Local Thyroid Hormone Action in Brain Development
Abstract
:1. Introduction
2. Regulation of TH Action in the Brain from Development to Adulthood
2.1. TH Uptake across Brain Barriers
2.2. Central Conversion of TH
2.3. Thyroid Hormone Receptors Mediate TH Action
3. TH and Excitatory Glutamatergic Neurons
4. TH and Inhibitory GABAergic Interneurons
5. TH and the Cholinergic System
6. TH and the Dopaminergic System
7. Limitations
8. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernal, J. Thyroid Hormones in Brain Development and Function. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C., Kopp, P., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Bernal, J. Thyroid hormones and brain development. Vitam. Horm. 2005, 71, 95–122. [Google Scholar]
- de Escobar, G.M.; Obregon, M.J.; del Rey, F.E. Maternal thyroid hormones early in pregnancy and fetal brain development. Best. Pract. Res. Clin. Endocrinol. Metab. 2004, 18, 225–248. [Google Scholar] [CrossRef] [PubMed]
- de Escobar, G.M.; Obregon, M.J.; del Rey, F.E. Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 2004, 151 (Suppl. S3), U25–U37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.W.; Schoonover, C.M.; Jones, S.A. Control of Thyroid Hormone Action in the Developing Rat Brain. Thyroid 2003, 13, 1039–1056. [Google Scholar] [CrossRef]
- Bernal, J. Thyroid hormone receptors in brain development and function. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.; Guadano-Ferraz, A.; Morte, B. Thyroid hormone transporter—Functions and clinical implications. Nat. Rev. Endocrinol. 2015, 11, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Miranda, A.; Sousa, N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018, 8, e00920. [Google Scholar] [CrossRef] [PubMed]
- Talhada, D.; Santos, C.R.A.; Gonçalves, I.M.T.M.V.; Ruscher, K. Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms after Stroke. Front. Neurol. 2019, 10, 1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fetene, D.M.; Betts, K.S.; Alati, R. Mechanisms in endocrinology: Maternal thyroid dysfunction during pregnancy and behavioural and psychiatric disorders of children: A systematic review. Eur. J. Endocrinol. 2017, 177, R261–R273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.L.; Laurberg, P.; Wu, C.S.; Olsen, J. Maternal Thyroid Dysfunction and Risk of Seizure in the Child: A Danish Nationwide Cohort Study. J. Pregnancy 2013, 2013, 636705. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.L.; Olsen, J.; Laurberg, P. Fetal programming by maternal thyroid disease. Clin. Endocrinol. 2015, 83, 751–758. [Google Scholar] [CrossRef]
- Axelstad, M.; Hansen, P.R.; Boberg, J.; Bonnichsen, M.; Nellemann, C.; Lund, S.P.; Hougaard, K.S.; Hass, U. Developmental neurotoxicity of propylthiouracil (PTU) in rats: Relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes. Toxicol. Appl. Pharmacol. 2008, 232, 1–13. [Google Scholar] [CrossRef]
- Auso, E.; Lavado-Autric, R.; Cuevas, E.; del Rey, F.E.; de Escobar, G.M.; Berbel, P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 2004, 145, 4037–4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, E.M. Interneuron Development and Epilepsy: Early Genetic Defects Cause Long-Term Consequences in Seizures and Susceptibility. Epilepsy Curr. 2013, 13, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ybot-Gonzalez, P.; Gaston-Massuet, C.; Girdler, G.; Klingensmith, J.; Arkell, R.; Greene, N.D.E.; Copp, A.J. Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development 2007, 134, 3203–3211. [Google Scholar] [CrossRef] [Green Version]
- Bárez-López, S.; Guadaño-Ferraz, A. Thyroid Hormone Availability and Action during Brain Development in Rodents. Front. Cell. Neurosci. 2017, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; You, S.H.; Williams, A.; Wade, M.G.; Yauk, C.L.; Thomas Zoeller, R. Transient Maternal Hypo-thyroxinemia Potentiates the Transcriptional Response to Exogenous Thyroid Hormone in the Fetal Cerebral Cortex Before the Onset of Fetal Thyroid Function: A Messenger and MicroRNA Profiling Study. Cereb. Cortex 2015, 25, 1735–1745. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, A.M.; Liao, X.-H.; Gil-Ibáñez, P.; Marcinkowski, T.; Bernal, J.; Weiss, R.E.; Dumitrescu, A.M.; Refetoff, S. Changes in Thyroid Status During Perinatal Development of MCT8-Deficient Male Mice. Endocrinology 2013, 154, 2533–2541. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Nelson, A.R.; Betsholtz, C.; Zlokovic, B.V. Establishment and Dysfunction of the Blood-Brain Barrier. Cell 2015, 163, 1064–1078. [Google Scholar] [CrossRef] [Green Version]
