Effective and Selective Ru(II)-Arene Complexes Containing 4,4′-Substituted 2,2′ Bipyridine Ligands Targeting Human Urinary Bladder Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Complexes
2.2. Spectroscopic Characterizations
2.2.1. UV-Visible Spectroscopy and Stability Experiments
2.2.2. FT-IR Spectroscopy
2.2.3. NMR Spectroscopy
2.2.4. MALDI MS Spectroscopy
2.3. Structure Analysis
2.4. DFT Studies of Structure and Log p
2.5. Interaction of Ru(II)-Arene-4,4′-Para-Substituted-2,2′-Bipyridine with DNA
2.5.1. Determination of Complex/CTDNA Binding Constants
2.5.2. Determination of EB/CTDNA Fluorescence Quenching Constants
2.5.3. Viscometric Measurements and DNA Fragmentation Assay
2.5.4. Molecular Docking with DNA
2.6. Interaction of Complex 1–7 with Protein
2.6.1. Fluorescence Titration Studies
2.6.2. MALDI-TOF MS Study
2.6.3. Molecular Docking Study
2.7. Anticancer Activity of Ru(II)-Arene Complexes
2.7.1. MTT Cell Proliferation Assay
2.7.2. Detection of Cell Death by Acridine Orange/Ethidium Bromide Staining and Quantification by Flow Cytometry
3. Discussion
4. Material and Methods
4.1. Material and Methods
4.2. Synthesis & Characterization of Ligands (L1–L4)
4.2.1. 2,2′-Bipyridine-4,4′-di-tert-butyl Ligand (L1)
4.2.2. 2,2′-Bipyridine-4,4′-Dicarboxylic Acid Ligand (L2)
4.2.3. Dimethyl or Diethyl 2,2′-bipyridine-4,4′-Dicarboxylate Ligand (L3) or (L4)
4.3. Procedure for the Preparation of Complexes 1–7
4.4. Characterization of Complexes 1–7
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Hannah, E. Fuchs and Ahmedin Jemal. Cancer Stat. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Feldman, D.R.; Bosl, G.J.; Sheinfeld, J.; Motzer, R.J. Medical treatment of advanced testicular cancer. JAMA 2008, 299, 672–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadler, P. In remembrance of Barnett Rosenberg. Dalton Trans. 2009, 48, 10648–10650. [Google Scholar]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Jhawat, V.; Mathur, P.; Dutt, R. Innovation in cancer therapeutics and regulatory perspectives. Med. Oncol. 2022, 39, 76. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Steel, T.R.; Walsh, F.; Wieczorek-Błauz, A.; Hanif, M.; Hartinger, C.G. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord. Chem. Rev. 2021, 439, 213890. [Google Scholar] [CrossRef]
- Qin, Q.P.; Wang, Z.F.; Huang, X.L.; Tan, M.X.; Shi, B.B.; Liang, H. High in Vitro and in Vivo tumor-selective novel ruthenium(II) complexes with 3-(2′-benzimidazolyl)-7-fluoro-coumarin. ACS Med. Chem. Lett. 2019, 10, 936–940. [Google Scholar] [CrossRef]
- Hung, Y.; Kung, W.-J.; Taube, H. Aquo chemistry of monoarene complexes of osmiun(II) and ruthenium(II). Inorg. Chem. 1981, 20, 457–463. [Google Scholar] [CrossRef]
- Dyson, P.J. Systematic design of a targeted organometallic antitumour drug in pre-clinical development. Chimia 2007, 61, 698–703. [Google Scholar] [CrossRef]
- Vock, C.A.; Scolaro, C.; Phillips, A.D.; Scopelliti, R.; Sava, G.; Dyson, P.J. Synthesis, characterization, and in Vitro evaluation of novel ruthenium(II) ɳ6-arene imidazole complexes. J. Med. Chem. 2006, 49, 5552–5561. [Google Scholar] [CrossRef]
- Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Geldbach, T.J.; Sava, G.; Dyson, P.J. In Vitro and In Vivo evaluation of ruthenium(II)-arene PTA complexes. J. Med. Chem. 2005, 48, 4161–4171. [Google Scholar] [CrossRef]
