.; Giermasz, A.; Castaman, G.; Key, N.S.; Lattimore, S.; Leebeek, F.W.G.; Miesbach, W.; Recht, M.; Long, A.; Gut, R.; et al. Etranacogene Dezaparvovec (AMT-061 Phase 2b): Normal/near Normal FIX Activity and Bleed Cessation in Hemophilia B. Blood Adv. 2019, 3, 3241–3247. [Google Scholar] [CrossRef] [Green Version]
- Pipe, S.W.; Leebeek, F.W.G.; Recht, M.; Key, N.S.; Castaman, G.; Miesbach, W.; Lattimore, S.; Peerlinck, K.; Van der Valk, P.; Coppens, M.; et al. Gene Therapy with Etranacogene Dezaparvovec for Hemophilia B. N. Engl. J. Med. 2023, 388, 706–718. [Google Scholar] [CrossRef]
- George, L.A.; Ragni, M.V.; Rasko, J.E.J.; Raffini, L.J.; Samelson-Jones, B.J.; Ozelo, M.; Hazbon, M.; Runowski, A.R.; Wellman, J.A.; Wachtel, K.; et al. Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-HFIX16 for Severe Hemophilia B. Mol. Ther. 2020, 28, 2073. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, P.; Shapiro, S.; Makris, M.; Evans, G.; Boyce, S.; Talks, K.; Dolan, G.; Reiss, U.; Phillips, M.; Riddell, A.; et al. Phase 1-2 Trial of AAVS3 Gene Therapy in Patients with Hemophilia B. N. Engl. J. Med. 2022, 387, 237–247. [Google Scholar] [CrossRef]
- Konkle, B.A.; Walsh, C.E.; Escobar, M.A.; Josephson, N.C.; Young, G.; von Drygalski, A.; McPhee, S.W.J.; Samulski, R.J.; Bilic, I.; de la Rosa, M.; et al. BAX 335 Hemophilia B Gene Therapy Clinical Trial Results: Potential Impact of CpG Sequences on Gene Expression. Blood 2021, 137, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Li, H.; Wu, X.; Liu, W.; Zhang, F.; Tang, D.; Chen, Y.; Wang, W.; Chi, Y.; Zheng, J.; et al. Safety and Activity of an Engineered, Liver-Tropic Adeno-Associated Virus Vector Expressing a Hyperactive Padua Factor IX Administered with Prophylactic Glucocorticoids in Patients with Haemophilia B: A Single-Centre, Single-Arm, Phase 1, Pilot Trial. Lancet Haematol. 2022, 9, e504–e513. [Google Scholar] [CrossRef] [PubMed]
- Leebeek, F.W.G.; Meijer, K.; Coppens, M.; Kampmann, P.; Klamroth, R.; Schutgens, R.; Castaman, G.; Seifried, E.; Schwaeble, J.; Bönig, H.; et al. AMT-060 Gene Therapy in Adults with Severe or Moderate-Severe Hemophilia B Confirm Stable FIX Expression and Durable Reductions in Bleeding and Factor IX Consumption for up to 5 Years. Blood 2020, 136, 26. [Google Scholar] [CrossRef]
- George, L.A.; Sullivan, S.K.; Giermasz, A.; Rasko, J.E.J.; Samelson-Jones, B.J.; Ducore, J.; Cuker, A.; Sullivan, L.M.; Majumdar, S.; Teitel, J.; et al. Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. N. Engl. J. Med. 2017, 377, 2215–2227. [Google Scholar] [CrossRef]
- Pipe, S.; Stine, K.; Rajasekhar, A.; Everington, T.; Poma, A.; Crombez, E.; Hay, C.R. 101HEMB01 Is a Phase 1/2 Open-Label, Single Ascending Dose-Finding Trial of DTX101 (AAVrh10FIX) in Patients with Moderate/Severe Hemophilia B That Demonstrated Meaningful but Transient Expression of Human Factor IX (HFIX). Blood 2017, 130, 3331. [Google Scholar] [CrossRef]
