Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Testing
2.2. Genome Sequencing
2.3. Genome Analysis for ARGs
3. Discussion
3.1. Phenotypic Testing and Proposal of S. equorum-Specific Cut-Offs
3.2. Genome Analysis for Antibiotic Resistance Genes
3.3. Transferability of Antibiotic Resistance Genes
4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions
4.2. Typing of the Strains
4.3. Antibiotic Testing
4.4. MIC Analysis and Tentative R/S Cut-Offs
4.5. Whole-Genome Sequencing and Analysis
4.6. Phylogenetic and Phylogenomic Analyses
4.7. Isolation and Transformation of Plasmid DNA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. Int. 2022, 29, 11054–11075. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Manuzon, M.; Lehman, M.; Wan, K.; Luo, H.; Wittum, T.E.; Yousef, A.; Bakaletz, L.O. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol. Lett. 2006, 254, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Matijasic, B.B.; Ibana, J.A.; Lim, R.L.H. Editorial: Antimicrobial resistance along the food chain: Are We What We Eat? Front. Microbiol. 2022, 13, 881882. [Google Scholar] [CrossRef]
- Kumar, S.B.; Arnipalli, S.R.; Ziouzenkova, O. Antibiotics in food chain: The consequences for antibiotic resistance. Antibiotics 2020, 9, 688. [Google Scholar] [CrossRef]
- Alexa Oniciuc, E.A.; Walsh, C.J.; Coughlan, L.M.; Awad, A.; Simon, C.A.; Ruiz, L.; Crispie, F.; Cotter, P.D.; Alvarez-Ordóñez, A. Dairy products and dairy-processing environments as a reservoir of antibiotic resistance and quorum-quenching determinants as revealed through functional metagenomics. mSystems 2020, 5, e00723-19. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Picazo, P.; Gómez-Gómez, C.; Morales-Cortes, S.; Muniesa, M.; Rodríguez-Rubio, L. Antibiotic resistance in the viral fraction of dairy products and a nut-based milk. Int. J. Food Microbiol. 2022, 367, 109590. [Google Scholar] [CrossRef]
- Flórez, A.B.; Alegría, A.; Rossi, F.; Delgado, S.; Felis, G.E.; Torriani, S.; Mayo, B. Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. Biomed. Res. Int. 2014, 2014, 746859. [Google Scholar] [CrossRef] [Green Version]
- Nunziata, L.; Brasca, M.; Morandi, S.; Silvetti, T. Antibiotic resistance in wild and commercial non-enterococcal lactic acid bacteria and bifidobacteria strains of dairy origin: An update. Food Microbiol. 2022, 104, 103999. [Google Scholar] [CrossRef]
- Ammor, M.S.; Flórez, A.B.; Mayo, B. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007, 24, 559–570. [Google Scholar] [CrossRef]
- Sagar, P.; Aseem, A.; Banjara, S.K.; Veleri, S. The role of food chain in antimicrobial resistance spread and One Health approach to reduce risks. Int. J. Food Microbiol. 2023, 391–393, 110148. [Google Scholar] [CrossRef] [PubMed]
- Mayo, B.; Rodríguez, J.; Vázquez, L.; Flórez, A.B. Microbial interactions within the cheese ecosystem and their application to improve quality and safety. Foods 2021, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Dugat-Bony, E.; Garnier, L.; Denonfoux, J.; Ferreira, S.; Sarthou, A.S.; Bonnarme, P.; Irlinger, F. Highlighting the microbial diversity of 12 French cheese varieties. Int. J. Food Microbiol. 2016, 238, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Yeluri Jonnala, B.R.; McSweeney, P.L.H.; Sheehan, J.J.; Cotter, P.D. Sequencing of the cheese microbiome and its relevance to 544 industry. Front. Microbiol. 2018, 9, 1020. [Google Scholar] [CrossRef] [Green Version]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef]
- EUCAST. MIC Distributions and Epidemiological Cut-off Value (ECOFF) Setting. EUCAST SOP 10.2. 2021. Available online: http://www.eucast.org (accessed on 3 February 2023).
