Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers
Abstract
:1. Introduction
2. Self-Assembled Nanomaterials
2.1. Diagnostics and Sensing
Magnetic Sensors
Iron Nanoparticle
Self-Assembling Paramagnetic
3. Electrochemical and Amperometric Sensors
3.1. Gold Nanoparticles
- (a)
- Chemical methods: AuNPs are synthesized in an aqueous solution with a reducing agent such as citrate and sodium borohydride. The most common chemical method was developed by Turkevich, which provided stable colloidal AuNPs 15 to 50 nm in diameter. Another critical method for chemical synthesis is the one developed by Hauser et al., which standardized the Turkevich synthesis. Additionally, Brust et al. used thiol ligands to protect AuNPs [53,54].
- (b)
- Biological methods: AuNPs can also be synthesized by green chemistry, leading to a reduction in toxic waste that was generated during the procedure; in this way, several compounds isolated from plants, bacteria, algae, and viruses can be used to produce AuNPs with different sizes and shapes [55,56].
- (c)
- Physical methods: The most common physical methods are γ-radiation, ultraviolet, laser ablation, microwave, and irradiation. For example, γ-radiation provides ultrapure AuNPs in the 5 to 40 nm diameter range. In parallel, the ultraviolet method combined with high temperature can provide AuNPs of several sizes [57,58].
3.2. Immunosensors Based on AuNPs
3.3. DNA Biosensors Based on AuNPs
3.4. Semiconducting Nanowires
3.5. Biosensors Based on Semiconducting Nanowires
3.6. Self-Assembled Peptide Nanowires
3.7. Electrochemical Peptide Sensors
4. Optical Sensors
4.1. Gold Nanoparticles
4.2. DNA Nanostructures
4.3. Supramolecular Gels
4.4. Semiconductors
5. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Whitesides, G.M.; Grzybowski, B. Self assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20, 51–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538. [Google Scholar] [CrossRef]
- Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013, 5, 7098–7140. [Google Scholar] [CrossRef] [Green Version]
- Lehn, J.M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. Angew. Chem. Int. Ed. 1988, 27, 89–112. [Google Scholar] [CrossRef]
- Semenov, A.; Spatz, J.P.; Möller, M.; Lehn, J.M.; Sell, B.; Schubert, D.; Weidl, C.H.; Schubert, U.S. Controlled Arrangement of Supramolecular Metal Coordination Arrays on Surfaces. Angew. Chem. Int. Ed. 1999, 38, 2547–2550. [Google Scholar] [CrossRef]
- Amit, M.; Yuran, S.; Gazit, E.; Reches, M.; Ashkenasy, N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. Adv. Mater. 2018, 30, 1707083. [Google Scholar] [CrossRef]
- Li, S.; Tian, T.; Zhang, T.; Cai, X.; Lin, Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater. Today 2019, 24, 57–68. [Google Scholar] [CrossRef]
- Li, P.; Sakuma, K.; Tsuchiya, S.; Sun, L.; Hayamizu, Y. Fibroin-like Peptides Self-Assembling on Two-Dimensional Materials as a Molecular Scaffold for Potential Biosensing. Appl. Mater. Interfaces 2019, 11, 20670–20677. [Google Scholar] [CrossRef]
- Qi, G.-B.; Gao, Y.-J.; Wang, L.; Wang, H. Self-Assembled Peptide-Based Nanomaterials for Biomedical Imaging and Therapy. Adv. Mater. 2018, 30, 1703444. [Google Scholar] [CrossRef]
- Wilner, O.; Orbach, R.; Henning, A.; Teller, C.; Yehezkeli, O.; Mertig, M.; Harries, D.; Willner, I. Self-assembly of DNA nanotubes with controllable diameters. Nat. Commun. 2011, 2, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B. Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Self-Assembly; William Andrew Publishing: New York, NY, USA, 2018; pp. 177–210. [Google Scholar]
