Influence of a Single Deuterium Substitution for Protium on the Frequency Generation of Different-Size Bubbles in IFNA17
Abstract
:1. Introduction
2. Results
- -
- The larger the number of dissociated adjacent hydrogen bonds, the higher the percentage of A–T base pairs among them in the 0.250–0.450 energy interval: Spearman’s rank correlation coefficients are positive and increase from 0.877 (p < 0.001, = 0.300) to 0.968 (p < 0.001, = 0.400);
- -
- The higher the (in the 0.250–0.450 energy range), the lower the percentage of A–T base pairs in the OS, and bubble groups that have the same sizes (with the exception of the large bubbles: 0.650, p < 0.001): Spearman’s rank correlation coefficients are negative and change from (p < 0.001, metastable bubbles) to (p < 0.001, small bubbles);
- -
- If the equals 0.500 or more, the percentage of A–T base pairs in OS or small bubbles is equal to 0.0.
- -
- -
- Second, concerning very large bubbles in the termination sequence, 2H-substituted G–C bases (77.1% of all G–C) are closed under 0.300 energy more easily than 2H-substituted A–T bases (59.4% of all A–T, p < 0.0001, Figure 4);
- -
- In the third place, different from the promoter, which has no close states for the 1 bubble group under 0.500 energy, in the coding region and termination sequence (in total 931 bps), 2H-substituted G–C bases (30.8% of all G–C) are closed easier than 2H-substituted A–T bases (16.8% of all A–T, p < 0.0002, Figure 4).
3. Discussion
- The positive values of bubble occurrence frequencies in IFNA17, in all cases under the condition that all hydrogen bonds in nitrogenous base pairs are 1H, have an inverse relationship with the DNA bubble size throughout the energy range of N·m to N·m: > > > (Figure 2).
- The frequency of bubble occurrences in the gene under natural conditions decreases progressively with rising , reaching zero with an inverse relationship to DNA bubble size: the larger the size of the bubbles, the lower the energy under which their P0 equals 0.0, and when equals N·m, the equals 0.0 for all bubble groups (Figure 2).
- After a single 2H/1H replacement under the 0.250–0.450 energy interval, small DNA bubbles have the highest and when compared to other bubble groups, and these values did not differ much in similar OS frequency occurrences (less than 24.0% and 18.2% at their peaks, respectively, Figure 2 and Figure 3).
- Different from the promoter and termination sequences, the coding region has the highest total and after a single isotopic 2H/1H substitution (Table 1 and Table 2), which indicates its strong regulatory significance in both the acceleration and retardation of DNA bubbles and OS generation in the whole gene.
- Under values equal to 0.500 or more, after a single 2H/1H replacement, the formation of small bubbles and OS occurs only via guanine and cytosine nitrogenous bases (Figure 6).
- After a single isotopic 2H/1H substitution in the 0.250–0.450 energy interval, the A–T/G–C ratio of DNA bubbles and OS has a strong direct correlation with the number of dissociated adjacent H-bonds and an inverse and significant relationship with (the latter has the exception of only bubbles of size 11 to 30 bps, which have a Spearman’s rank correlation coefficient of 0.650, p < 0.001, Figure 6).
- The promoter of IFNA17 has the lowest sum of and in comparison to II (p < 0.0002) and III (p = 0.0013) parts of the gene (Table 1 and Table 2); therefore, it has the least impact on both the acceleration and slowdown of the H-bond dissociation after a single 2H/1H replacement in the whole studied energy range.
- For small and very large bubbles, after a single 2H/1H replacement at the nucleotide parts of IFNA17 (21.3% and 81.5%, respectively), the occurrence frequencies reached zero values under lower energy in comparison to the for the same bubble groups under natural conditions, so their remained above 0.0, but their (named ) were equal to 0.0 under values of 0.500 and 0.300, respectively (Figure 2, Supplementary Materials).
- Although the III part of IFNA17 is most depleted in G–C nitrogenous bases (only 29.09% of the total base number), it has the highest percentage of 2H-substituted G–C bases, which abruptly decreases the number of small and very large bubbles under equals 0.500 and 0.300, respectively (Supplementary Materials).