- Cachaldora, A.; Fonseca, S.; Franco, I.; Carballo, J. Technological and safety characteristics of Staphylococcaceae isolated from Spanish traditional dry-cured sausages. Food Microbiol. 2013, 33, 61–68. [Google Scholar] [CrossRef]
- Marty, E.; Bodenmann, C.; Buchs, J.; Hadorn, R.; Eugster-Meier, E.; Lacroix, C.; Meile, L. Prevalence of antibiotic resistance in coagulase-negative staphylococci from spontaneously fermented meat products and safety assessment for new starters. Int. J. Food Microbiol. 2012, 159, 74–83. [Google Scholar] [CrossRef]
- Mikulášová, M.; Valáriková, J.; Dušinský, R.; Chovanová, R.; Belicová, A. Multiresistance of Staphylococcus xylosus and Staphylococcus equorum from Slovak Bryndza cheese. Folia Microbiol. 2014, 59, 223–227. [Google Scholar] [CrossRef]
- Resch, M.; Nagel, V.; Hertel, C. Antibiotic resistance of coagulase-negative staphylococci associated with food and used in starter cultures. Int. J. Food Microbiol. 2008, 127, 99–104. [Google Scholar] [CrossRef]
- Even, S.; Leroy, S.; Charlier, C.; Zakour, N.B.; Chacornac, J.P.; Lebert, I.; Jamet, E.; Desmonts, M.H.; Coton, E.; Pochet, S.; et al. Low occurrence of safety hazards in coagulase negative staphylococci isolated from fermented foodstuffs. Int. J. Food Microbiol. 2010, 139, 87–95. [Google Scholar] [CrossRef]
- Leroy, S.; Lebert, I.; Chacornac, J.P.; Chavant, P.; Bernardi, T.; Talon, R. Genetic diversity and biofilm formation of Staphylococcus equorum isolated from naturally fermented sausages and their manufacturing environment. Int. J. Food Microbiol. 2009, 134, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Coton, E.; Desmonts, M.H.; Leroy, S.; Coton, M.; Jamet, E.; Christieans, S.; Donnio, P.Y.; Lebert, I.; Talon, R. Biodiversity of coagulase-negative staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples. Int. J. Food Microbiol. 2010, 137, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Meugnier, H.; Bes, M.; Vernozy-Rozand, C.; Mazuy, C.; Brun, Y.; Freney, J.; Fleurette, J. Identification and ribotyping of Staphylococcus xylosus and Staphylococcus equorum strains isolated from goat milk and cheese. Int. J. Food Microbiol. 1996, 31, 325–331. [Google Scholar] [CrossRef]
- Unno, R.; Matsutani, M.; Suzuki, T.; Kodama, K.; Matsushita, H.; Yamasato, K.; Koizumi, Y.; Ishikawa, M. Lactic acid bacterial diversity in Brie cheese focusing on salt concentration and pH of isolation medium and characterisation of halophilic and alkaliphilic lactic acid bacterial isolates. Int. Dairy J. 2020, 109, 104757. [Google Scholar] [CrossRef]
- Deetae, P.; Bonnarme, P.; Spinnler, H.E.; Helinck, S. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl. Microbiol. Biotechnol. 2007, 76, 1161–1171. [Google Scholar] [CrossRef]
- Landete, G.; Curiel, J.A.; Carrascosa, A.V.; Muñoz, R.; de las Rivas, B. Characterization of coagulase-negative staphylococci isolated from Spanish dry cured meat products. Meat Sci. 2013, 93, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Stavropoulou, D.A.; De Vuyst, L.; Leroy, F. Nonconventional starter cultures of coagulase-negative staphylococci to produce animal-derived fermented foods, a SWOT analysis. J. Appl. Microbiol. 2018, 25, 1570–1586. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Heo, S.; Jeong, D.-W. Genomic insights into Staphylococcus equorum KS1039 as a potential starter culture for the fermentation of high-salt foods. BMC Genom. 2018, 19, 136. [Google Scholar] [CrossRef] [Green Version]