- Daneman, R.; Agalliu, D.; Zhou, L.; Kuhnert, F.; Kuo, C.J.; Barres, B.A. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, A.; Long, J.E.; Crandall, J.E.; Rubenstein, J.L.; Bhide, P.G. Compartment-specific transcrip-tion factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 2008, 11, 429–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayerl, S.; Chen, J.; Salveridou, E.; Boelen, A.; Darras, V.M.; Heuer, H. Thyroid Hormone Transporter Deficiency in Mice Impacts Multiple Stages of GABAergic Interneuron Development. Cereb. Cortex 2021, 32, 329–341. [Google Scholar] [CrossRef]
- Groeneweg, S.; van Geest, F.S.; Peeters, R.P.; Heuer, H.; Visser, W.E. Thyroid Hormone Transporters. Endocr. Rev. 2020, 41, 146–201. [Google Scholar] [CrossRef]
- Mayerl, S.; Visser, T.J.; Darras, V.M.; Horn, S.; Heuer, H. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 2012, 153, 1528–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, L.M.; Woodford, K.; Zhou, M.; Black, D.S.; Haggerty, J.E.; Tate, E.H.; Grindstaff, K.K.; Mengesha, W.; Raman, C.; Zerangue, N. Expression of the Thyroid Hormone Transporters Monocarboxylate Transporter-8 (SLC16A2) and Organic Ion Transporter-14 (SLCO1C1) at the Blood-Brain Barrier. Endocrinology 2008, 149, 6251–6261. [Google Scholar] [CrossRef]
- Tohyama, K.; Kusuhara, H.; Sugiyama, Y. Involvement of Multispecific Organic Anion Transporter, Oatp14 (Slc21a14), in the Transport of Thyroxine across the Blood-Brain Barrier. Endocrinology 2004, 145, 4384–4391. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Onogawa, T.; Asano, N.; Mizutamari, H.; Mikkaichi, T.; Tanemoto, M.; Abe, M.; Satoh, F.; Unno, M.; Nunoki, K.; et al. Identification and Characterization of Novel Rat and Human Gonad-Specific Organic Anion Transporters. Mol. Endocrinol. 2003, 17, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Espindola, D.; Garcia-Aldea, A.; de la Riva, I.G.; Rodriguez-Garcia, A.M.; Salvatore, D.; Visser, T.J.; Bernal, J.; Guadano-Ferraz, A. Thyroid hormone availability in the human fetal brain: Novel en-try pathways and role of radial glia. Brain Struct. Funct. 2019, 224, 2103–2119. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Montero-Pedrazuela, A.; Guadaño-Ferraz, A.; Rausell, E. Thyroid Hormone Transporters MCT8 and OATP1C1 Are Expressed in Pyramidal Neurons and Interneurons in the Adult Motor Cortex of Human and Macaque Brain. Int. J. Mol. Sci. 2023, 24, 3207. [Google Scholar] [CrossRef]
- Wilpert, N.-M.; Krueger, M.; Opitz, R.; Sebinger, D.; Paisdzior, S.; Mages, B.; Schulz, A.; Spranger, J.; Wirth, E.K.; Stachelscheid, H.; et al. Spatiotemporal Changes of Cerebral Monocarboxylate Transporter 8 Expression. Thyroid 2020, 30, 1366–1383. [Google Scholar] [CrossRef] [Green Version]
- Muller, J.; Heuer, H. Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front. Endocrinol. 2014, 5, 92. [Google Scholar]
- Mayerl, S.; Heuer, H.; Ffrench-Constant, C. Hippocampal Neurogenesis Requires Cell-Autonomous Thy-roid Hormone Signaling. Stem Cell Rep. 2020, 14, 845–860. [Google Scholar] [CrossRef]
- Wittmann, G.; Mohácsik, P.; Balkhi, M.Y.; Gereben, B.; Lechan, R.M. Endotoxin-induced inflammation down-regulates l-type amino acid transporter 1 (LAT1) expression at the blood–brain barrier of male rats and mice. Fluids Barriers CNS 2015, 12, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delbaere, J.; Van Herck, S.L.J.; Bourgeois, N.M.A.; Vancamp, P.; Yang, S.; Wingate, R.J.T.; Darras, V.M. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum. Cerebellum 2015, 15, 710–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poncet, N.; Halley, P.A.; Lipina, C.; Gierlinski, M.; Dady, A.; Singer, G.A.; Febrer, M.; Shi, Y.B.; Yamaguchi, T.P.; Taylor, P.M.; et al. Wnt regulates amino acid transporter Slc7a5 and so constrains the integrated stress response in mouse embryos. Embo Rep. 2020, 21, e48469. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A. Development of the choroid plexus and blood-CSF barrier. Front. Neurosci. 2015, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.A. The choroid plexuses and their impact on developmental neurogenesis. Front. Neurosci. 2014, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Fame, R.M.; Lehtinen, M.K. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev. Cell 2020, 52, 261–275. [Google Scholar] [CrossRef]