4. Materials and Methods
4.1. Mathematical Model
4.2. Approach for Studying the Influence of a Single Deuterium/Protium Substitution on the Dissociation of Hydrogen Bonds in Various Parts of IFNA17
- (1)
- i ϵ range “Maximum” (BJ-max):
- if and :
- if and :
- (2)
- i ϵ range “Minimum” (BJ-min):
- if > 0:
- if > 0:
- if = 0 and
4.3. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Metzler, R.; Ambjörnsson, T.; Hanke, A.; Fogedby, H.C. Single DNA denaturation and bubble dynamics. J. Phys. Condens. Matter. 2009, 21, 034111. [Google Scholar] [CrossRef] [PubMed]
- Dzhimak, S.; Svidlov, A.; Elkina, A.; Gerasimenko, E.; Baryshev, M.; Drobotenko, M. Genesis of Open States Zones in a DNA Molecule Depends on the Localization and Value of the Torque. Int. J. Mol. Sci. 2022, 23, 4428. [Google Scholar] [CrossRef] [PubMed]
- Altan-Bonnet, G.; Libchaber, A.; Krichevsky, O. Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 2003, 90, 138101. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, B.S.; Wille, L.T.; Rasmussen, K.Ø.; Bishop, A.R.; Blagoev, K.B. Bubble statistics and dynamics in double-stranded DNA. Phys. Rev. E 2006, 74, 050901. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.P.; Pazdernik, N.J.; McGehee, M.R. Chapter 11—Transcription of Genes. In Molecular Biology, 3rd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 332–361. [Google Scholar] [CrossRef]
- Hillebrand, M.; Kalosakas, G.; Bishop, A.R.; Skokos, C. Bubble lifetimes in DNA gene promoters and their mutations affecting transcription. J. Chem. Phys. 2021, 155, 095101. [Google Scholar] [CrossRef]
- Hillebrand, M.; Kalosakas, G.; Skokos, C.; Bishop, A.R. Distributions of bubble lifetimes and bubble lengths in DNA. Phys. Rev. E 2020, 102, 062114. [Google Scholar] [CrossRef]
- Hancock, S.P.; Stella, S.; Cascio, D.; Johnson, R.C. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS ONE 2016, 11, e0150189. [Google Scholar] [CrossRef]
- Pyne, A.L.B.; Noy, A.; Main, K.H.S.; Velasco-Berrelleza, V.; Piperakis, M.M.; Mitchenall, L.A.; Cugliandolo, F.M.; Beton, J.G.; Stevenson, C.E.M.; Hoogenboom, B.W.; et al. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nat. Commun. 2021, 12, 1053. [Google Scholar] [CrossRef]
- Von Hippel, P.H.; Johnson, N.P.; Marcus, A.H. Fifty years of DNA “breathing”: Reflections on old and new approaches. Biopolymers 2013, 99, 923–954. [Google Scholar] [CrossRef] [Green Version]
- Englander, S.W.; Kallenbach, N.R.; Heeger, A.J.; Krumhansl, J.A.; Litwin, S. Nature of the open state in long polynucleotide double helices: Possibility of soliton excitations. Proc. Natl. Acad. Sci. USA 1980, 77, 7222. [Google Scholar] [CrossRef]
- Yakushevich, L.V. Higher Order Periodic Base Pairs Opening in a Finite Stacking Enthalpy DNA Model. Phys. Let. A 1989, 136, 413–417. [Google Scholar] [CrossRef]
- Grinevich, A.A.; Yakushevich, L.V. The influence of the DNA torque on the dynamics of transcription bubbles in plasmid PTTQ18. J. Theor. Biol. 2018, 453, 68–77. [Google Scholar] [CrossRef]
- Peyrard, M.; Bishop, A.R. Statistical Mechanics of a Nonlinear Model for DNA Denaturtion. Phys. Rev. Let. 1989, 62, 2755–2758. [Google Scholar] [CrossRef]
- Dauxois, T.; Peyrard, M.; Bishop, A.R. Higher Order Periodic Base Pairs Opening in a Finite Stacking Enthalpy DNA Model. Phys. Rev. E 1993, 47, 684–695. [Google Scholar] [CrossRef] [Green Version]
- Geraskin, E.I.; Chetverikov, A.P.; Shigaev, A.S. Nucleation length of denaturation bubble in Peyrard–Bishop–Dauxois model and its modifications. Proc. Int. Conf. Math. Biol. Bioinform. 2018, 7, e7. [Google Scholar] [CrossRef]
- Hanke, A.; Metzler, R. Bubble dynamics in DNA. J. Phys. A Math. Gen. 2003, 36, L473. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Ambjörnsson, T. Dynamic approach to DNA breathing. J. Biol. Phys. 2005, 31, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.B.; Finzi, L.; Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 1992, 258, 1122–1126. [Google Scholar] [CrossRef]