- Place, R.B.; Hiestand, D.; Gallmann, H.R.; Teuber, M. Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst. Appl. Microbiol. 2003, 26, 30–37. [Google Scholar] [CrossRef]
- Rodríguez-González, M.; Fonseca, S.; Centeno, J.A.; Carballo, J. Biochemical changes during the manufacture of Galician chorizo sausage as affected by the addition of autochthonous starter cultures. Foods 2020, 9, 1813. [Google Scholar] [CrossRef]
- Irlinger, F. Safety assessment of dairy microorganisms: Coagulase-negative staphylococci. Int. J. Food Microbiol. 2008, 126, 302–310. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0, Valid from 1 January 2023. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 3 February 2023).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Vázquez, L.; Rodríguez, J.; Flórez, A.B.; Mayo, B. Biochemical and Technological Properties of Staphylococcus equorumStrains from Cheese; Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC): Villaviciosa, Spain, 2023; manuscript in preparation. [Google Scholar]
- Frantzen, C.A.; Kleppen, H.P.; Holo, H. Lactococcus lactis diversity in undefined mixed dairy starter cultures as revealed by comparative genome analyses and targeted amplicon sequencing of epsD. Appl. Environ. Microbiol. 2018, 84, e02199-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, J.; González-Guerra, A.; Vázquez, L.; Fernández-López, R.; Flórez, A.B.; de la Cruz, F.; Mayo, B. Isolation and phenotypic and genomic characterization of Tetragenococcus spp. from two Spanish traditional blue-veined cheeses made of raw milk. Int. J. Food Microbiol. 2022, 371, 109670. [Google Scholar] [CrossRef]
- Siezen, R.J.; Tzeneva, V.A.; Castioni, A.; Wels, M.; Phan, H.T.; Rademaker, J.L.; Starrenburg, M.J.; Kleerebezem, M.; Molenaar, D.; van Hylckama Vlieg, J.E. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 2010, 12, 758–773. [Google Scholar] [CrossRef]
- Frimodt-Møller, J.; Rossi, E.; Haagensen, J.A.J.; Falcone, M.; Molin, S.; Johansen, H.K. Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Sci. Rep. 2018, 8, 12512. [Google Scholar] [CrossRef] [Green Version]
- Horvath, A.; Rozgonyi, F.; Pesti, N.; Kocsis, E.; Malmos, G.; Kristof, K.; Nagy, K.; Lagler, H.; Presterl, E.; Stich, K.; et al. Quantitative differences in antibiotic resistance between methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains isolated in Hungary, Austria and Macedonia. J. Chemother. 2010, 22, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Guidance on the Approval and Low-Risk Criteria Linked to “Antimicrobial Resistance” Applicable to Microorganisms Used for Plant Protection in Accordance with Regulation EC no. 1107/2009; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Kahlmeter, G.; Turnidge, J. How to: ECOFFs-the why, the how, and the don’ts of EUCAST epidemiological cutoff values. Clin. Microbiol. Inf. 2022, 28, 952–954. [Google Scholar] [CrossRef]
- Turnidge, J.; Kahlmeter, G.; Kronvall, G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 2006, 12, 418–425. [Google Scholar] [CrossRef]
- Kronvall, G. Normalized resistance interpretation as a tool for establishing epidemiological MIC susceptibility breakpoints. J. Clin. Microbiol. 2010, 48, 4445–4452. [Google Scholar] [CrossRef] [Green Version]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2018, 85, e01738-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 2019, 57, e01405-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schürch, A.C.; van Schaik, W. Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance. Ann. N.Y. Acad. Sci. 2017, 1388, 108–120. [Google Scholar] [CrossRef]