- van Herck SL, J.; Delbaere, J.; Bourgeois NM, A.; Mcallan, B.M.; Richardson, S.J.; Darras, V.M. Expression of thyroid hormone transporters and deiodinases at the brain barriers in the embryonic chicken: In-sights into the regulation of thyroid hormone availability during neurodevelopment. Gen. Comp. Endocrinol. 2015, 214, 30–39. [Google Scholar] [CrossRef]
- Stepien, B.K.; Huttner, W.B. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front. Endocrinol. 2019, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Crantz, F.R.; Silva, J.E.; Larsen, P.R. An analysis of the sources and quantity of 3,5,3’-triiodothyronine spe-cifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 1982, 110, 367–375. [Google Scholar] [CrossRef]
- Gothié, J.; Vancamp, P.; Demeneix, B.; Remaud, S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol. 2019, 228, e13316. [Google Scholar] [CrossRef]
- Gereben, B.; Pachucki, J.; Kollár, A.; Liposits, Z.; Fekete, C. Ontogenic Redistribution of Type 2 Deiodinase Messenger Ribonucleic Acid in the Brain of Chicken. Endocrinology 2004, 145, 3619–3625. [Google Scholar] [CrossRef] [PubMed]
- Kester, M.H.; de Mena, R.M.; Obregon, M.J.; Marinkovic, D.; Howatson, A.; Visser, T.J.; Hume, R.; de Escobar, G.M. Iodothyronine levels in the human developing brain: Major regulatory roles of iodothyronine deiodinases in different areas. J. Clin. Endocrinol. Metab. 2004, 89, 3117–3128. [Google Scholar] [CrossRef] [Green Version]
- de Ona, C.R.; Obregon, M.J.; del Rey, F.E.; de Escobar, G.M. Developmental changes in rat brain 5′-deiodinase and thyroid hormones during the fetal period: The effects of fetal hypothyroidism and maternal thyroid hormones. Pediatr. Res. 1988, 24, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Guadaño-Ferraz, A.; Obregon, M.J.; Germain, D.L.S.; Bernal, J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc. Natl. Acad. Sci. USA 1997, 94, 10391–10396. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, A.; Lazcano, I.; Sanchez-Jaramillo, E.; Uribe, R.M.; Jaimes-Hoy, L.; Joseph-Bravo, P.; Charli, J.L. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front. Endocrinol. 2019, 10, 401. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A. Structure and function of the type 3 deiodinase gene. Thyroid 2005, 15, 865–874. [Google Scholar] [CrossRef]
- Verhoelst, C.H.J.; Vandenborne, K.; Severi, T.; Bakker, O.; Doulabi, B.Z.; Leonard, J.L.; Kuhn, E.R.; van der Geyten, S.; Darras, V.M. Specific Detection of Type III Iodothyronine Deiodinase Protein in Chicken Cerebellar Purkinje Cells. Endocrinology 2002, 143, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.M.; Legradi, G.; Bartha, T.; Salvatore, D.; Lechan, R.M.; Larsen, P.R. Regional Expression of the Type 3 Iodothyronine Deiodinase Messenger Ribonucleic Acid in the Rat Central Nervous System and Its Regulation by Thyroid Hormone*. Endocrinology 1999, 140, 784–790. [Google Scholar] [CrossRef]
- Reyns, G.E.; Venken, K.; de Escobar, G.M.; Kuhn, E.R.; Darras, V.M. Dynamics and regulation of intracel-lular thyroid hormone concentrations in embryonic chicken liver, kidney, brain, and blood. Gen. Comp. Endocrinol. 2003, 134, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.E.; Hernandez, A. The Type 3 Deiodinase Is a Critical Modulator of Thyroid Hormone Sensitivity in the Fetal Brain. Front. Neurosci. 2021, 15, 703730. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.M.; Breitzig, M.T.; Alleyn, M.D.; Lockey, R.F.; Kolliputi, N.; Calil-Silveira, J.; Serrano-Nascimento, C.; Kopp, P.A.; Nunes, M.T.; Lombardi, A.; et al. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001, 81, 1097–1142. [Google Scholar] [CrossRef] [Green Version]
- Hones, G.S.; Harting, N.; Mittag, J.; Kaiser, F.J. TRalpha2-An Untuned Second Fiddle or Fine-Tuning Thy-roid Hormone Action? Int. J. Mol. Sci. 2022, 23, 6998. [Google Scholar] [CrossRef]
- Cheng, S.-Y.; Leonard, J.L.; Davis, P.J. Molecular Aspects of Thyroid Hormone Actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hones, G.S.; Geist, D.; Moeller, L.C. Noncanonical Action of Thyroid Hormone Receptors alpha and beta. Exp. Clin. Endocrinol. Diabetes 2020, 128, 383–387. [Google Scholar]