- Ariga, K.; Jia, X.; Song, J.; Hill, J.P.; Leong, D.T.; Jia, Y.; Li, J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew. Chem. Int. Ed. 2020, 59, 15424–15446. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Pérez-Juste, J.; Bals, S.; Tendeloo, G.V.; Donaldson, S.H.; Chmelka, B.F.; Israelachvili, J.N.; et al. Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano 2012, 6, 11059–11065. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A.; Magazu, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 2015, 151683. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-J.; Yang, H.-B. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. Acc. Chem. Res. 2018, 51, 2699–2710. [Google Scholar] [CrossRef]
- Shojaei, T.R.; Soltani, S.; Derakhshani, M. Synthesis, properties, and biomedical applications of inorganic bionanomaterials. In Micro and Nano Technologies, Fundamentals of Bionanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 139–174. [Google Scholar]
- Klein, S.; Kızaloğlu, M.; Portilla, L.; Park, H.; Rejek, T.; Hümmer, J.; Meyer, K.; Hock, R.; Distel, L.V.R.; Halik, M.; et al. Enhanced In Vitro Biocompatibility and Water Dispersibility of Magnetite and Cobalt Ferrite Nanoparticles Employed as ROS Formation Enhancer in Radiation Cancer Therapy. Small 2018, 14, 1704111. [Google Scholar] [CrossRef]
- Stephanopoulos, N.; Ortony, J.H.; Stupp, S.I. Self-assembly for the synthesis of functional biomaterials. Acta Mater. 2013, 61, 912–930. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, T.; Banerjee, R. Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther. Deliv. 2011, 2, 1485–1516. [Google Scholar] [CrossRef]
- Zhukov, A.; Ipatov, M.; Corte-Leon, P.; Blanco, J.M.; Zhukova, V. Advanced functional magnetic microwires for magnetic sensors suitable for biomedical applications. In Magnetic Materials and Technologies for Medical Applications; Woodhead Publishing: Delhi, India, 2022; pp. 527–579. [Google Scholar]
- Ripka, P.; Janosek, M. Advances in Magnetic Field Sensors. IEEE Sens. J. 2010, 10, 1108–1116. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, H.M.; Mohamed, F.M.; Marzouq, M.H.; El-Din Mustafa, A.B.; Mohamed, M.A.; Mahmoud, F.A. Review of Green Methods of Iron Nanoparticles Synthesis and Applications. BioNanoScience 2018, 8, 491–503. [Google Scholar] [CrossRef]
- Vallabani, N.V.S.; Singh, S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 2018, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Gui, X.; Lin, Z.; Zheng, Y.; Liu, M.; Zhan, R.; Zhu, Y.; Tang, Z. Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 20927–20934. [Google Scholar] [CrossRef]
- Zuo, Z.X.D.; Wu, C.W. Synthesis and magnetic properties of carbon nanotube-iron oxide nanoparticle composites for hyperthermia: A review. Rev. Adv. Mater. Sci. 2015, 40, 165–176. [Google Scholar]
- Xu, X.; Li, H.; Zhang, Q.; Hu, H.; Zhao, Z.; Li, J.; Li, J.; Qiao, Y.; Gogotsi, Y. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. ACS Nano 2015, 9, 3969–3977. [Google Scholar] [CrossRef]
- Cai, Z.; Ye, Y.; Wan, X.; Liu, J.; Yang, S.; Xia, Y.; Li, G.; He, Q. Morphology–Dependent Electrochemical Sensing Properties of Iron Oxide–Graphene Oxide Nanohybrids for Dopamine and Uric Acid. Nanomaterials 2019, 9, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Morita, M.; Takemura, K.; Park, E.Y. A multifunctional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform, Biosens. Bioelectron 2018, 102, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Zhao, L.; Gao, H.; Sun, P.; Liu, F.; Zhang, S.; Shimanoe, K.; Yamazoe, N.; Lu, G. Hierarchical Assembly of α-Fe2O3 Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 8919–8928. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Zhao, Y. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine. Adv. Mater. 2016, 28, 7304–7339. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Liu, M.; Chen, T.; Huang, H.; Huang, Q.; Tian, J.; Wen, Y.; Cao, Q.