- Nathwani, A.C.; Tuddenham, E.G.D.; Rangarajan, S.; Rosales, C.; McIntosh, J.; Linch, D.C.; Chowdary, P.; Riddell, A.; Pie, A.J.; Harrington, C.; et al. Adenovirus-Associated Virus Vector-Mediated Gene Transfer in Hemophilia B. N. Engl. J. Med. 2011, 365, 2357–2365. [Google Scholar] [CrossRef]
- Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.D.; Rosales, C.; Chowdary, P.; McIntosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.; Raj, D.; et al. Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B. N. Engl. J. Med. 2014, 371, 1994–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Bergmann, T.; Zhang, W.; Schiwon, M.; Ehrke-Schulz, E.; Ehrhardt, A. Viral Vector-Based Delivery of CRISPR/Cas9 and Donor DNA for Homology-Directed Repair in an In Vitro Model for Canine Hemophilia B. Mol. Ther. Nucleic Acids 2019, 14, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Sun, W.; Liu, X.; Ren, J.; Zhang, X.; Zhang, R.; Zhao, L.; Yang, L.; Wang, G. Generation an Induced Pluripotent Stem Cell Line SXMUi001-A Derived from a Hemophilia B Patient Carries Variant F9 c.223C>T(p.R75X). Stem. Cell Res. 2022, 60. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, W.; Zhao, L.; Yao, M.; Wu, C.; Su, P.; Yang, L.; Wang, G. Generation of an MESC Model with a Human Hemophilia B Nonsense Mutation via CRISPR/Cas9 Technology. Stem. Cell Res. Ther. 2022, 13, 1–11. [Google Scholar] [CrossRef]
- Luce, E.; Steichen, C.; Allouche, M.; Messina, A.; Heslan, J.M.; Lambert, T.; Weber, A.; Nguyen, T.H.; Christophe, O.; Dubart-Kupperschmitt, A. In Vitro Recovery of FIX Clotting Activity as a Marker of Highly Functional Hepatocytes in a Hemophilia B IPSC Model. Hepatology 2022, 75, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.F.; Maeda, N.; Smithies, O.; Straight, D.L.; Stafford, D.W. A Coagulation Factor IX-Deficient Mouse Model for Human Hemophilia B. Blood 1997, 90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.P.; Jin, D.Y.; Wardrop, R.M.; Gui, T.; Maile, R.; Frelinger, J.A.; Stafford, D.W.; Monahan, P.E. Transgene Expression Levels and Kinetics Determine Risk of Humoral Immune Response Modeled in Factor IX Knockout and Missense Mutant Mice. Gene Ther. 2007, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaswamy, S.; Tonnu, N.; Menon, T.; Lewis, B.M.; Green, K.T.; Wampler, D.; Monahan, P.E.; Verma, I.M. Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restoration of Factor IX. Cell Rep. 2018, 23, 1565–1580. [Google Scholar] [CrossRef]
- Yen, C.T.; Fan, M.N.; Yang, Y.L.; Chou, S.C.; Yu, I.S.; Lin, S.W. Current Animal Models of Hemophilia: The State of the Art. Thromb. J. 2016, 14, 22. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; An, B.; Yu, B.; Peng, X.; Yuan, H.; Yang, Q.; Chen, X.; Yu, T.; Wang, L.; Zhang, X.; et al. CRISPR/Cas9-Mediated Knockin of Human Factor IX into Swine Factor IX Locus Effectively Alleviates Bleeding in Hemophilia B Pigs. Haematologica 2020, 105. [Google Scholar] [CrossRef] [Green Version]
- Nathwani, A.C.; Rosales, C.; McIntosh, J.; Rastegarlari, G.; Nathwani, D.; Raj, D.; Nawathe, S.; Waddington, S.N.; Bronson, R.; Jackson, S.; et al. Long-Term Safety and Efficacy Following Systemic Administration of a Self-Complementary AAV Vector Encoding Human FIX Pseudotyped with Serotype 5 and 8 Capsid Proteins. Mol. Ther. 2011, 19. [Google Scholar] [CrossRef]