- Quignodon, L.; Legrand, C.; Allioli, N.; Guadaño-Ferraz, A.; Bernal, J.; Samarut, J.; Flamant, F. Thyroid hormone signaling is highly heterogeneous during pre- and postnatal brain development. J. Mol. Endocrinol. 2004, 33, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Keijzer, R.; E Blommaart, P.-J.; Labruyère, W.T.; Vermeulen, J.L.M.; Doulabi, B.Z.; Bakker, O.; Tibboel, D.; Lamers, W.H. Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation. J. Mol. Endocrinol. 2007, 38, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.; Towle, H.; Young, W. Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J. Neurosci. 1992, 12, 2288–2302. [Google Scholar] [CrossRef] [Green Version]
- Iskaros, J.; Pickard, M.; Evans, I.; Sinha, A.; Hardiman, P.; Ekins, R. Thyroid hormone receptor gene ex-pression in first trimester human fetal brain. J. Clin. Endocrinol. Metab. 2000, 85, 2620–2623. [Google Scholar] [CrossRef]
- Mellstrom, B.; Naranjo, J.R.; Santos, A.; Gonzalez, A.M.; Bernal, J. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol. Endocrinol. 1991, 5, 1339–1350. [Google Scholar] [CrossRef] [Green Version]
- Wallis, K.; Dudazy, S.; van Hogerlinden, M.; Nordstrom, K.; Mittag, J.; Vennstrom, B. The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol. Endocrinol. 2010, 24, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, J.L.; Farwell, A.P.; Yen, P.M.; Chin, W.W.; Stula, M. Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells. Endocrinology 1994, 135, 548–555. [Google Scholar] [CrossRef]
- Lechan, R.M.; Qi, Y.; Jackson, I.M.; Mahdavi, V. Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 1994, 135, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J. Thyroid hormone regulated genes in cerebral cortex development. J. Endocrinol. 2017, 232, R83–R97. [Google Scholar] [CrossRef] [Green Version]
- di Maio, V. The glutamatergic synapse: A complex machinery for information processing. Cogn. Neurodyn. 2021, 15, 757–781. [Google Scholar] [CrossRef]
- Sanacora, G.; Zarate, C.A.; Krystal, J.H.; Manji, H.K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov. 2008, 7, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Bai, Z.; Gong, Y.; Liu, X.; Dai, X.; Wang, S.; Liu, F. Monitoring glutamate levels in the posterior cingulate cortex of thyroid dysfunction patients with TE-averaged PRESS at 3T. Magn. Reson. Imaging 2015, 33, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bai, Z.; Liu, F.; Li, M.; Zhang, Q.; Song, G.; Xu, J. Reduced posterior cingulate glutamate measured by magnetic resonance spectroscopy in hyperthyroidism. Neuro Endocrinol. Lett. 2012, 33, 626–630. [Google Scholar]
- Mendes-De-Aguiar, C.B.N.; Alchini, R.; Decker, H.; Alvarez-Silva, M.; Tasca, C.I.; Trentin, A.G. Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J. Neurosci. Res. 2008, 86, 3117–3125. [Google Scholar] [CrossRef] [PubMed]
- Nuguru, S.P.; Rachakonda, S.; Sripathi, S.; Khan, M.I.; Patel, N.; Meda, R.T. Hypothyroidism and Depression: A Narrative Review. Cureus 2022, 14, e28201. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, B.F.; Zlotnik, A.; Frenkel, A.; Fleidervish, I.; Boyko, M. Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022, 12, 459. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, S.; Takamiya, A.; Noda, Y.; Horita, N.; Wada, M.; Tsugawa, S.; Plitman, E.; Sano, Y.; Tarumi, R.; ElSalhy, M.; et al. Glutamatergic neurometabolite levels in major depressive disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol. Psychiatry 2019, 24, 952–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, K.; Sawa, A.; Iyo, M. Increased Levels of Glutamate in Brains from Patients with Mood Disorders. Biol. Psychiatry 2007, 62, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.E.; Ortiz, A.K.; Konopka, G. Corticogenesis across species at single-cell resolution. Dev. Neurobiol. 2022, 82, 517–532. [Google Scholar] [CrossRef]
- Bernal, J.; Morte, B.; Diez, D. Thyroid hormone regulators in human cerebral cortex development. J. Endocrinol. 2022, 255, R27–R36. [Google Scholar] [CrossRef]
- Namba, T.; Huttner, W.B. Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. Wiley Interdiscip. Rev. Dev. Biol. 2016, 6, e256. [Google Scholar] [CrossRef]
- Mohan, V.; Sinha, R.A.; Pathak, A.; Rastogi, L.; Kumar, P.; Pal, A.; Godbole, M.M. Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Exp. Neurol. 2012, 237, 477–488. [Google Scholar] [CrossRef]
- Diez, D.; Morte, B.; Bernal, J. Single-cell transcriptome profiling of thyroid hormone effectors in the human fetal neocortex: Expression of SLCO1C1, DIO2, and THRB in specific cell types. Thyroid 2021, 31, 1577–1588. [Google Scholar] [CrossRef]