- WHO. GLASS Whole Genome Sequencing for Surveillance of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Altayb, H.N.; Elbadawi, H.S.; Baothman, O.; Kazmi, I.; Alzahrani, F.A.; Nadeem, M.S.; Hosawi, S.; Chaieb, K. Whole-genome sequence of multidrug-resistant methicillin-resistant Staphylococcus epidermidis carrying biofilm-associated genes and a unique composite of SCCmec. Antibiotics 2022, 11, 861. [Google Scholar] [CrossRef]
- Pennone, V.; Prieto, M.; Álvarez-Ordóñez, A.; Cobo-Diaz, J.F. Antimicrobial resistance genes analysis of publicly available Staphylococcus aureus genomes. Antibiotics 2022, 11, 1632. [Google Scholar] [CrossRef]
- Jeong, D.-W.; Heo, S.; Ryu, S.; Blom, J.; Lee, J.-H. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci. Rep. 2018, 7, 5383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitter, M.; Nerz, C.; Rosenstein, R.; Götz, F.; Hertel, C. DNA microarray-based detection of genes involved in safety and technologically relevant properties of food associated coagulase-negative staphylococci. Int. J. Food Microbiol. 2011, 145, 449–458. [Google Scholar] [CrossRef]
- Wagner, T.M.; Howden, B.P.; Sundsfjord, A.; Hegstad, K. Transiently silent acquired antimicrobial resistance: An emerging challenge in susceptibility testing. J. Antimicrob. Chemother. 2023, 78, 586–598. [Google Scholar] [CrossRef]
- Kime, L.; Randall, C.P.; Banda, F.I.; Coll, F.; Wright, J.; Richardson, J.; Empel, J.; Parkhill, J.; O’Neill, A.J. Transient silencing of antibiotic resistance by mutation represents a significant potential source of unanticipated therapeutic failure. mBio 2019, 10, e01755-19. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, M.; Schwarz, S. Chloramphenicol resistance plasmids in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet. Microbiol. 1992, 30, 223–232. [Google Scholar] [CrossRef]
- Tennent, J.M.; May, J.W.; Skurray, R.A. Characterisation of chloramphenicol resistance plasmids of Staphylococcus aureus and S. epidermidis by restriction enzyme mapping techniques. J. Med. Microbiol. 1986, 22, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flórez, A.B.; Vázquez, L.; Rodríguez, J.; Mayo, B. Directed recovery and molecular characterization of antibiotic resistance plasmids from cheese bacteria. Int. J. Mol. Sci. 2021, 22, 7801. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.E.; Christensen, H.; Aarestrup, F.M. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J. Antimicrob. Chemother. 2006, 57, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.D.; Nogueira, J.F.; Gomes Dos Santos, M.V.; Boaventura, J.A.; Nunes Soares, R.A.; José de Simoni Gouveia, J.; Matiuzzi da Costa, M.; Gouveia, G.V. Impact of polymorphisms in blaZ, blaR1 and blaI genes and their relationship with β-lactam resistance in S. aureus strains isolated from bovine mastitis. Microb. Pathog. 2022, 165, 105453. [Google Scholar] [CrossRef] [PubMed]
- Lüthje, P.; von Kockritz-Blickwede, M.; Schwarz, S. Identification and characterization of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A). J. Antimicrob. Chemother. 2007, 59, 600–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, C.; Abrantes, P.; Costa, S.S.; Viveiros, M.; Couto, I. Occurrence and variability of the efflux pump gene norA across the Staphylococcus genus. Int. J. Mol. Sci. 2022, 23, 15306. [Google Scholar] [CrossRef]