- Sharma, R.; Anguela, X.M.; Doyon, Y.; Wechsler, T.; DeKelver, R.C.; Sproul, S.; Paschon, D.E.; Miller, J.C.; Davidson, R.J.; Shivak, D.; et al. In Vivo Genome Editing of the Albumin Locus as a Platform for Protein Replacement Therapy. Blood 2015, 126, 1777–1784. [Google Scholar] [CrossRef] [Green Version]
- Harmatz, P.; Prada, C.E.; Burton, B.K.; Lau, H.; Kessler, C.M.; Cao, L.; Falaleeva, M.; Villegas, A.G.; Zeitler, J.; Meyer, K.; et al. First-in-Human in Vivo Genome Editing via AAV-Zinc-Finger Nucleases for Mucopolysaccharidosis I/II and Hemophilia B. Mol. Ther. 2022, 30, 3587–3600. [Google Scholar] [CrossRef]
- Stephens, C.J.; Lauron, E.J.; Kashentseva, E.; Lu, Z.H.; Yokoyama, W.M.; Curiel, D.T. Long-Term Correction of Hemophilia B Using Adenoviral Delivery of CRISPR/Cas9. J. Control Release 2019, 298, 128–141. [Google Scholar] [CrossRef]
- Guan, Y.; Ma, Y.; Li, Q.; Sun, Z.; Ma, L.; Wu, L.; Wang, L.; Zeng, L.; Shao, Y.; Chen, Y.; et al. CRISPR/Cas9-mediated Somatic Correction of a Novel Coagulator Factor IX Gene Mutation Ameliorates Hemophilia in Mouse. EMBO Mol. Med. 2016, 8, 477. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, X.; Li, Q.; Su, J.; Liu, Y.; Mo, L.; Deng, H.; Yang, Y. CRISPR-Cas9-Mediated In Vivo Gene Integration at the Albumin Locus Recovers Hemostasis in Neonatal and Adult Hemophilia B Mice. Mol. Ther. Methods Clin. Dev. 2020, 18, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, T.; Ehrke-Schulz, E.; Gao, J.; Schiwon, M.; Schildgen, V.; David, S.; Schildgen, O.; Ehrhardt, A. Designer Nuclease-Mediated Gene Correction via Homology-Directed Repair in an in Vitro Model of Canine Hemophilia B. J. Gene Med. 2018, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Yang, Y.; Breton, C.A.; White, J.; Zhang, J.; Che, Y.; Saveliev, A.; McMenamin, D.; He, Z.; Latshaw, C.; et al. CRISPR/Cas9-Mediated in Vivo Gene Targeting Corrects Hemostasis in Newborn and Adult Factor IX-Knockout Mice. Blood 2019, 133, 2745–2752. [Google Scholar] [CrossRef]
- Suzuki, K.; Tsunekawa, Y.; Hernandez-Benitez, R.; Wu, J.; Zhu, J.; Kim, E.J.; Hatanaka, F.; Yamamoto, M.; Araoka, T.; Li, Z.; et al. In Vivo Genome Editing via CRISPR/Cas9 Mediated Homology-Independent Targeted Integration. Nature 2016, 540, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Zhang, Z.; Xue, J.; Wang, Y.; Zhang, S.; Wei, J.; Zhang, C.; Wang, J.; Urip, B.A.; Ngan, C.C.; et al. Low-Dose AAV-CRISPR-Mediated Liver-Specific Knock-in Restored Hemostasis in Neonatal Hemophilia B Mice with Subtle Antibody Response. Nat. Commun. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Han, J.P.; Kim, M.J.; Choi, B.S.; Lee, J.H.; Lee, G.S.; Jeong, M.; Lee, Y.; Kim, E.A.; Oh, H.K.; Go, N.; et al. In Vivo Delivery of CRISPR-Cas9 Using Lipid Nanoparticles Enables Antithrombin Gene Editing for Sustainable Hemophilia A and B Therapy. Sci. Adv. 2022, 8, 6901. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef]