- Gopal, Y.N.; Jayaraju, D.; Kondapi, A.K. Inhibition of Topoisomerase II catalytic activity by two ruthenium compounds: A ligand-dependent mode of action. Biochemistry 1999, 38, 4382–4388. [Google Scholar] [CrossRef]
- Pizarro, A.M.; Habtemariam, A.; Sadler, P.J. Activation mechanism for organometallic anticancer complexes. In Medicinal Organometallic Chemistry; Springer: Berlin, Germany, 2010; Volume 32, pp. 21–56. [Google Scholar]
- Tomaz, A.I.; Jakusch, T.; Morais, T.S.; Marques, F.; de Almeida, R.F.M.; Mendes, F.; Enyedy, E.A.; Santos, I.; Pessoa, J.C.; Kiss, T.; et al. [RuII(ɳ5-C5H5)(bipy)(PPh3), a promising large spectrum antitumoragent: Cytotoxic activity and intraction with human serum albumin. J. Inorg. Biochem. 2012, 117, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Corte-Real, L.; Teixeira, G.R.; Girio, P.; Comsa, E.; Moreno, A.; Nasr, R.; Baubichon-Cortay, H.; Avecilla, F.; Marques, F.; Robalo, M.P.; et al. Methyl-cyclopentadienyl ruthenium compounds with 2,2′-bipyridine derivatives displays strong anticancer activity and multidrug resistance potential. Inorg. Chem. 2018, 57, 4629–4639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruijnincx, P.C.A.; Sadler, P.J. Controlling platinum, ruthenium and osmium reactivity for anticancer drug design. Adv. Inorg. Chem. 2009, 61, 1–62. [Google Scholar] [PubMed] [Green Version]
- Nazeeruddin, M.K.; Zakeeruddin, S.M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Gra, M. Acid-Base Equilibria of (2,2′-Bipyridyl-4,4′-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 1999, 38, 6298–6305. [Google Scholar] [CrossRef]
- Habtemariam, A.; Melchart, M.; Fernandez, R.; Parsons, S.; Oswald, D.H.; Parkin, A.; Fabbiain, F.P.A.; Davidson, J.E.; Dawson, A.; Aird, R.E.; et al. Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N,N-, N,O- and O,O-chelating ligands. J. Med. Chem. 2006, 49, 6858–6868. [Google Scholar] [CrossRef]
- Matveevskaya, V.V.; Pavlov, D.I.; Sukhikh, T.S.; Gushchin, A.L.; Yu, A.; Tennikova, T.B.; Sharoyko, V.V.; Baykov, S.V.; Benassi, E.; Potapov, A.S. Arene-ruthenium(II) complexes containing 11H-Indeno [1,2-b] quinoxalin-11-one derivaties and tryptanthrin-6-oxmine: Synthesis, characterization, cytotoxicity and catalytic transfer hydrogenation of aryl ketones. ACS Omega 2020, 5, 11167–11179. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A library for package-independent computational chemistry algorithms. J. Compt. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Kundi, V.; Ho, J. Predicting Octanol-Water Partition Coefficients: Are Quantum Mechanical Implicit Solvent Models Better than Empirical Fragment-Based Methods? J. Phys. Chem. B 2019, 123, 6810–6822. [Google Scholar] [CrossRef]
- Tielker, N.; Tomazic, D.; Eberlein, L.; Güssregen, S.; Kast, S.M. The SAMPL6 challenge on predicting octanol—Water partition coefficients from EC-RISM theory. J. Comput. Aided Mol. Des. 2020, 34, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srividya, S.; Haribabu, J.; Dharmasivam, M.; Maroli, N.; Jayadharini, J.P.P.; Balakrishnan, N.; Bhuvanesh, N.S.P.; Echeverria, C.; Karvembu, R. Hinged bipodal furoylthiourea-based Ru(II)-arene complexes: Effect of (ortho, meta, or para)-substitution on coordination and anticancer activity. Inorg. Chem. 2023, 62, 3679–3691. [Google Scholar]
- Molinspiration Cheminformatics Free Web Services. Slovensky Grob, Slovakia. Available online: https://www.molinspiration.com (accessed on 22 July 2023).