-Y.; Zhang, X.; Wei, Y. Facile construction and biological imaging of crosslinked fluorescent organic nanoparticles with aggregation-induced emission feature through a catalyst-free azide-alkyne click reaction. Dyes Pigm. 2018, 14, 52–60. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Cui, Q.; Cao, Q.; Li, L. Self-Assembly of Fluorescent Organic Nanoparticles for Iron(III) Sensing and Cellular Imaging. Appl. Mater. Interfaces 2016, 8, 7440–7448. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Shi, L.; Li, L. Fluorescent Organic Nanoparticles Based on Branched Small Molecule: Preparation and Ion Detection in Lithium-Ion Battery. Appl. Mater. Interfaces 2013, 5, 3392–3400. [Google Scholar] [CrossRef] [PubMed]
- Heger, Z.; Cernei, N.; Krizkova, S.; Masarik, M.; Kopel, P.; Hodek, P.; Zitka, O.; Adam, V.; Kizek, R. Paramagnetic Nanoparticles as a Platform for FRET-Based Sarcosine Picomolar Detection. Sci. Rep. 2015, 5, 8868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Xu, T.; Lu, Z.; Vong, C.I.; Zhang, L. On-Demand Disassembly of Paramagnetic Nanoparticle Chains for Microrobotic Cargo Delivery. IEEE Trans. Robot. 2017, 33, 1213–1225. [Google Scholar] [CrossRef]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singamaneni, S.; Bliznyuk, V.N.; Binek, C.; Tsymbal, E.Y. Magnetic nanoparticles: Recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 2011, 21, 16819–16845. [Google Scholar] [CrossRef] [Green Version]
- Faraudo, J.; Andreu, J.S.; Calero, C.; Camacho, J. Predicting the Self-Assembly of Superparamagnetic Colloids under Magnetic Fields. Adv. Funct. Mater. 2016, 26, 3837–3858. [Google Scholar] [CrossRef]
- Cao, C.-Y.; Shen, Y.-Y.; Wang, J.-D.; Li, L.; Liang, G.-L. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci. Rep. 2013, 3, 1024. [Google Scholar] [CrossRef] [Green Version]
- Nandhini, T.; Kaleeswaran, P.; Pitchumani, K. A highly selective, sensitive and “turn-on” fluorescent sensor for the paramagnetic Fe3+ ion. Sens. Actuators B Chem. 2016, 230, 199–205. [Google Scholar] [CrossRef]
- Hong, F.; Huang, C.; Wu, L.; Wang, M.; Chen, Y.; She, Y. Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosens. Bioelectron. 2021, 192, 113489. [Google Scholar] [CrossRef]
- Vijayan, A.N.; Refaei, M.A.; Silva, R.N.; Tsang, P.; Zhang, P. Detection of Sortase A and Identification of Its Inhibitors by Paramagnetic Nanoparticle-Assisted Nuclear Relaxation. Anal Chem. 2021, 93, 15430–15437. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Dai, X.; Ding, L.; Chen, J.; Yao, G.; Liu, X.; Luo, S.; Shi, J.; Wang, L.; et al. Single-Stranded DNA-Encoded Gold Nanoparticle Clusters as Programmable Enzyme Equivalents. J. Am. Chem. Soc. 2022, 144, 6311–6320. [Google Scholar] [CrossRef]
- Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537–556. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Cheng, F.; Zhang, Y.; Chen, L. Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosens. Bioelectron. 2017, 89, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.; Bhattacharjee, R.R.; Kotal, A.; Mandal, T.K. Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir 2006, 22, 7141–7143. [Google Scholar] [CrossRef] [PubMed]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Slocik, J.M.; Morley, O.S.; Rajesh, R.N. Synthesis of gold nanoparticles using multifunctional peptides. Small 2005, 1, 1048–1052. [Google Scholar] [CrossRef]
- Fabris, L.; Antonello, S.; Armelao, L.; Donkers, R.L.; Polo, F.; Toniolo, C.; Maran, F. Gold nanoclusters protected by conformationally constrained peptides. J. Am. Chem. Soc. 2006, 128, 326–336. [Google Scholar] [CrossRef]
- Yeh, Y.I.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, G.; You, M.; Song, E.; Shukoor, M.I.; Zhang, K.; Tan, W. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070–5077. [Google Scholar] [CrossRef] [Green Version]