- Raguram, A.; Banskota, S.; Liu, D.R. Therapeutic in Vivo Delivery of Gene Editing Agents. Cell 2022, 185, 2806–2827. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Han, J.P.; Song, D.W.; Lee, G.S.; Choi, B.S.; Kim, M.J.; Lee, Y.; Kim, S.; Lee, H.; Yeom, S.C. In Vivo Genome Editing for Hemophilia B Therapy by the Combination of Rebalancing and Therapeutic Gene Knockin Using a Viral and Non-Viral Vector. Mol. Ther. Nucleic Acids 2023, 32, 161–172. [Google Scholar] [CrossRef]
- Male, C.; Andersson, N.G.; Rafowicz, A.; Liesner, R.; Kurnik, K.; Fischer, K.; Platokouki, H.; Santagostino, E.; Chambost, H.; Nolan, B.; et al. Inhibitor Incidence in an Unselected Cohort of Previously Untreated Patients with Severe Haemophilia B: A PedNet Study. Haematologica 2021, 106, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arruda, V.R.; Samelson-Jones, B.J. Gene Therapy for Immune Tolerance Induction in Hemophilia with Inhibitors. J. Thromb. Haemost. 2016, 14, 1121. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Herzog, R.W.; Byrne, B.J.; Kumar, S.R.P.; Zhou, Q.; Buchholz, C.J.; Biswas, M. Immune Modulatory Cell Therapy for Hemophilia B Based on CD20-Targeted Lentiviral Gene Transfer to Primary B Cells. Mol. Ther. Methods Clin. Dev. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniell, H.; Kulis, M.; Herzog, R.W. Plant Cell-Made Protein Antigens for Induction of Oral Tolerance. Biotechnol. Adv. 2019, 37, 107413. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Barros, S.; Ivanciu, L.; Cooley, B.; Qin, J.; Racie, T.; Hettinger, J.; Carioto, M.; Jiang, Y.; Brodsky, J.; et al. An RNAi Therapeutic Targeting Antithrombin to Rebalance the Coagulation System and Promote Hemostasis in Hemophilia. Nat. Med. 2015, 21, 3847. [Google Scholar] [CrossRef]
- Samelson-Jones, B.J.; Arruda, V.R. Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. Mol. Ther. Methods Clin. Dev. 2018, 12, 184–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Chen, X.; Chai, Z.; Niu, H.; Dobbins, A.L.; Nichols, T.C.; Li, C. Adeno-Associated Virus-Mediated Expression of Activated Factor V (FVa) for Hemophilia Phenotypic Correction. Front. Med. 2022, 9, 880763. [Google Scholar] [CrossRef]
- Schroeder, J.A.; Chen, J.; Chen, Y.; Cai, Y.; Yu, H.; Mattson, J.G.; Monahan, P.E.; Shi, Q. Platelet-Targeted Hyperfunctional FIX Gene Therapy for Hemophilia B Mice Even with Preexisting Anti-FIX Immunity. Blood Adv. 2021, 5. [Google Scholar] [CrossRef]
- Li, X.; Wei, X.; Lin, J.; Ou, L. A Versatile Toolkit for Overcoming AAV Immunity. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef]