- Lüthje, P.; Schwarz, S. Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. Int. J. Antimicrob. Agents 2007, 29, 528–535. [Google Scholar] [CrossRef]
- Bukowski, M.; Piwowarczyk, R.; Madry, A.; Zagorski-Przybylo, R.; Hydzik, M.; Wladyka, B. Prevalence of antibiotic and heavy metal resistance determinants and virulence-related genetic elements in plasmids of Staphylococcus aureus. Front. Microbiol. 2019, 10, 805. [Google Scholar] [CrossRef]
- te Riele, H.; Michel, B.; Ehrlich, S.D. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 1986, 83, 2541–2545. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeong, D.-W. Characterization of mobile Staphylococcus equorum plasmids isolated from fermented seafood that confer lincomycin resistance. PLoS ONE 2015, 10, e140190. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.; Dyke, K.G. Suppression of the thermosensitive replication phenotype of the derivative plasmid of pI9789::Tn552 in Staphylococcus aureus may involve integration of the plasmid into the host chromosome. FEMS Microbiol. Lett. 1996, 136, 129–136. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Ha, S.M.; Lim, J.M.; Kwon, S.J.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- OʼSullivan, D.J.; Klaenhammer, T.R. Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl. Environ. Microbiol. 1993, 59, 2730–2733. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Schneewind, O.; Missiakas, D. Genetic manipulation of Staphylococcus aureus. Curr. Protoc. Microbiol. 2014, 32, 9C-3. [Google Scholar] [CrossRef] [PubMed]
- Holo, H.; Nes, I.F. High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 1989, 55, 3119–3123. [Google Scholar] [CrossRef]
- Pérez, M.; Calles-Enríquez, M.; Nes, I.; Martín, M.C.; Férnandez, M.; Ladero, V.; Álvarez, M.A. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Appl. Microbiol. Biotechnol. 2015, 99, 3547–3558. [Google Scholar] [CrossRef] [Green Version]
Antibiotics | Number of Isolates with a MIC Value (µg mL−1) | Staphylococcus spp. Cut-Offs a | S. equorum Cut-Offs | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | EUCAST | CLSI | This Work b | ||||
S (≤) | R (>) | S (≤) | I (=) | R (≥) | R (≥) | |||||||||||||||
Gentamicin | 30 c | 2 | 2 | 4 | 8 | 16 | 1 | |||||||||||||
Kanamycin | 30 c | 8 | 8 | (-) | 4 | |||||||||||||||
Streptomycin | 12 c | 16 | 2 | (-) | (-) | 4 | ||||||||||||||
Neomycin | 30 c | (-) | (-) | 0.25 | ||||||||||||||||
Tetracycline | 14 | 14 | 2 | 1 | 1 | 4 | 8 | 16 | 2 | |||||||||||
Erythromycin | 3 | 14 | 6 | 3 | 1 | 2 d | 1 d | 1 | 1 | 0.5 | 1–4 | 8 | 2 | |||||||
Clindamycin | 2 | 8 | 7 | 7 | 5 | 1 | 0.25 | 0.25 | 0.5 | 1–2 | 4 | 4 | ||||||||
Chloramphenicol | 3 | 23 | 3 | 1 | (-) | 8 | 16 | 32 | 32 | |||||||||||
Ampicillin | 4 c | 8 | 8 | 3 | 2 d | 3 d | 2 d | (-) | (-) | 0.5 | ||||||||||
Penicillin G | 7 c | 4 | 12 | 2 d | 4 d | 1 d | (-) | 0.12 | (-) | 0.25 | 0.5 | |||||||||
Vancomycin | 21 | 9 | 4 | 4 | 4 | 8–16 | 32 | 2 | ||||||||||||
Quinupristin-dalfopristin | 2 | 11 | 16 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | ||||||||||
Linezolid | 5 | 19 | 6 | 4 | 4 | 4 | (-) | 8 | 8 | |||||||||||
Trimethoprim | 2 | 10 | 8 | 10 | 4 | 4 | 8 | (-) | 16 | 8 | ||||||||||
Ciprofloxacin | 21 c | 9 | 0.001 | 1 | (-) | 2 | 4 | 1 | ||||||||||||
Rifampicin | 27 c | 3 | 0.06 | 0.06 | 1 | 2 | 4 | 0.5 |
Antibiotic Class/Gene | Activity/Resistance Mechanism | Strain(s) | Identified by Database and/or Pipeline | % Identity/% Length Coverage a | Amino Acid (aa) Identity/Total aa | Location b (Size kbp) | Maximum Homology to Protein |