- Wang, B. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 2014, 35, 1954–1966. [Google Scholar] [CrossRef]
- Vala, A.K. Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ. Prog. Sustain. Energy 2015, 34, 194–197. [Google Scholar] [CrossRef]
- Wadhwany, S.A. Novel polyhedral gold nanoparticles: Green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp. SW30. World J. Microbiol. Biotechnol. 2014, 30, 2723–2731. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, Z.; Lu, X.; He, F.; Zhu, X.; Ma, Y.; He, R.; Gao, F.; Ni, W.; Yi, Y. Controllable biosynthesis and properties of gold nanoplates using yeast extract. Nanomicro Lett. 2017, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Black, K.C.; Luehmann, H.; Li, W.; Zhang, Y.; Cai, X.; Wan, D.; Liu, S.Y.; Li, M.; Kim, P.; et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 26, 68–77. [Google Scholar] [CrossRef]
- Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 29, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Comparetti, E.J.; Romagnoli, G.G.; Gorgulho, C.M.; Pedrosa, V.A.; Kaneno, R. Anti-PSMA monoclonal antibody increases the toxicity of paclitaxel carried by carbon nanotubes. Mat. Sci. Eng. C 2020, 116, 111254. [Google Scholar] [CrossRef]
- Dequaire, M.; Degrand, C.; Limoges, B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem. 2000, 15, 5521–5528. [Google Scholar] [CrossRef]
- Liao, K.T.; Huang, H.J. Femtomolar immunoassay based on coupling gold nanoparticle enlargement with square wave stripping voltammetry. Anal. Chim. Acta 2005, 4, 159–164. [Google Scholar] [CrossRef]
- Chen, J.; Tang, J.; Yan, F.; Ju, H. A gold nanoparticles/sol–gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials 2006, 1, 2313–2321. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Dong, S.; Wang, E. Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal. Chem. 2002, 1, 3599–3604. [Google Scholar] [CrossRef] [PubMed]
- Gooding, J.J. Electrochemical DNA hybridization biosensors. Electroanalysis 2002, 14, 1149–1156. [Google Scholar] [CrossRef]
- Wang, J.; Xu, D.; Kawde, A.N.; Polsky, R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 2001, 15, 5576–5581. [Google Scholar] [CrossRef]
- Wang, J.; Xu, D.; Polsky, R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc. 2002, 24, 4208–4209. [Google Scholar] [CrossRef]
- Lim, C.T. Synthesis, optical properties, and chemical–biological sensing applications of one-dimensional inorganic semiconductor nanowires. Prog. Mater. Sci. 2013, 1, 705–748. [Google Scholar]
- Dasgupta, N.P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S.C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. 25th anniversary article: Semiconductor nanowires–synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.Q.; Yu, D.P.; Zhang, H.Z.; Bai, Z.G.; Ding, Y. The growth mechanism of silicon nanowires and their quantum confinement effect. J. Cryst. Growth 2000, 1, 513–517. [Google Scholar] [CrossRef]
- Peng, X.S.; Meng, G.W.; Zhang, J.; Wang, X.F.; Wang, C.Z.; Liu, X.; Zhang, L.D. Strong quantum confinement in ordered PbSe nanowire arrays. J. Mater. Res. 2002, 17, 1283–1286. [Google Scholar] [CrossRef]
- Balasubramanian, C.; Godbole, V.P.; Rohatgi, V.K.; Das, A.K.; Bhoraskar, S.V. Synthesis of nanowires and nanoparticles of cubic aluminium nitride. Nanotechnology 2004, 13, 370. [Google Scholar] [CrossRef]
- Dattoli, E.N.; Wan, Q.; Guo, W.; Chen, Y.; Pan, X.; Lu, W. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 2007, 8, 2463–2469. [Google Scholar] [CrossRef]
- Wanekaya, A.K.; Chen, W.; Myung, N.V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis 2006, 18, 533–550. [Google Scholar] [CrossRef]
- Choi, J.; Wehrspohn, R.B.; Gösele, U. Moiré pattern formation on porous alumina arrays using nanoimprint lithography. Adv. Mater. 2003, 16, 1531–1534. [Google Scholar] [CrossRef]
- Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 1996, 20, 1411–1413. [Google Scholar] [CrossRef]
- Zhang, R.; Tejedor, M.I.; Anderson, M.A.; Paulose, M.; Grimes, C.A. Ethylene detection using nanoporous PtTiO2 coatings applied to magnetoelastic thick films. Sensors 2002, 2, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, J.; Khan, G.G.; Basumallick, A. Nanowires: Properties, applications and synthesis via porous anodic aluminium oxide template. Bull. Mater. Sci. 2007, 30, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Rout, C.S.; Krishna, S.H. SRC Vivek chand, A. Govindaraj and CNR Rao. Chem. Phys. Lett. 2006, 418, 586–590. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, M.; Qu, F.; Shen, G.; Yu, R. Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochem 2007, 1, 211–216. [Google Scholar] [CrossRef]
- Aravamudhan, S.; Kumar, A.; Mohapatra, S.; Bhansali, S. Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform. Biosens. Bioelectron 2007, 15, 289–294. [Google Scholar] [CrossRef]
- Gao, Z.; Agarwal, A.; Trigg, A.D.; Singh, N.; Fang, C.; Tung, C.H.; Fan, Y.; Buddharaju, K.D.; Kong, J. Silicon nanowire arrays for label-free detection of DNA. Anal. Chem. 2007, 1, 3291–3297. [Google Scholar] [CrossRef]
- Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chemi. Soc. Rev. 2007, 36, 1263–1269. [Google Scholar] [CrossRef]
- Puiu, M.; Bala, C. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays. Bioelectrochem 2018, 1, 66–75. [Google Scholar] [CrossRef]
- Loo, Y.; Zhang, S.; Hauser, C.A. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol. Adv. 2012, 1, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.L.; Bromley, E.H.; Bartlett, G.J.; Sessions, R.B.; Sharp, T.H.; Williams, C.L.; Curmi, P.M.; Forde, N.R.; Linke, H.; Woolfson, D.N. Squaring the circle in peptide assembly: From fibers to discrete nanostructures by de novo design. J. Am. Chem. Soc. 2012, 19, 5457–5467. [Google Scholar] [CrossRef] [PubMed]
- McQuistan, A.; Zaitouna, A.J.; Echeverria, E.; Lai, R.Y. Use of thiolated oligonucleotides as anti-fouling diluents in electrochemical peptide-based sensors. Chem. Commun. 2014, 50, 4690–4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, A.M.; Stupp, S.I. Simultaneous self-assembly, orientation, and patterning of peptide− amphiphile nanofibers by soft lithography. Nano Lett. 2007, 9, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Strzemińska, I.; Fanchine, S.S.; Anquetin, G.; Reisberg, S.; Noël, V.; Pham, M.C.; Piro, B. Grafting of a peptide probe for Prostate-Specific Antigen detection using diazonium electroreduction and click chemistry. Biosens. Bioelectron. 2016, 15, 131–137. [Google Scholar] [CrossRef]
- Han, L.; Liu, P.; Petrenko, V.A.; Liu, A. A label-free electrochemical impedance cytosensor based on specific peptide-fused phage selected from landscape phage library. Sci. Rep. 2016, 6, 22199. [Google Scholar] [CrossRef] [Green Version]
- Adjemian, J.; Anne, A.; Cauet, G.; Demaille, C. Cleavage-sensing redox peptide monolayers for the rapid measurement of the proteolytic activity of trypsin and α-thrombin enzymes. Langmuir 2010, 15, 10347–10356. [Google Scholar] [CrossRef]
- Gerasimov, J.Y.; Lai, R.Y. An electrochemical peptide-based biosensing platform for HIV detection. Chem. Commun. 2010, 46, 395–397. [Google Scholar] [CrossRef]
- Li, R.; Huang, H.; Huang, L.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Electrochemical biosensor for epidermal growth factor receptor detection with peptide ligand. Electrochim. Acta 2013, 109, 233–237. [Google Scholar] [CrossRef]
- Damborsky, P.; Svitel, J.; Katrlik, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar]
- Charoenkitamorn, K.; Yakoh, A.; Jampasa, S.; Chaiyo, S.; Chailapakul, O. Electrochemical and optical biosensors for biological sensing application. Sci. Asia 2020, 46, 245–253. [Google Scholar] [CrossRef]