- Grunwald, E.; Pan, K.C.; Effio, A. Hydrogen bonding in polar liquid solutions. 4. Effect of hydrogen-bonding solutes on dielectric constant and solvent structure in 1-octanol. J. Phys. Chem. 1976, 80, 2937–2940. [Google Scholar] [CrossRef]
- Lippold, B.C.; Adel, M.S. Molekülassoziation in n-Octanol und n-Octanol-Wassergemischen. Arch. Pharm. Pharm. Med. Chem. 1972, 305, 417–426. [Google Scholar] [CrossRef]
- Jones, M.R.; Brooks, B.R. Quantum chemical predictions of water–octanol partition coefficients applied to the SAMPL6 logP blind challenge. J. Comput. Aided Mol. Des. 2020, 34, 485–493. [Google Scholar] [CrossRef]
- Colina-Vegasa, L.; Luna-Dulceyb, L.; Plutinc, A.M.; Castellanod, E.E.; Cominettib, M.R.; Batistaa, A.A. Half-sandwich Ru(II)-acylthiourea complexes: DNA/HAS-binding, anti-migaration and cell death in a human breast tumor cell line. Dalton Trans. 2017, 46, 12865–12875. [Google Scholar] [CrossRef]
- Ganeshpandian, M.; Loganathan, R.; Suresh, E.; Riyasdeen, A.; Akbarsha, M.A.; Palaniandavar, M. New ruthenium(II) arene complexes of anthracenyl-appended diazacycloalkanes: Effect of ligand intercalation and hydrophobicity on DNA and protein binding and cleavage and cytotoxity. Dalton Trans. 2014, 43, 1203–1219. [Google Scholar] [CrossRef]
- Zahirovic, A.; Roca, S.; Kahrovic, E.; Visnjevac, A. Low DNA and high BSA binding affinity of cationic ruthenium(II) organometallic featuring pyridine and 2′-hydroxychalcone ligands. J. Mol. Struct. 2021, 1236, 130326. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, W.; Zhou, G.J.Q.; Hou, Y.; Li, C.; Zhang, B.; Wang, X. A ruthenium(II) arene complexes showing emission enhancement and photocleavage activity towards DNA singlet and triplet excited states respectively. Dalton Trans. 2013, 42, 5924–5931. [Google Scholar] [CrossRef]
- Stearns, J.A.; Mercier, S.; Seaiby, C.; Guidi, M.; Boyarkin, O.V.; Rizzo, T.R. Conformation-specific spectroscopy and photo dissociation of cold, Protonated tyrosine and phenylalanine. Am. Chem. Soc. 2007, 129, 11814–11820. [Google Scholar] [CrossRef] [PubMed]
- Domotor, O.; Enyedy, E.A. Binding mechanisms of half-sanwich Rh(III) and Ru(II) arene complexes on human serum albumin: A comparative study. J. Biol. Inorg. Chem. 2019, 24, 703–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyalakshmi, K.; Haribabu, J.; Balachandran, C.; Swaminathan, S.; Bhuvanesh, N.S.P.; Karvembu, R. Coordination behaviour of N,N′,N″-trisubstituted guanidine ligands in their Ru-Arene complexes: Synthetic, DNA/Protein binding, and cytotoxic studies. Organometallics 2019, 38, 753–770. [Google Scholar] [CrossRef]
- He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Kim, C.Y.; Nam, T.-G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Devel. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef]