---|---|---|---|---|---|---|---|
Penams | |||||||
blaR1-blaZI | Class A beta-lactamase/antibiotic inactivation (AI) | 5A3I, 11A1I, 30A2I, 48A3I, 50A2C | CARD, NCBI-RGC, PATRIC, ResFinder | 100/100 | 281/281 | Plasmid (6.50–8.90) | WP_069819195.1 |
bla | Class A beta-lactamase | CL10P, 1BCExtra, 5A3I, 8A3C,16A1C, 50A2C | Manual revision | 99–100/100 | 279–282/282 | C | WP_002508531.1 |
T17 | 99/100 | 279/282 | WP_064783177.1 | ||||
2A3C, 11A1I, 30A2I | 99/100 | 282/282 | WP_069813561.1 | ||||
23A3C | 100/100 | 282/282 | WP_119627547.1 | ||||
35A3C | CARD, NCBI-RGC, ResFinder | 100/100 | 282/282 | WP_046465027.1 | |||
48A3I | Manual revision | 99/100 | 280/282 | WP_197911012.1 | |||
Macrolides | |||||||
mph(C) | Macrolide 2’-phosphotransferase/AI | 8A3C, 16A1C | CARD, NCBI-RGC, ResFinder | 100/100 | 299/299 | C | WP_119544566.1 |
msr(A) | ABC-F type ribosomal protection protein/target protection | T17, 2A3C, 23A3C, 35A3C | PATRIC, ResFinder | 99/100 | 488/488 | C | WP_069813611.1 |
8A3C, 16A1C | 99/100 | 487/488 | WP_046465994.1 | ||||
50A2C | 100/100 | 488/488 | WP_069854570.1 | ||||
Lincosamides | |||||||
lnu(A) | Lincosamide nucleotidyltransferase/AI | 1BCExtra, 2A3C | Manual revision | 100/100 | 161/161 | Plasmid (32.0–34.60) | WP_069813868.1 |
Phenicols | |||||||
cat | Type A chloramphenicol o-acetyl transferase/AI | 35A3C | CARD, NCBI-RGC, PATRIC, ResFinder | 100/100 | 215/215 | Plasmid (4.6) | WP_053038759.1 |
Fluoroquinolones | |||||||
norA | CLP10, 1BCExtra, 48A3I | PATRIC | 99/100 | 385/386 | C | WP_002508336.1 | |
Major facilitator superfamily of efflux pumps/antibiotic secretion | T17, 23A3C,35A3C | 100/100 | 386/386 | WP_064783100.1 | |||
2A3C, 8A3C, 16A1C, 50A2C | PATRIC, ResFinder | 100/100 | 386/386 | WP_021339414.1 | |||
5A3I *, 11A1I, 30A2I | PATRIC | 99 *–100/100 | 385 *–386/386 | WP_069832674.1 | |||
Phosphonic acids | |||||||
fosB/fosD | Fosfomycin bacillithiol transferase/AI | 1BCExtra-1 | CARD, NCBI-RGC, PATRIC, ResFinder | 100/100 | 139/139 | C | WP_000616116.1 |
T17, 23A3C, 35A3C | PATRIC | 100/100 | 139/139 | WP_031266123.1 | |||
1BCExtra-2 * | CARD, PATRIC | 84/51 | 70/139 | WP_056935383.1 | |||
2A3C *,8A3C *, 16A1C *, 50A2C * | CARD | 84/32 | 45/139 | WP_031266123.1 | |||
5A3I, 11A1I, 30A2I | CARD, NCBI-RGC, PATRIC, ResFinder | 100/100 | 139/139 | WP_069833353.1 | |||
48A31 * | CARD, PATRIC | 83/51 | 70/139 | WP_031266123.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez, L.; Srednik, M.E.; Rodríguez, J.; Flórez, A.B.; Mayo, B. Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. Int. J. Mol. Sci. 2023, 24, 11657. https://doi.org/10.3390/ijms241411657
Vázquez L, Srednik ME, Rodríguez J, Flórez AB, Mayo B. Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. International Journal of Molecular Sciences. 2023; 24(14):11657. https://doi.org/10.3390/ijms241411657
Chicago/Turabian StyleVázquez, Lucía, Mariela E. Srednik, Javier Rodríguez, Ana Belén Flórez, and Baltasar Mayo. 2023. "Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes" International Journal of Molecular Sciences 24, no. 14: 11657. https://doi.org/10.3390/ijms241411657
APA StyleVázquez, L., Srednik, M. E., Rodríguez, J., Flórez, A. B., & Mayo, B. (2023). Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. International Journal of Molecular Sciences, 24(14), 11657. https://doi.org/10.3390/ijms241411657