- Wenner, J.R.; Williams, M.C.; Rouzina, I.; Bloomfield, V.A. Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys. J. 2002, 82, 3160–3169. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, D. Elasticity of a DNA chain dotted with bubbles under force. Phys. Rev. E 2021, 103, 052412. [Google Scholar] [CrossRef]
- Majumdar, D.; Bhattacharjee, S.M. Softening of DNA near melting as disappearance of an emergent property. Phys. Rev. E 2020, 102, 032407. [Google Scholar] [CrossRef] [PubMed]
- Svidlov, A.; Drobotenko, M.; Basov, A.; Gerasimenko, E.; Malyshko, V.; Elkina, A.; Baryshev, M.; Dzhimak, S. DNA dynamics under periodic force effects. Int. J. Mol. Sci. 2021, 22, 7873. [Google Scholar] [CrossRef] [PubMed]
- Svidlov, A.A.; Drobotenko, M.I.; Basov, A.A.; Elkina, A.A.; Gerasimenko, E.O.; Malyshko, V.V.; Baryshev, M.G.; Dzhimak, S.S. Influence of the 2H/1H isotope composition of the water environment on the probability of denaturation bubble formation in a DNA molecule. Phys. Wave Phen. 2021, 29, 180–185. [Google Scholar] [CrossRef]
- Yakushevich, L.V. Nonlinear Physics of DNA; John Wiley & Sons: Hoboken, HJ, USA, 2007; p. 252. [Google Scholar] [CrossRef]
- Yakushevich, L.V.; Krasnobaeva, L.A. Ideas and methods of nonlinear mathematics and theoretical physics in DNA science: The McLaughlin-Scott equation and its application to study the DNA open state dynamics. Biophys. Rev. 2021, 13, 315–338. [Google Scholar] [CrossRef]
- Svidlov, A.; Drobotenko, M.; Basov, A.; Gerasimenko, E.; Elkina, A.; Baryshev, M.; Nechipurenko, Y.; Dzhimak, S. Influence of Environmental Parameters on the Stability of the DNA Molecule. Entropy 2021, 23, 1446. [Google Scholar] [CrossRef]
- Frank-Kamenetskii, M.D.; Prakash, S. Fluctuations in the DNA double helix: A critical review. Phys. Life Rev. 2014, 11, 153–170. [Google Scholar] [CrossRef]
- Bezhenar, M.V.; Elkina, A.A.; Caceres, J.L.H.; Baryshev, M.G.; Sulima, A.O.; Dzhimak, S.S.; Isaev, V.A. Review of Mathematical Models Describing the Mechanical Motion in a DNA Molecule. Biophysics 2022, 67, 867–875. [Google Scholar] [CrossRef]
- Shigaev, A.S.; Ponomarev, O.A.; Lakhno, V.D. Theoretical and experimental investigations of DNA open states. Math. Biol. Bioinform. 2013, 8, 553–664. [Google Scholar] [CrossRef] [Green Version]
- Kool, E.T. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Mak, C.H. Theoretical Model for Solvent-Induced Base Stacking Interactions in Solvent-Free DNA Simulations. J. Phys. Chem. B 2019, 123, 1939–1949. [Google Scholar] [CrossRef]
- Despotovic, J.M.; Polfus, L.M.; Flanagan, J.M.; Bennett, C.M.; Lambert, M.P.; Neunert, C.; Kumar, M.; Klaassen, R.J.; Thornburg, C.; Jeng, M.; et al. Genes Influencing the Development and Severity of Chronic ITP Identified through Whole Exome Sequencing. Blood 2015, 126, 73. [Google Scholar] [CrossRef]
- Kim, J.W.; Roh, J.W.; Park, N.H.; Song, Y.S.; Kang, S.B.; Lee, H.P. Interferon, alpha 17 (IFNA17) Ile184Arg polymorphism and cervical cancer risk. Cancer Lett. 2003, 189, 183–188. [Google Scholar] [CrossRef]
- Elaldi, N.; Yilmaz, M.; Bagci, B.; Yelkovan, I.; Bagci, G.; Gozel, M.G.; Engin, A.; Bakir, M.; Dokmetas, I. Relationship between IFNA1, IFNA5, IFNA10, and IFNA17 gene polymorphisms and Crimean-Congo hemorrhagic fever prognosis in a Turkish population range. J. Med. Virol. 2016, 88, 1159–1167. [Google Scholar] [CrossRef]
- Wen, Y.C.; Tram, V.T.N.; Chen, W.H.; Li, C.H.; Yeh, H.L.; Thuy Dung, P.V.; Jiang, K.C.; Li, H.R.; Huang, J.; Hsiao, M.; et al. CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis. 2023, 14, 304. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Yaglov, V.V.; Tsomartova, D.A.; Nazimova, S.V.; Tsomartova, E.S.; Ivanova, M.Y.; Chereshneva, E.V.; Lomanovskaya, T.A. Bilateral Shifts in Deuterium Supply Similarly Change Physiology of the Pituitary–Thyroid Axis, but Differentially Influence Na+/I− Symporter Production. Int. J. Mol. Sci. 2023, 24, 6803. [Google Scholar] [CrossRef]