- Bashir, M.; Mantoo, I.A.; Arimand, F.; Tabassum, S.; Yousuf, I. An Overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. Coord. Chem. Rev. 2023, 487, 215169. [Google Scholar] [CrossRef]
- Haribabu, J.; Sabapathi, G.; Tamizh, M.M.; Balachandran, C.; Bhuvanesh, N.S.P.; Venuvanalingam, P.; Karvembu, R. Water-soluble mono-and binuclear Ru(ɳ6-p-cymene) complexes containing indole thiosemicarbazone: Synthesis, DFT modeling, biomolecular intractions, and in vitro anticancer activity through apoptosis. Organometallics 2018, 37, 1242–1257. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.; et al. Gaussian 09; Rev. D.01; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView; Version 5.0; SemiChem. Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J.J. Autodock4 and Autodocktools4: Automated docking with selective receptor flexibility. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Awad, D.J.; Schilde, U.; Strauch, P. 4,4′-Bis(tert-butyl)-2,2′-bipyridinechlorometal(II)-synthesis, structure and EPR spectroscopy. Inorg. Chim. Acta 2011, 365, 127–132. [Google Scholar] [CrossRef]
- Jensen, S.B.; Rodger, S.J.; Spicer, M.D. Facile preparation of ɳ6-p-cymene)Ru(dppf)Cl]PF6. J. Organomet. Chem. 1998, 556, 151–158. [Google Scholar] [CrossRef]
- Klein, C.; Nazeeruddin, M.K.; Di Censo, D.; Liska, P.; Gra, M. Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg. Chem. 2004, 43, 4216–4226. [Google Scholar] [CrossRef] [PubMed]
- Nazeeruddin, M.K.; Zakeeruddin, S.M.; Lagref, J.J.; Liska, P.; Comte, P.; Barolo, C.; Viscardi, G.; Schenk, K.; Graetzel, M. Stepwise assembly pf amphiphilic ruthenium sensitizers and their applicartions in dye-sensitized solar cell. Coord. Chem. Rev. 2004, 248, 1317–1328. [Google Scholar] [CrossRef]
- Zelonka, R.A.; Baird, M.C. Benzene complexes of ruthenium(II). Can. J. Chem. 1972, 50, 3063–3072. [Google Scholar] [CrossRef]
- Myahkostupov, M.; Castellano, F.N. Synthesis and characterization of tris(Heteroleptic) Ru(II) complexes bearing styryl subunits. Inorg. Chem. 2011, 50, 9714–9727. [Google Scholar] [CrossRef]
Ru–Cl Bond Length (Å) | Log p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exp. | DFT Theory (Gas Phase) | Exp. | Fragment-Based | DFT Theory (SMD Implicit Solvation Model) | ||||||
Calculator | n-Octanol | Water-Saturated n-Octanol | ||||||||
Complex | XRD | B3LYP | M06-L | ωB97XD | Shake Flask | miLogP | B3LYP | M06-L | ωB97XD | ωB97XD |
1 | 2.423 | 2.403 | 2.411 | 2.389 | 2.75 | 6.68 | 6.060 | 5.868 | 5.698 | 4.506 |
2 | 2.406 | 2.400 | 2.404 | 2.385 | −1.65 | 3.09 | −0.872 | −0.207 | −0.849 | −2.677 |
3 | 2.407 | 2.401 | 2.411 | 2.388 | 0 | 3.61 | 2.775 | 1.662 | 1.671 | −0.248 |
4 | 2.388 | 2.402 | 2.412 | 2.388 | 0.88 | 4.36 | 3.492 | 3.528 | 3.441 | 1.956 |