- Majowicz, A.; Nijmeijer, B.; Lampen, M.H.; Spronck, L.; de Haan, M.; Petry, H.; van Deventer, S.J.; Meyer, C.; Tangelder, M.; Ferreira, V. Therapeutic HFIX Activity Achieved after Single AAV5-HFIX Treatment in Hemophilia B Patients and NHPs with Pre-Existing Anti-AAV5 NABs. Mol. Methods Clin. Dev. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Ertl, H.C.J. T Cell-Mediated Immune Responses to AAV and AAV Vectors. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Li, B.; Ding, X.; Hussain, A.; Lindsey, K.; Zhang, X.; Jin, S. CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for SgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects. Adv. Sci. 2020, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Jeong, E.; Lee, J.; Jung, M.; Shin, E.; Kim, Y.; Lee, K.; Jung, I.; Kim, D.; Kim, S.; et al. Directed Evolution of CRISPR-Cas9 to Increase Its Specificity. Nat. Commun. 2018, 9, 3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.S.; Dagdas, Y.S.; Kleinstiver, B.P.; Welch, M.M.; Sousa, A.A.; Harrington, L.B.; Sternberg, S.H.; Joung, J.K.; Yildiz, A.; Doudna, J.A. Enhanced Proofreading Governs CRISPR-Cas9 Targeting Accuracy. Nature 2017, 550, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, K.S.; Kleinstiver, B.P.; Garcia, S.P.; Zaborowski, M.P.; Volak, A.; Spirig, S.E.; Muller, A.; Sousa, A.A.; Tsai, S.Q.; Bengtsson, N.E.; et al. High Levels of AAV Vector Integration into CRISPR-Induced DNA Breaks. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Paulk, N.K.; Pekrun, K.; Zhu, E.; Nygaard, S.; Li, B.; Xu, J.; Chu, K.; Leborgne, C.; Dane, A.P.; Haft, A.; et al. Bioengineered AAV Capsids with Combined High Human Liver Transduction In Vivo and Unique Humoral Seroreactivity. Mol. Ther. 2018, 26, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Pei, X.; Shao, W.; Xing, A.; Askew, C.; Chen, X.; Cui, C.; Abajas, Y.L.; Gerber, D.A.; Merricks, E.P.; Nichols, T.C.; et al. Development of AAV Variants with Human Hepatocyte Tropism and Neutralizing Antibody Escape Capacity. Mol. Ther. Methods Clin. Dev. 2020, 18, 259–268. [Google Scholar] [CrossRef]
- Almeida-Porada, G. A New “FIX” for Hemophilia B Gene Therapy. Blood 2021, 137, 2860–2861. [Google Scholar] [CrossRef]
- Le Quellec, S.; Dane, A.P.; Barbon, E.; Bordet, J.C.; Mingozzi, F.; Dargaud, Y.; Marais, T.; Biferi, M.G.; Négrier, C.; Nathawani, A.C.; et al. Recombinant Adeno-Associated Viral Vectors Expressing Human Coagulation FIX-E456H Variant in Hemophilia B Mice. Thromb. Haemost. 2019, 119, 1956–1967. [Google Scholar] [CrossRef]
- Mary, B.; Maurya, S.; Kumar, M.; Bammidi, S.; Kumar, V.; Jayandharan, G.R. Molecular Engineering of Adeno-Associated Virus Capsid Improves Its Therapeutic Gene Transfer in Murine Models of Hemophilia and Retinal Degeneration. Mol. Pharm. 2019, 16, 4738–4750. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.; Mary, B.; Jayandharan, G.R. Rational Engineering and Preclinical Evaluation of Neddylation and SUMOylation Site Modified Adeno-Associated Virus Vectors in Murine Models of Hemophilia B and Leber Congenital Amaurosis. Hum. Gene Ther. 2019, 30, 1461–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Anthony, B.; Chai, Z.; Lee Dobbins, A.; Sutton, R.B.; Li, C. Membrane Fusion FerA Domains Enhance Adeno-Associated Virus Vector Transduction. Biomaterials 2020, 241, 119906. [Google Scholar] [CrossRef]