- Galagedera, S.K.K.; Flechsig, G.-U. deuterium isotope effects upon the redox-switching of the viscosity of DNA layers observed by electrochemical quartz crystal micro-balance. Electroanalysis 2019, 31, 2074–2080. [Google Scholar] [CrossRef]
- Boros, L.G.; Somlyai, I.; Kovács, B.Z.; Puskás, L.G.; Nagy, L.I.; Dux, L.; Farkas, G.; Somlyai, G. Deuterium depletion inhibits cell proliferation, RNA and nuclear membrane turnover to enhance survival in pancreatic cancer. Cancer Control 2021, 28, 1073274821999655. [Google Scholar] [CrossRef]
- Werner, R.M.; Stivers, J.T. Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: Evidence for an oxocarbenium ion-uracil anion intermediate. Biochemistry 2000, 39, 14054–14064. [Google Scholar] [CrossRef]
- Opitz, C.; Ahrné, E.; Goldie, K.N.; Schmidt, A.; Grzesiek, S. Deuterium induces a distinctive Escherichia coli proteome that correlates with the reduction in growth rate. J. Biol. Chem. 2019, 294, 2279–2292. [Google Scholar] [CrossRef] [Green Version]
- Basov, A.A.; Fedulova, L.V.; Baryshev, M.G.; Dzhimak, S.S. Deuterium-depleted water influence on the isotope 2H/1H regulation in body and individual adaptation. Nutrients 2019, 11, 1903. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Ishimoto, T.; Williamson, M.P.; Hansen, P.E. Ab initio calculations of deuterium isotope effects on chemical shifts of salt-bridged lysines. J. Phys. Chem. B 2011, 115, 3208–3215. [Google Scholar] [CrossRef] [PubMed]
- Yaglova, N.V.; Timokhina, E.P.; Obernikhin, S.S.; Yaglov, V.V. Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis. Int. J. Mol. Sci. 2023, 24, 3107. [Google Scholar] [CrossRef] [PubMed]
- Elkina, A.A.; Tumaev, E.N.; Basov, A.A.; Moiseev, A.V.; Malyshko, V.V.; Barisheva, E.V.; Churkina, A.V.; Dzhimak, S.S. The mechanisms of the interaction of stable isotopes with biological objects in the presence of an uncompensated neutron in chemical bonds. Biophysics 2020, 65, 883–888. [Google Scholar] [CrossRef]
- Kalkur, R.S.; Ballast, A.C.; Triplett, A.R.; Spendier, K. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells. PeerJ. 2014, 2, e553. [Google Scholar] [CrossRef] [PubMed]
- Baryshev, M.G.; Basov, A.A.; Bolotin, S.N.; Dzhimak, S.S.; Kashaev, D.V.; Fedosov, S.R.; Frolov, V.Y.; Shashkov, D.I.; Lysak, D.A.; Timakov, A.A. NMR, EPR, and mass spectroscopy estimates of the antiradical activity of water with modified isotope composition. Bull. Rus. Acad. Sci. Phys. 2012, 76, 1349–1352. [Google Scholar] [CrossRef]
- Englande, S.; Kallenbach, N. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quart. Rev. Bioph. 1983, 16, 521–655. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Drobotenko, M.I.; Basov, A.A.; Svidlov, A.A.; Fedulova, L.V.; Lyasota, O.M.; Baryshev, M.G. Mathematical modeling of open states in DNA molecule depending on the deuterium concentration in the surrounding liquid media at different values of hydrogen bond disruption energy. Dokl. Biochem. Biophys. 2018, 483, 359–362. [Google Scholar] [CrossRef]
- Kravtsov, A.; Kozin, S.; Basov, A.; Butina, E.; Baryshev, M.; Malyshko, V.; Moiseev, A.; Elkina, A.; Dzhimak, S. Reduction of Deuterium Level Supports Resistance of Neurons to Glucose Deprivation and Hypoxia: Study in Cultures of Neurons and on Animals. Molecules 2022, 27, 243. [Google Scholar] [CrossRef]
- Yakushevich, L.V.; Krasnobaeva, L.A. Forced oscillations of DNA bases. Biophysics 2016, 61, 241–250. [Google Scholar] [CrossRef]
- Grinevich, A.A.; Yakushevich, L.V. On the modeling of the motion of a transcription bubble under constant torque. Biophysics 2016, 61, 539–546. [Google Scholar] [CrossRef]