- Mayerl, S.; Müller, J.; Bauer, R.; Richert, S.; Kassmann, C.M.; Darras, V.M.; Buder, K.; Boelen, A.; Visser, T.J.; Heuer, H. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Investig. 2014, 124, 1987–1999. [Google Scholar] [CrossRef] [Green Version]
- Wallis, K.; Sjogren, M.; van Hogerlinden, M.; Silberberg, G.; Fisahn, A.; Nordstrom, K.; Larsson, L.; Westerblad, H.; de Escobar, G.M.; Shupliakov, O.; et al. Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J. Neurosci. 2008, 28, 1904–1915. [Google Scholar] [CrossRef] [Green Version]
- Vancamp, P.; Deprez, M.-A.; Remmerie, M.; Darras, V.M. Deficiency of the Thyroid Hormone Transporter Monocarboxylate Transporter 8 in Neural Progenitors Impairs Cellular Processes Crucial for Early Corticogenesis. J. Neurosci. 2017, 37, 11616–11631. [Google Scholar] [CrossRef] [Green Version]
- Stenzel, D.; Wilsch-Brauninger, M.; Wong, F.K.; Heuer, H.; Huttner, W.B. Integrin alphavbeta3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 2014, 141, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Sultan, K.T.; Shi, S. Generation of diverse cortical inhibitory interneurons. Wiley Interdiscip. Rev. Dev. Biol. 2017, 7, e306. [Google Scholar] [CrossRef]
- Kelsom, C.; Lu, W. Development and specification of GABAergic cortical interneurons. Cell Biosci. 2013, 3, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorca, A.; Deogracias, R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front. Neurosci. 2022, 16, 929469. [Google Scholar] [CrossRef] [PubMed]
- Tamijani, S.M.S.; Karimi, B.; Amini, E.; Golpich, M.; Dargahi, L.; Ali, R.A.; Ibrahim, N.M.; Mohamed, Z.; Ghasemi, R.; Ahmadiani, A. Thyroid hormones: Possible roles in epilepsy pathology. Seizure 2015, 31, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitt, P.; Eagleson, K.L.; Powell, E.M. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci. 2004, 27, 400–406. [Google Scholar] [CrossRef]
- Menezes, E.C.; Santos, P.R.; Goes, T.C.; Carvalho, V.C.B.; Teixeira-Silva, F.; Stevens, H.E.; Badauê-Passos, D.J. Effects of a rat model of gestational hypothyroidism on forebrain dopaminergic, GABAergic, and serotonergic systems and related behaviors. Behav. Brain Res. 2019, 366, 77–87. [Google Scholar] [CrossRef]
- Chapa, F.; Kunnecke, B.; Calvo, R.; del Rey, F.E.; de Escobar, G.M.; Cerdan, S. Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C2) acetate as detected by 13C nuclear magnetic resonance. Endocrinology 1995, 136, 296–305. [Google Scholar] [CrossRef]
- Upadhyaya, L.; Agrawal, J.K. Effect of L-Thyroxine and Carbimazole on Brain Biogenic Amines and Amino Acids in Rats. Endocr. Res. 1993, 19, 87–99. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Lin, L.; Yang, H.; Gao, F.; Gong, T.; Edden, R.A.; Wang, G. Brain GABA+ changes in primary hypothyroidism patients before and after levothyroxine treatment: A longitudinal magnetic resonance spectroscopy study. NeuroImage Clin. 2020, 28, 102473. [Google Scholar] [CrossRef]
- Wonders, C.P.; Anderson, S.A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 2006, 7, 687–696. [Google Scholar] [CrossRef]
- Xu, Q.; Cobos, I.; de La Cruz, E.; Rubenstein, J.L.; Anderson, S.A. Origins of cortical interneuron sub-types. J. Neurosci. 2004, 24, 2612–2622. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.J.; Fuccillo, M.; Nery, S.; Noctor, S.; Kriegstein, A.; Corbin, J.G.; Fishell, G. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 2005, 48, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.E.; Sui, L.; Walker, M.J.; Anderson, W.; Thomas, S.; Smoller, S.N.; Schon, J.P.; Phani, S.; Goodman, J.H. Thyroid hormone insufficiency during brain development reduces parvalbumin immuno-reactivity and inhibitory function in the hippocampus. Endocrinology 2007, 148, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berbel, P.; Marco, P.; Cerezo, J.R.; Defelipe, J. Distribution of parvalbumin immunoreactivity in the neocortex of hypothyroid adult rats. Neurosci. Lett. 1996, 204, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; O’shaughnessy, K.L.; Axelstad, M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020, 161, bqaa106. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Taguchi, Y.; Sato, C.; Miyazaki, H.; Kobayashi, K.; Kobayashi, T.; Itoi, K. Amelioration of im-proper differentiation of somatostatin-positive interneurons by triiodothyronine in a growth-retarded hypothyroid mouse strain. Neurosci. Lett. 2014, 559, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Richard, S.; Guyot, R.; Rey-Millet, M.; Prieux, M.; Markossian, S.; Aubert, D.; Flamant, F. A Pivotal Genetic Program Controlled by Thyroid Hormone during the Maturation of GABAergic Neurons. iScience 2020, 23, 100899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petros, T.J.; Bultje, R.S.; Ross, M.E.; Fishell, G.; Anderson, S.A. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate. Cell Rep. 2015, 13, 1090–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, S.J.; Sousa, V.H.; Fuccillo, M.V.; Hjerling-Leffler, J.; Miyoshi, G.; Kimura, S.; Fishell, G. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 2008, 59, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Guo, L.; Moore, H.; Waclaw, R.R.; Campbell, K.; Anderson, S.A. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates. Neuron 2010, 65, 328–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Wonders, C.P.; Anderson, S.A. Sonic hedgehog maintains the identity of cortical interneuron pro-genitors in the ventral telencephalon. Development 2005, 132, 4987–4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desouza, L.A.; Sathanoori, M.; Kapoor, R.; Rajadhyaksha, N.; Gonzalez, L.E.; Kottmann, A.H.; Tole, S.; Vaidya, V.A. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain. Endocrinology 2011, 152, 1989–2000. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Wang, Y.; Hui, Y.; Du, Y.; Chen, Z.; Feng, H.; Zhang, S.; Li, N.; Song, J.; Fang, Y.; et al. WNT/NOTCH Pathway Is Essential for the Maintenance and Expansion of Human MGE Progenitors. Stem Cell Rep. 2019, 12, 934–949. [Google Scholar] [CrossRef] [Green Version]
- Morte, B.; Gil-Ibáñez, P.; Bernal, J. Regulation of Gene Expression by Thyroid Hormone in Primary Astrocytes: Factors Influencing the Genomic Response. Endocrinology 2018, 159, 2083–2092. [Google Scholar] [CrossRef] [Green Version]
- O’shaughnessy, K.L.; Thomas, S.E.; Spring, S.R.; Ford, J.L.; Ford, R.L.; Gilbert, M.E. A transient win-dow of hypothyroidism alters neural progenitor cells and results in abnormal brain development. Sci. Rep. 2019, 9, 4662. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.E.; Ramos, R.L.; Mccloskey, D.P.; Goodman, J.H. Subcortical Band Heterotopia in Rat Offspring Following Maternal Hypothyroxinaemia: Structural and Functional Characteristics. J. Neuroendocrinol. 2014, 26, 528–541. [Google Scholar] [CrossRef]
- Goodman, J.H.; Gilbert, M.E. Modest Thyroid Hormone Insufficiency during Development Induces a Cellular Malformation in the Corpus Callosum: A Model of Cortical Dysplasia. Endocrinology 2007, 148, 2593–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’shaughnessy, K.L.; Kosian, P.A.; Ford, J.L.; Oshiro, W.M.; Degitz, S.J.; Gilbert, M.E. Developmental Thyroid Hormone Insufficiency Induces a Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study. Toxicol. Sci. 2018, 163, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, R.; Parrini, E. Neuronal migration disorders. Neurobiol. Dis. 2010, 38, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Pop, V.J.; Brouwers, E.P.; Vader, H.L.; Vulsma, T.; van Baar, A.L.; de Vijlder, J.J. Maternal hypothy-roxinaemia during early pregnancy and subsequent child development: A 3-year follow-up study. Clin. Endocrinol. 2003, 59, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, E.; Auso, E.; Telefont, M.; de Escobar, G.M.; Sotelo, C.; Berbel, P. Transient maternal hypothy-roxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons. Eur. J. Neurosci. 2005, 22, 541–551. [Google Scholar] [CrossRef]
- Alifragis, P.; Liapi, A.; Parnavelas, J.G. Lhx6 Regulates the Migration of Cortical Interneurons from the Ventral Telencephalon But Does Not Specify their GABA Phenotype. J. Neurosci. 2004, 24, 5643–5648. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Yauk, C.L.; Rowan-Carroll, A.; You, S.H.; Zoeller, R.T.; Lambert, I.; Wade, M.G. Identifica-tion of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum. PLoS ONE 2009, 4, e4610. [Google Scholar] [CrossRef] [Green Version]
- Madhusudhan, U.; Kalpana, M.; Singaravelu, V.; Ganji, V.; John, N.; Gaur, A. Brain-Derived Neu-rotrophic Factor-Mediated Cognitive Impairment in Hypothyroidism. Cureus J. Med. Sci. 2022, 14, e23722. [Google Scholar]