5 | 2.399 | 2.395 | 2.401 | 2.380 | 2.45 | 5.04 | 4.073 | 5.137 | 4.671 | 3.385 |
6 | 2.381 | 2.392 | 2.396 | 2.377 | −1.12 | 1.97 | 0.083 | 0.575 | 0.336 | −1.137 |
7 | 2.402 | 2.391 | 2.392 | 2.376 | −0.14 | 2.73 | 1.642 | 2.027 | 1.972 | 0.582 |
MAD a | 0.010 | 0.010 | 0.018 | MSD b | 3.47 | 2.01 | 2.20 | 1.96 | 0.46 |
Experiments | Docking | |||
---|---|---|---|---|
Comp. | Kb (104 M−1) | Kq (104 M−1) | Kapp (106 M−1) | ΔG (kcal/mol) |
1 | 1.12 | 3.65 | 1.83 | −6.10 |
2 | 1.40 | 4.89 | 3.00 | −6.46 |
3 | 1.50 | 6.05 | 3.02 | −6.94 |
4 | 1.56 | 6.36 | 3.18 | −7.23 |
5 | 1.20 | 3.84 | 1.92 | −6.19 |
6 | 1.67 | 6.69 | 3.34 | −7.87 |
7 | 1.71 | 7.21 | 3.61 | −8.36 |
Experiments | Docking | |||
---|---|---|---|---|
Complex | Kb (104 M−1) | Kq (104 M−1) | n | ΔG (kcal/mol) |
1 | 9.335 × 103 | 2.145 × 104 | 0.9 | −6.91 |
2 | 5.757 × 105 | 6.446 × 104 | 1.2 | −8.12 |
3 | 5.071 × 104 | 3.622 × 104 | 1.0 | −7.36 |
4 | 6.354 × 104 | 3.777 × 104 | 1.0 | −7.39 |
5 | 1.132 × 104 | 2.587 × 104 | 0.9 | −7.41 |
6 | 2.204 × 104 | 3.103 × 104 | 1.0 | −7.11 |
7 | 1.341 × 105 | 4.779 × 104 | 1.1 | −7.49 |
Comp. | MCF-10a | Vero | EA.hy926 | HepG-2 | T24 |
---|---|---|---|---|---|
1 | 48.5 | >50 | >50 | 30.1 | 11.7 |
2 | >50 | >50 | >50 | >50 | 14.5 |
3 | >50 | 45.6 | 30.8 | >50 | 21.2 |
4 | 40.1 | 31.2 | 32.3 | 21.1 | 12.3 |
5 | >50 | >50 | >50 | >50 | 30.5 |
6 | >50 | 49.2 | 49.3 | 14.5 | 41.2 |
7 | >50 | 33.9 | 23.8 | 41.6 | 19.8 |
Cisplatin | 29.1 | 33.7 | 22.9 | 49.1 | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muralisankar, M.; Chen, J.-R.; Haribabu, J.; Ke, S.-C. Effective and Selective Ru(II)-Arene Complexes Containing 4,4′-Substituted 2,2′ Bipyridine Ligands Targeting Human Urinary Bladder Cancer Cells. Int. J. Mol. Sci. 2023, 24, 11896. https://doi.org/10.3390/ijms241511896
Muralisankar M, Chen J-R, Haribabu J, Ke S-C. Effective and Selective Ru(II)-Arene Complexes Containing 4,4′-Substituted 2,2′ Bipyridine Ligands Targeting Human Urinary Bladder Cancer Cells. International Journal of Molecular Sciences. 2023; 24(15):11896. https://doi.org/10.3390/ijms241511896
Chicago/Turabian StyleMuralisankar, Mathiyan, Jun-Ru Chen, Jebiti Haribabu, and Shyue-Chu Ke. 2023. "Effective and Selective Ru(II)-Arene Complexes Containing 4,4′-Substituted 2,2′ Bipyridine Ligands Targeting Human Urinary Bladder Cancer Cells" International Journal of Molecular Sciences 24, no. 15: 11896. https://doi.org/10.3390/ijms241511896
APA StyleMuralisankar, M., Chen, J.-R., Haribabu, J., & Ke, S.-C. (2023). Effective and Selective Ru(II)-Arene Complexes Containing 4,4′-Substituted 2,2′ Bipyridine Ligands Targeting Human Urinary Bladder Cancer Cells. International Journal of Molecular Sciences, 24(15), 11896. https://doi.org/10.3390/ijms241511896