- Drobotenko, M.I.; Dzhimak, S.S.; Svidlov, A.A.; Basov, A.A.; Lyasota, O.M.; Baryshev, M.G. A mathematical model for basepair opening in a DNA double helix. Biophysics 2018, 63, 177–182. [Google Scholar] [CrossRef]
- Davydov, A.S. Solitons in Molecular Systems. Phys. Scr. 1979, 20, 387. [Google Scholar] [CrossRef]
- Davydov, A.S. Solitons in Molecular Systems; Springer: Dordrecht, The Netherlands, 1985; p. 319. [Google Scholar] [CrossRef]
- Cruzeiro-Hansson, L. Mechanism of thermal destabilization of the Davydov soliton. Phys. Rev. A 1992, 45, 4111. [Google Scholar] [CrossRef]
- Liebl, K.; Zacharias, M. How global DNA unwinding causes non-uniform stress distribution and melting of DNA. PLoS ONE 2020, 15, e0232976. [Google Scholar] [CrossRef]
- Jost, D. Twist-DNA: Computing base-pair and bubble opening probabilities in genomic superhelical DNA. Bioinformatics 2013, 29, 2479–2481. [Google Scholar] [CrossRef] [Green Version]
- Rieloff, E.; Nunes, S.C.C.; Pais, A.A.C.C.; Skepö, M. Structural Characterization of Bubbles Formed in DNA Melting: A Monte Carlo Simulation Study. ACS Omega 2017, 2, 1915–1921. [Google Scholar] [CrossRef]
- Sicard, F.; Destainville, N.; Manghi, M. DNA denaturation bubbles: Free-energy landscape and nucleation/closure rates. J. Chem. Phys. 2015, 142, 034903. [Google Scholar] [CrossRef]
- Dasanna, A.K.; Destainville, N.; Palmeri, J.; Manghi, M. Slow closure of denaturation bubbles in DNA: Twist matters. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2013, 87, 052703. [Google Scholar] [CrossRef] [Green Version]
- Phelps, C.; Lee, W.; Jose, D.; von Hippel, P.H.; Marcus, A.H. Single-molecule FRET and linear dichroism studies of DNA breathing and helicase binding at replication fork junctions. Proc. Natl. Acad. Sci. USA 2013, 110, 17320–17325. [Google Scholar] [CrossRef]
- Traverso, J.J.; Manoranjan, V.S.; Bishop, A.R.; Rasmussen, K.Ø.; Voulgarakis, N.K. Allostery through protein-induced DNA bubbles. Sci. Rep. 2015, 5, 9037. [Google Scholar] [CrossRef] [Green Version]
- Adamcik, J.; Jeon, J.-H.; Karczewski, K.J.; Metzler, R.; Dietler, G. Quantifying supercoiling-induced denaturation bubbles in DNA. Soft Matter 2012, 8, 8651–8658. [Google Scholar] [CrossRef] [Green Version]
- Hwa, T.; Marinari, E.; Sneppen, K.; Tang, L.H. Localization of denaturation bubbles in random DNA sequences. Proc. Natl. Acad. Sci. USA 2003, 100, 4411–4416. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Montrichok, A.; Zocchi, G. Length and statistical weight of bubbles in DNA melting. Phys. Rev. Lett. 2003, 91, 148101. [Google Scholar] [CrossRef] [PubMed]
- Matek, C.; Ouldridge, T.E.; Doye, J.P.; Louis, A.A. Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA. Sci. Rep. 2015, 5, 7655. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.H.; Sung, W.; Ree, F.H. A semiflexible chain model of local denaturation in double-stranded DNA. J. Chem. Phys. 2006, 124, 164905. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.H.; Park, P.J.; Sung, W. The effect of sequence correlation on bubble statistics in double-stranded DNA. J. Chem. Phys. 2006, 125, 164901. [Google Scholar] [CrossRef]
- Ares, S.; Kalosakas, G. Distribution of bubble lengths in DNA. Nano Lett. 2007, 7, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Theodorakopoulos, N. DNA Denaturation Bubbles at Criticality. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2008, 77, 031919. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.H.; Sung, W. How topological constraints facilitate growth and stability of bubbles in DNA. Biophys. J. 2008, 95, 3600–3605. [Google Scholar] [CrossRef] [Green Version]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Yaglov, V.V. Response of Pituitary-Thyroid Axis to a Short-Term Shift in Deuterium Content in the Body. Bull. Exp. Biol. Med. 2021, 171, 262–264. [Google Scholar] [CrossRef]