- Jones, K.R.; Fariñas, I.; Backus, C.; Reichardt, L.F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 1994, 76, 989–999. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, A.; Mcguire, T.; Peng, C.Y.; Kessler, J.A. Differential effects of BMP signaling on parval-bumin and somatostatin interneuron differentiation. Development 2009, 136, 2633–2642. [Google Scholar] [CrossRef] [Green Version]
- Martel, J.; Cayrou, C.; Puymirat, J. Identification of new thyroid hormone-regulated genes in rat brain neuronal cultures. Neuroreport 2002, 13, 1849–1851. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Hashimoto, K.; Kobayashi, K. Cholinergic regulation of object recognition memory. Front. Behav. Neurosci. 2022, 16, 996089. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, C.; Shichkova, P.; Keller, D.; Markram, H.; Ramaswamy, S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front. Neural Circuits 2019, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.Y.; Knowles, R.; Dehorter, N. New Insights Into Cholinergic Neuron Diversity. Front. Mol. Neurosci. 2019, 12, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muramatsu, I.; Masuoka, T.; Uwada, J.; Yoshiki, H.; Yazama, T.; Lee, K.S.; Sada, K.; Nishio, M.; Ishibashi, T.; Taniguchi, T. A New Aspect of Cholinergic Transmission in the Central Nervous System. In Nicotinic Acetylcholine Receptor Signaling in Neuroprotection; Akaike, A., Shimohama, S., Misu, Y., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Wang, F.; Zeng, X.; Zhu, Y.; Ning, D.; Liu, J.; Liu, C.; Jia, X.; Zhu, D. Effects of thyroxine and donepezil on hippocampal acetylcholine content, acetylcholinesterase activity, synaptotagmin-1 and SNAP-25 expression in hypothyroid adult rats. Mol. Med. Rep. 2014, 11, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Hefti, F.; Hartikka, J.; Bolger, M.B. Effect of Thyroid-Hormone Analogs on the Activity of Choline-Acetyltransferase in Cultures of Dissociated Septal Cells. Brain Res. 1986, 375, 413–416. [Google Scholar] [CrossRef]
- de Ku, L.M.J.; Sharma-Stokkermans, M.; Meserve, L.A. Thyroxine normalizes polychlorinated bi-phenyl (PCB) dose-related depression of choline acetyltransferase (ChAT) activity in hippocampus and basal forebrain of 15-day-old rats. Toxicology 1994, 94, 19–30. [Google Scholar] [CrossRef]
- Gould, E.; Butcher, L. Developing cholinergic basal forebrain neurons are sensitive to thyroid hormone. J. Neurosci. 1989, 9, 3347–3358. [Google Scholar] [CrossRef] [Green Version]
- Sawin, S.; Brodish, P.; Carter, C.S.; Stanton, M.E.; Lau, C. Development of Cholinergic Neurons in Rat Brain Regions: Dose-Dependent Effects of Propylthiouracil-Induced Hypothyroidism. Neurotoxicol. Teratol. 1998, 20, 627–635. [Google Scholar] [CrossRef]
- Carageorgiou, H.; Pantos, C.; Zarros, A.; Mourouzis, I.; Varonos, D.; Cokkinos, D.; Tsakiris, S. Changes in Antioxidant Status, Protein Concentration, Acetylcholinesterase, (Na+,K+)-, and Mg2+-ATPase Activities in the Brain of Hyper- and Hypothyroid Adult Rats. Metab. Brain Dis. 2005, 20, 129–139. [Google Scholar] [CrossRef]
- Cardoso, J.D.; Baldissarelli, J.; Reichert, K.P.; Teixeira, F.C.; Soares, M.S.P.; Schetinger, M.R.C.; Morsch, V.M.; Martins, A.O.F.; Duarte, H.R.; Coriolano, F.H.R.; et al. Neuroprotection elicited by resveratrol in a rat model of hypothyroidism: Possible involvement of cholinergic signaling and redox status. Mol. Cell. Endocrinol. 2021, 524, 111157. [Google Scholar] [CrossRef]
- Salvati, S.; Attorri, L.; Campeggi, L.M.; Olivieri, A.; Sorcini, M.; Fortuna, S.; Pintor, A. Effect of Propylthiouracil-Induced Hypothyroidism of Cerebral-Cortex of Young and Aged Rats—Lipid-Composition of Synaptosomes Muscarinic Receptor-Sites and Acetylcholinesterase Activity. J. Neurochem. 1994, 63, S80. [Google Scholar] [CrossRef]
- Puymirat, J.; Etonguemayer, P.; Dussault, J.H. Thyroid hormones stabilize acetylcholinesterase mRNA in neuro-2A cells that overexpress the beta 1 thyroid receptor. J. Biol. Chem. 1995, 270, 30651–30656. [Google Scholar] [CrossRef] [Green Version]
- Newman, E.L.; Gupta, K.; Climer, J.R.; Monaghan, C.K.; Hasselmo, M.E. Cholinergic modulation of cognitive processing: Insights drawn from computational models. Front. Behav. Neurosci. 2012, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.W.; Evans, A.; Costall, B.; Smythe, J.W. Thyroid hormones, brain function and cognition: A brief review. Neurosci. Biobehav. Rev. 2002, 26, 45–60. [Google Scholar] [CrossRef]