- Fan, J.; Cheng, Y.; Sun, M. Functionalized gold nanoparticles: Synthesis, properties and biomedical application. Chem. Rec. 2020, 20, 1474–1504. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human câncer. Int. J. Mol. Sci. 2018, 19, 1979. [Google Scholar] [CrossRef]
- Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics 2018, 8, 1985–2017. [Google Scholar] [PubMed]
- Kim, H.; Webster, R.G.; Webby, R.J. Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunol. 2018, 31, 174–183. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Wei, W.; Zhao, H.; Zhou, Z.; Zhanga, Y.; Liu, S. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst 2015, 140, 3989–3995. [Google Scholar] [CrossRef]
- Basso, C.R.; Crulhas, B.P.; Magro, M.; Vianello, F.; Pedrosa, V.A. A new immunoassay of hybrid nanomater conjugated to aptamers for the detection of dengue virus. Talanta 2019, 197, 482–490. [Google Scholar] [CrossRef]
- Aithal, S.; Mishriki, S.; Gupta, R.; Sahu, R.P.; Botos, G.; Tanvir, S.; Hanson, R.W.; Puri, I.K. SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta 2022, 236, 122841–122849. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lin, Z.; Zhong, H.; Peng, A.; Chen, X.; Huang, Z. Rapid detection of malachite green in fish based on CdTe quantum dots coated with molecularly imprinted sílica. Food Chem. 2017, 229, 847–853. [Google Scholar] [CrossRef]
- Li, L.; Peng, A.; Lin, Z.; Zhong, H.; Chen, X.; Huang, Z. Biomimetic ELISA detection of malachite green based on molecularly imprinted Polymer film. Food Chem. 2017, 229, 403–408. [Google Scholar]
- Jia, J.; Yan, S.; Lai, X.; Xu, Y.; Liu, T.; Xiang, Y. Colorimetric aptasensor for detection of malachite green in fish sample based on RNA and gold nanoparticles. Food Anal. Methods 2018, 11, 1668–1676. [Google Scholar] [CrossRef]
- Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 2021, 179, 113076–113090. [Google Scholar] [CrossRef]
- Anfossi, L.; Nardo, F.; Russo, A.; Cavalera, S.; Giovannoli, C.; Spano, G.; Baumgartner, S.; Lauter, K.; Baggiani, C. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal. Bioanal. Chem. 2019, 411, 1905–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Vaghasiya, K.; Verma, R.K.; Yadav, A.B. (Eds.) Emerging Applications of Nanoparticles and Architecture Nanostructures; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Yan, X.; Huang, S.; Wang, Y.; Tang, Y.; Tian, Y. Bottom-Up Self-Assembly Based on DNA Nanotechnology. Nanomaterials 2020, 10, 2047. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Zhang, M.; Xiong, M.; Fu, X.; Ke, G.; Zhang, X.B. DNA nanostructure-based fluorescent probes for cellular sensing. Anal. Methods 2020, 12, 1415–1429. [Google Scholar]
- Tay, C.Y.; Yan, L.; Leong, D.T. Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS Nano 2015, 9, 5609–5617. [Google Scholar]
- Westerfield, J.M.; Barrera, F.N. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J. Biol. Chem. 2020, 295, 1792–1814. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Chen, S.; Li, P.; Wang, L.; Li, J.; Li, J.; Yang, H.H.; Tan, W. Nongenetic approach for imaging protein dimerization by aptamer recognition and proximity-induced DNA assembly. J. Am. Chem. Soc. 2018, 140, 4186–4190. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wu, Z.; Liu, S.J.; Chu, X. Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics. Anal. Chem. 2015, 87, 6470–6474. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Zhang, M.; Ma, C. DNA self-assembly catalyzed by artificial agentes. Sci. Rep. 2017, 7, 6818–6823. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Lu, J.; Chen, D.; Jiang, Y.; Wang, Z.; Qin, W.; Yu, Y.; Chen, Z.; Zhang, Y. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sens. Actuators B 2018, 268, 359–367. [Google Scholar] [CrossRef]