- Syroeshkin, A.V.; Antipova, N.V.; Zlatska, A.V.; Zlatskiy, I.A.; Skylska, M.D.; Grebennikova, T.V.; Goncharuk, V.V. The effect of the deuterium depleted water on the biological activity of the eukaryotic cells. J. Trace Elem. Med. Biol. 2018, 50, 629–633. [Google Scholar] [CrossRef]
- Kleemann, J.; Reichenbach, G.; Zöller, N.; Jäger, M.; Kaufmann, R.; Meissner, M.; Kippenberger, S. Heavy water affects vital parameters of human melanoma cells in vitro. Cancer Manag. Res. 2020, 12, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Hohlefelder, L.S.; Stögbauer, T.; Opitz, M.; Bayerl, T.M.; Rädler, J.O. Heavy water reduces GFP expression in prokaryotic cell-free assays at the translation level while stimulating its transcription. Biomed. Res. Int. 2013, 2013, 592745. [Google Scholar] [CrossRef] [Green Version]
- Brini, E.; Fennell, C.J.; Fernandez-Serra, M.; Hribar-Lee, B.; Lukšič, M.; Dill, K.A. How water’s properties are encoded in its molecular structure and energies. Chem. Rev. 2017, 117, 12385–12414. [Google Scholar] [CrossRef] [Green Version]
- Rivera, S.A.; Allis, D.G.; Hudson, B.S. Importance of Vibrational Zero-Point Energy Contribution to the Relative Polymorph Energies of Hydrogen-Bonded Species. Cryst. Growth Des. 2008, 8, 3905–3907. [Google Scholar] [CrossRef]
- Csorba, B.; Szabó, P.; Góger, S.; Lendvay, G. The Role of Zero-Point Vibration and Reactant Attraction in Exothermic Bimolecular Reactions with Submerged Potential Barriers: Theoretical Studies of the R + HBr → RH + Br (R = CH3, HO) Systems. J. Phys. Chem. A 2021, 125, 8386–8396. [Google Scholar] [CrossRef]
- Boca, R. Chapter 9—Spin Crossover Systems. Cur. Meth. Inorg. Chem. 1999, 1, 541–578. [Google Scholar] [CrossRef]
- Harbeson, S.L.; Tung, R.D. Chapter 24—Deuterium in Drug Discovery and Development. An. Rep. Med. Chem. 2011, 46, 403–417. [Google Scholar] [CrossRef]
- Yeramian, E. Genes and the physics of the DNA double-helix. Gene 2000, 255, 139–150. [Google Scholar] [CrossRef]
- Carlon, E.; Malki, M.L.; Blossey, R. Exons, introns, and DNA thermodynamics. Phys. Rev. Lett. 2005, 94, 178101. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Brunaud, V.; Lecharny, A. TC-motifs at the TATA-box expected position in plant genes: A novel class of motifs involved in the transcription regulation. BMC Genomics 2010, 11, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basov, A.; Drobotenko, M.; Svidlov, A.; Gerasimenko, E.; Malyshko, V.; Elkina, A.; Baryshev, M.; Dzhimak, S. Inequality in the Frequency of the Open States Occurrence Depends on Single 2H/1H Replacement in DNA. Molecules 2020, 25, 3753. [Google Scholar] [CrossRef]
- Basov, A.; Drobotenko, M.; Svidlov, A.; Bezhenar, M.; Gerasimenko, E.; Moiseev, A.; Malyshko, V.; Dorohova, A.; Drozdov, A.; Baryshev, M.; et al. Influence of single deuterium replacement on frequency of hydrogen bond dissociation in IFNA17 under the highest critical energy range. Int. J. Mol. Sci. 2022, 23, 15487. [Google Scholar] [CrossRef] [PubMed]
- Noy, A.; Sutthibutpong, T.; Harris, S.A. Protein/DNA interactions in complex DNA topologies: Expect the unexpected. Biophys. Rev. 2016, 8, 233–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordu, O.; Lusser, A.; Dekker, N.H. Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys. Rev. 2016, 8, 33–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, K.; Karpel, R.L.; Williams, M.C. Kinetic regulation of single DNA molecule denaturation by T4 gene 32 protein structural domains. J. Mol. Biol. 2003, 327, 571–578. [Google Scholar] [CrossRef]
- Dubois, A.; Francois, C.; Descamps, V.; Fournier, C.; Wychowski, C.; Dubuisson, J.; Castelain, S.; Duverlie, G. Enhanced anti-HCV activity of interferon alpha 17 subtype. Virology 2009, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- GenBank: Homo Sapiens Interferon Alpha 17 (IFNA17), mRNA. Available online: http://www.ncbi.nlm.nih.gov/nuccore/NM_021268.2 (accessed on 20 October 2022).