- Hiramoto, T.; Kashiwakura, Y.; Hayakawa, M.; Baatartsogt, N.; Kamoshita, N.; Abe, T.; Inaba, H.; Nishimasu, H.; Uosaki, H.; Hanazono, Y.; et al. PAM-Flexible Cas9-Mediated Base Editing of a Hemophilia B Mutation in Induced Pluripotent Stem Cells. Commun. Med. 2023, 3, 1–12. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Kanter, J.; Walters, M.C.; Krishnamurti, L.; Mapara, M.Y.; Kwiatkowski, J.L.; Rifkin-Zenenberg, S.; Aygun, B.; Kasow, K.A.; Pierciey, F.J.; Bonner, M.; et al. Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. N. Engl. J. Med. 2022, 386, 617–628. [Google Scholar] [CrossRef] [PubMed]
Sponsor | Therapy | Capsid | Promoter | Transgene | Phase | Status | Identifier on clinicaltrials.gov |
---|---|---|---|---|---|---|---|
UniQure, CSL Behring | AMT-060 | ssAAV5 | Liver-specific | F9 | 1/2 | Completed | NCT02396342 |
AMT-061/Etranacogene dezaparvovec | ssAAV5 | Liver-specific | F9-Padua | 2 | Active, not recruiting | NCT03489291 | |
3 | Active, not recruiting | NCT03569891 | |||||
Spark Therapeutics, Pfizer (Phase 3) | SPK-9001/PF-06838435/Fidanacogene elaparvovec | ssAAV-Spark100 | ApoE/hAAT | F9-Padua | 1/2 | Completed | NCT02484092 |
2 LTFU * | Recruiting | NCT03307980 | |||||
3 | Active, not recruiting | NCT03861273 | |||||
University College, London | FLT180a/Verbrinacogene setparvovec | Synthetic, AAV-S3 | Liver-specific | F9-Padua | 1/2 | Terminated (In 2022) | NCT03369444 |
Freeline Therapeutics | |||||||
1/2 | Active, not recruiting | NCT05164471 | |||||
1/2 LTFU * | Active, not recruiting | NCT03641703 | |||||
Baxalta (Shire), Takeda | AskBio009/BAX 335 | scAAV8 | TTR | F9-Padua | 1 | Active, not recruiting | NCT01687608 |
Institute of Hematology and Blood Diseases Hospital, China | BBM-H901 | Synthetic, AAV843 | Liver-specific | F9-Padua | 1 (12–18- year-old patients) | Not yet recruiting | NCT05709288 |
1 | Active, not recruiting | NCT04135300 | |||||
Shanghai Belief-Delivery BioMed Co., Ltd. | 1/2 | Recruiting | NCT05203679 | ||||
Institute of Hematology and Blood Diseases Hospital, China | VGB-R04 | Synthetic | - | High-specific-activity F9 | 1 | Recruiting | NCT05152732 |
Shanghai Vitalgen BioPharma Co., Ltd. | 1/2 | Not yet recruiting | NCT05441553 | ||||
Institute of Hematology and Blood Diseases Hospital, China | ZS801 | Synthetic | - | F9 | - | Not yet recruiting | NCT05630651 |
1/2 | Not yet recruiting | NCT05641610 | |||||
St. Jude Children’s Research Hospital | scAAV2/8-LP1-hFIXco | ssAAV2/8 | LP1 | F9 | 1 | Active, not recruiting | NCT00979238 |
Sangamo Therapeutics | SB-FIX-1501 (ZFN) | ssAAV6 | - | - | 1 | Terminated (In 2022) | NCT02695160 |
Baxalta (Shire) | SHP648 | ssAAV8 | - | F9-Padua | 1/2 | Terminated (In 2021) | NCT04394286 |
Spark Therapeutics | AAV8-hFIX19 | ssAAV8 | - | F9 | 1 | Terminated (In 2019) | NCT01620801 |
Ultragenyx Pharmaceutical Inc. (previously Dimension Therapeutics) | DTX101 | ssAAVrh10 | - | F9 | 1/2 | Terminated (In 2018) | NCT02618915 |
1/2 LTFU | Completed (In 2022) | NCT02971969 | |||||
Avigen | AAV2-hFIX | ssAAV | hAAT | F9 | 1 | Terminated (In 2007) | NCT00076557 |
SGIMI | YUVA-GT-F901 (Lentivirus) | - | - | - | 1 | Unknown | NCT03961243 |