- Chivers, P.R.A.; Smith, D.K. Shaping and structuring supramolecular gels. Nat. Rev. Mater. 2019, 4, 463–478. [Google Scholar] [CrossRef] [Green Version]
- Triboni, E.R.; Moraes, T.B.F.; Politi, M.J. (Eds.) Supramolecular Gels; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Seiffert, S.; Kumacheva, E.; Okay, O.; Anthamatten, M.; Chau, M.; Dankers, P.Y.; Greenland, B.W.; Pape, A.C.H. (Eds.) Supramolecular Polymer Networks and Gels; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Cao, X.; Gao, A.; Hou, J.T.; Yi, T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord. Chem. Rev. 2021, 434, 213792–213826. [Google Scholar] [CrossRef]
- Pang, X.; Yu, X.; Lan, H.; Ge, X.; Li, Y.; Zhen, X.; Yi, T. Visual recognition of aliphatic and aromatic amines using a fluorescente gel: Application of a sonication triggered organogel. ACS Appl. Mater. Interfaces 2015, 7, 13569–13577. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Wang, Z.; Yu, X.; Lan, H.; Ren, J.; Geng, L.; Yi, T. An ultrasound triggered gelation approach to selectively solvatochromic sensors. Sens. Actuators B 2017, 243, 1020–1026. [Google Scholar] [CrossRef]
- Lyu, X.; Tang, W.; Sasaki, Y.; Zhao, J.; Zheng, T.; Tian, Y.; Minami, T. oward Food Freshness Monitoring: Coordination binding-based colorimetric sensor array for sulfur-containing amino acids. Front. Chem. 2021, 9, 685783–685790. [Google Scholar] [CrossRef]
- Sasaki, Y.; Minamiki, T.; Tokito, S.; Minami, T. A molecular self-assembled colourimetric chemosensor array for simultaneous detection of metal ions in water. Chem. Commun. 2017, 53, 6561–6564. [Google Scholar] [CrossRef]
- Sasaki, Y.; Kubota, R.; Minami, T. Molecular self-assembled chemosensor and their arrays. Coord. Chem. Rev. 2021, 429, 213607–213664. [Google Scholar] [CrossRef]
- Smith, D.G.; Sajid, N.; Rehn, S.; Chandramohan, R.; Carney, I.J.; Khan, M.A.; New, E.J. A library-screening approach for developing a fluorescence sensing array for the detection of metal ions. Analyst 2016, 141, 4608–4613. [Google Scholar] [CrossRef] [Green Version]
- Miami, T.; Emami, F.; Nishiyabu, R.; Kubo, Y.; Anzenbacher, P. Quantitative analysis of modeled ATP hydrolysis in water by a colorimetric sensor array. Chem. Commun. 2016, 52, 7838–7841. [Google Scholar] [CrossRef] [Green Version]
- Bucur, B.; Purcarea, C.; Andreescu, S.; Vasilescu, A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors 2021, 21, 3038. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Cho, S.J.; Byeon, S.E.; He, X.; Yoon, H.J. Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells. Adv. Energy Mat. 2020, 10, 2002606. [Google Scholar] [CrossRef]
- Theyagarajan, K.; Kim, Y.-J. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. Biosensors 2023, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Erturk, G.; Mattiasson, B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basso, C.R.; Crulhas, B.P.; Castro, G.R.; Pedrosa, V.A. Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers. Int. J. Mol. Sci. 2023, 24, 10819. https://doi.org/10.3390/ijms241310819
Basso CR, Crulhas BP, Castro GR, Pedrosa VA. Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers. International Journal of Molecular Sciences. 2023; 24(13):10819. https://doi.org/10.3390/ijms241310819
Chicago/Turabian StyleBasso, Caroline R., Bruno P. Crulhas, Gustavo R. Castro, and Valber A. Pedrosa. 2023. "Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers" International Journal of Molecular Sciences 24, no. 13: 10819. https://doi.org/10.3390/ijms241310819
APA StyleBasso, C. R., Crulhas, B. P., Castro, G. R., & Pedrosa, V. A. (2023). Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers. International Journal of Molecular Sciences, 24(13), 10819. https://doi.org/10.3390/ijms241310819