- Yakushevich, L.V.; Krasnobaeva, L.A. Trajectories of the DNA Kinks in the Sequences Containing CDS Regions. Math. Biol. Bioinform. 2017, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tomko, E.J.; Fishburn, J.; Hahn, S.; Galburt, E.A. TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nat. Struct. Mol. Biol. 2017, 24, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Brunet, A.; Salomé, L.; Rousseau, P.; Destainville, N.; Manghi, M.; Tardin, C. How does temperature impact the conformation of single DNA molecules below melting temperature? Nucleic Acids Res. 2018, 46, 2074–2081. [Google Scholar] [CrossRef] [Green Version]
- Forties, R.A.; Bundschuh, R.; Poirier, M.G. The flexibility of locally melted DNA. Nucleic Acids Res. 2009, 37, 4580–4586. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.S.; Plank, J.L. Reverse gyrase functions as a DNA renaturase: Annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate. J. Biol. Chem. 2006, 281, 5640–5647. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Yogo, K.; Furuike, S.; Sutoh, K.; Kikuchi, A.; Kinosita, K. Direct observation of DNA overwinding by reverse gyrase. Proc. Natl. Acad. Sci. USA 2015, 112, 7495–7500. [Google Scholar] [CrossRef]
- Ogawa, T.; Sutoh, K.; Kikuchi, A.; Kinosita, K. Torsional stress in DNA limits collaboration among reverse gyrase molecules. FEBS J. 2016, 283, 1372–1384. [Google Scholar] [CrossRef] [Green Version]
- Dasanna, A.K.; Destainville, N.; Palmeri, J.; Manghi, M. Strand diffusion-limited closure of denaturation bubbles in DNA. Europhys. Let. 2012, 98, 38002. [Google Scholar] [CrossRef]
- Kozin, S.V.; Lyasota, O.M.; Kravtsov, A.A.; Chikhirzhina, E.V.; Ivlev, V.A.; Popova, K.A.; Dorohova, A.A.; Malyshko, V.V.; Moiseev, A.V.; Drozdov, A.V.; et al. Shift of Prooxidant–Antioxidant Balance in Laboratory Animals at Five Times Higher Deuterium Content in Drinking Water. Biophysics 2023, 68, 289–294. [Google Scholar]
- Barnes, J.J.; McCubbin, F.M.; Santos, A.R.; Day, J.M.D.; Boyce, J.W.; Schwenzer, S.P.; Ott, U.; Franchi, I.A.; Messenger, S.; Anand, M.; et al. Multiple early-formed water reservoirs in the interior of Mars. Nat. Geosci. 2020, 13, 260–264. [Google Scholar] [CrossRef]
- Villanueva, G.L.; Mumma, M.J.; Novak, R.E.; Käufl, H.U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M.D. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs. Science 2015, 348, 218–221. [Google Scholar] [CrossRef] [Green Version]
Part of Gene | OS [A–T bps] | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
0.250 | I | 0 | 0 | 0 | 0 | 1 [0] |
II | 5 [1] | 62 [26] | 3 [2] | 3 [0] | 13 [6] | |
III | 3 [1] | 9 [5] | 0 | 0 | 2 [2] | |
0.300 | I | 0 | 0 | 0 | 0 | 0 |
II | 11 [1] | 8 [1] | 2 [0] | 1 [1] | 0 | |
III | 2 [2] | 0 | 0 | 0 | 34 [31] | |
0.350 | I | 0 | 0 | 0 | 0 | - |
II | 0 | 1 [0] | 4 [2] | 9 [3] | - | |
III | 2 [1] | 0 | 34 [29] | 0 | - | |
0.400 | I | 0 | 0 | 0 | 0 | - |
II | 1 [0] | 1 [0] | 1 [0] | 1 [0] | - | |
III | 0 | 0 | 0 | 0 | - | |
0.450 | I | 0 | 0 | 0 | - | - |
II | 38 [13] | 5 [0] | 0 | - | - | |