Therapy and Sponsor | Factor IX Activity | Doses, vg/kg | Patients Responded to Therapy | Reference |
---|---|---|---|---|
AMT-060, UniQure | 7.0–7.4% at 4 years | 5 × 1012, 2 × 1013 | 10/10 | [24] |
AMT-061/Etranacogene dezaparvovec, UniQure | 34.3% ± 4.8% at 18 months | 2 × 1013 | 52/54 | [19] |
SPK-9001/PF-06838435/Fidanacogene elaparvovec, Spark Therapeutics, Pfizer | 22.9% ± 9.9% at 5 years | 5 × 1011 | 15/15 | [25] |
FLT180a/Verbrinacogene setparvovec, Freeline Therapeutics | 51–78% in 5 patients, 23–43% in 3 patients, 1 patient with 260% | 3.84 × 1011; 6.4 × 1011; 8.32 × 1011; 1.28 × 1012 | 9/10, 1 participant continued prophylaxis | [21] |
BBM-H901, Institute of Hematology and Blood Diseases Hospital, China | 36.9% ± 20.5% at 58 weeks | 5 × 1012 | 10/10 | [23] |
DTX101, Ultragenyx Pharmaceutical Inc (previously Dimension Therapeutics) | 5–20% at 8–14 weeks but loss of FIX levels at 32 weeks in all patients except one with ~20% activity | 1.6 × 1012; 5.0 × 1012 | 6/6 | [26] |
AskBio009/BAX 335, Baxalta (Shire), Takeda | 2.8–58.5% in different dose cohorts at 11 weeks | 2 × 1011; 1 × 1012; 3 × 101 | 7/8 had measurable factor IX activity up to 11 weeks; only 1/7 had 20% expression for 4 years | [22] |
scAAV2/8-LP1-hFIXco, St. Jude Children’s Research Hospital | 1–6% at 3.2 years; 5.1 ± 1.7% in a high-dose cohort | 2 × 1011; 6 × 1011, 2 × 1012 | 6/10, 90% reduction of bleeding episodes and in factor IX prophylaxis use in high-dose cohort | [27,28] |
AAV2-FIX, Avigen | Transient at a maximum level of 1.6% | 2 × 1011 to 1.8 × 1012 | All 8 participants with a severe form had only local factor IX expression in muscles | [20] |
Advantages | Disadvantages | |
---|---|---|
Gene transfer | Has been shown to be effective in clinical trials | May not provide a permanent cure, as the transferred gene may not be expressed at high enough levels and may get lost over time |
Genome editing | Can be used to permanently correct the specific genetic mutation that causes hemophilia B | Safety concerns and ethical issues of editing the human genome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soroka, A.B.; Feoktistova, S.G.; Mityaeva, O.N.; Volchkov, P.Y. Gene Therapy Approaches for the Treatment of Hemophilia B. Int. J. Mol. Sci. 2023, 24, 10766. https://doi.org/10.3390/ijms241310766
Soroka AB, Feoktistova SG, Mityaeva ON, Volchkov PY. Gene Therapy Approaches for the Treatment of Hemophilia B. International Journal of Molecular Sciences. 2023; 24(13):10766. https://doi.org/10.3390/ijms241310766
Chicago/Turabian StyleSoroka, Anastasiia B., Sofya G. Feoktistova, Olga N. Mityaeva, and Pavel Y. Volchkov. 2023. "Gene Therapy Approaches for the Treatment of Hemophilia B" International Journal of Molecular Sciences 24, no. 13: 10766. https://doi.org/10.3390/ijms241310766
APA StyleSoroka, A. B., Feoktistova, S. G., Mityaeva, O. N., & Volchkov, P. Y. (2023). Gene Therapy Approaches for the Treatment of Hemophilia B. International Journal of Molecular Sciences, 24(13), 10766. https://doi.org/10.3390/ijms241310766