III | 1 [0] | 0 | 3 [0] | - | - | |
0.500 | I | 0 | 0 | - | - | - |
II | 20 [5] | 20 [5] | - | - | - | |
III | 0 | 0 | - | - | - | |
0.550 | I | 27 [12] | - | - | - | - |
II | 259 [121] | - | - | - | - | |
III | 10 [4] | - | - | - | - | |
0.600 | I | - | - | - | - | - |
II | - | - | - | - | - | |
III | - | - | - | - | - |
Part of Gene | OS [A–T bps] | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
0.250 | I | 0 | 0 | 1 [1] | 4 [1] | 31 [20] |
II | 30 [17] | 21 [9] | 39 [22] | 9 [2] | 300 [179] | |
III | 54 [39] | 60 [41] | 41 [31] | 2 [2] | 183 [130] | |
0.300 | I | 0 | 0 | 0 | 0 | 2 [1] |
II | 8 [5] | 9 [5] | 2 [0] | 5 [1] | 18 [9] | |
III | 0 | 0 | 0 | 0 | 8 [5] | |
0.350 | I | 0 | 0 | 0 | 0 | - |
II | 24 [8] | 10 [9] | 79 [54] | 2 [0] | - | |
III | 0 | 5 [2] | 120 [97] | 0 | - | |
0.400 | I | 1 [0] | 0 | 0 | 0 | - |
II | 33 [8] | 3 [1] | 33 [10] | 62 [10] | - | |
III | 0 | 0 | 33 [9] | 10 [3] | - | |
0.450 | I | 2 [0] | 0 | 0 | - | - |
II | 34 [5] | 0 | 7 [3] | - | - | |
III | 2 [0] | 3 [0] | 0 | - | - | |
0.500 | I | 0 | 0 | - | - | - |
II | 100 [25] | 62 [15] | - | - | - | |
III | 109 [69] | 67 [43] | - | - | - | |
0.550 | I | 0 | - | - | - | - |
II | 3 [0] | - | - | - | - | |
III | 0 | - | - | - | - | |
0.600 | I | - | - | - | - | - |
II | - | - | - | - | - | |
III | - | - | - | - | - |
Part of IFNA17 | Nucleobase Pair Quantity | A–T (%) | G–C (%) |
---|---|---|---|
I (Promoter) | 49 (from 1 to 49) | 55.10 | 44.90 |
II (Coding region) | 570 (from 50 to 619) | 52.98 | 47.02 |
III (Termination sequence) | 361 (from 620 to 980) | 70.91 | 29.09 |
S | F | ||
---|---|---|---|
A | a | b | NA |
B | c | d | NB |
NS | NF | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basov, A.; Dorohova, A.; Malyshko, V.; Moiseev, A.; Svidlov, A.; Bezhenar, M.; Nechipurenko, Y.; Dzhimak, S. Influence of a Single Deuterium Substitution for Protium on the Frequency Generation of Different-Size Bubbles in IFNA17. Int. J. Mol. Sci. 2023, 24, 12137. https://doi.org/10.3390/ijms241512137
Basov A, Dorohova A, Malyshko V, Moiseev A, Svidlov A, Bezhenar M, Nechipurenko Y, Dzhimak S. Influence of a Single Deuterium Substitution for Protium on the Frequency Generation of Different-Size Bubbles in IFNA17. International Journal of Molecular Sciences. 2023; 24(15):12137. https://doi.org/10.3390/ijms241512137
Chicago/Turabian StyleBasov, Alexandr, Anna Dorohova, Vadim Malyshko, Arkadii Moiseev, Alexandr Svidlov, Maria Bezhenar, Yury Nechipurenko, and Stepan Dzhimak. 2023. "Influence of a Single Deuterium Substitution for Protium on the Frequency Generation of Different-Size Bubbles in IFNA17" International Journal of Molecular Sciences 24, no. 15: 12137. https://doi.org/10.3390/ijms241512137
APA StyleBasov, A., Dorohova, A., Malyshko, V., Moiseev, A., Svidlov, A., Bezhenar, M., Nechipurenko, Y., & Dzhimak, S. (2023). Influence of a Single Deuterium Substitution for Protium on the Frequency Generation of Different-Size Bubbles in IFNA17. International Journal of Molecular Sciences, 24(15), 12137. https://doi.org/10.3390/ijms241512137