- Magno, L.; Barry, C.; Schmidt-Hieber, C.; Theodotou, P.; Hausser, M.; Kessaris, N. NKX2-1 Is Required in the Embryonic Septum for Cholinergic System Development, Learning, and Memory. Cell Rep. 2017, 20, 1572–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atterwill, C.K.; Kingsbury, A.; Nicholls, J.; Prince, A. Development of markers for cholinergic neurons in re-aggregate cultures of fetal rat whole brain in serum-containing and serum-free media: Effects of triiodo-thyronine (T3). Br. J. Pharmacol. 1984, 83, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Lebel, J.M.; Dussault, J.H.; Puymirat, J. Overexpression of the Beta-1 Thyroid Receptor Induces Differentiation in Neuro-2a Cells. Proc. Natl. Acad. Sci. USA 1994, 91, 2644–2648. [Google Scholar] [CrossRef] [PubMed]
- Sillitoe, R.V.; Vogel, M.W. Desire, Disease, and the Origins of the Dopaminergic System. Schizophr. Bull. 2007, 34, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeliovich, A.; Hammond, R. Midbrain dopamine neuron differentiation: Factors and fates. Dev. Biol. 2007, 304, 447–454. [Google Scholar] [CrossRef]
- Mohamadian, M.; Fallah, H.; Ghofrani-Jahromi, Z.; Rahimi-Danesh, M.; Saadlou, M.-S.S.Q.; Vaseghi, S. Mood and behavior regulation: Interaction of lithium and dopaminergic system. Naunyn-Schmiedebergs Arch. Pharmacol. 2023, 396, 1339–1359. [Google Scholar] [CrossRef] [PubMed]
- Tousson, E.; Ibrahim, W.; Arafa, N.; Akela, M. Monoamine concentrations changes in the PTU-induced hypothyroid rat brain and the ameliorating role of folic acid. Hum. Exp. Toxicol. 2011, 31, 282–289. [Google Scholar] [CrossRef]
- Vaccari, A.; Rossetti, Z.L.; de Montis, G.; Stefanini, E.; Martino, E.; Gessa, G.L. Neonatal hypothyroid-ism induces striatal dopaminergic dysfunction. Neuroscience 1990, 35, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ma, Q.; Chen, X.; Zhong, M.; Deng, P.; Zhu, G.; Zhang, Y.; Zhang, L.; Yang, Z.; Zhang, K.; et al. Thyroid Hormone-Otx2 Signaling Is Required for Embryonic Ventral Mid-brain Neural Stem Cells Differentiated into Dopamine Neurons. Stem Cells Dev. 2015, 24, 1751–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, N.C.; Costa, P.; Ruano, D.; Macedo, A.; Soares, M.J.; Valente, J.; Pereira, A.T.; Azevedo, M.H.; Palha, J.A. Revisiting Thyroid Hormones in Schizophrenia. J. Thyroid. Res. 2012, 2012, 569147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kincaid, A. Spontaneous circling behavior and dopamine neuron loss in a genetically hypothyroid mouse. Neuroscience 2001, 105, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.A.; Rahman, T.A.; Aly, M.S.; Shahat, A.S. Alterations in monoamines level in discrete brain re-gions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism. Int. J. Dev. Neurosci. 2013, 31, 311–318. [Google Scholar] [CrossRef]
- Ookubo, M.; Sadamatsu, M.; Yoshimura, A.; Suzuki, S.; Kato, N.; Kojima, H.; Yamada, N.; Kanai, H. Aberrant Monoaminergic System in Thyroid Hormone Receptor-beta Deficient Mice as a Model of Attention-Deficit/Hyperactivity Disorder. Int. J. Neuropsychopharmacol. 2015, 18, pyv004. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.H.; Kim, S.M.; Kim, C.H.; Pagire, S.H.; Pagire, H.S.; Chung, H.Y.; Ahn, J.H.; Park, C.H. Dopamine neuron induction and the neuroprotective effects of thyroid hormone derivatives. Sci. Rep. 2019, 9, 13659. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Moon, J.-I.; Leung, A.; Aldrich, D.; Lukianov, S.; Kitayama, Y.; Park, S.; Li, Y.; Bolshakov, V.Y.; Lamonerie, T.; et al. ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proc. Natl. Acad. Sci. USA 2011, 108, 9703–9708. [Google Scholar] [CrossRef]
- Kele, J.; Simplicio, N.; Ferri, A.L.M.; Mira, H.; Guillemot, F.; Arenas, E.; Ang, S.-L. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 2006, 133, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Ma, Q.; Deng, P.; Yang, J.; Yang, L.; Lin, M.; Yu, Z.; Zhou, Z. Critical role of TRPC1 in thyroid hor-mone-dependent dopaminergic neuron development. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1900–1912. [Google Scholar] [CrossRef] [PubMed]
- Talhada, D.; Feiteiro, J.; Costa, A.R.; Talhada, T.; Cairrão, E.; Wieloch, T.; Englund, E.; Santos, C.R.; Gonçalves, I.; Ruscher, K. Triiodothyronine modulates neuronal plasticity mechanisms to enhance functional outcome after stroke. Acta Neuropathol. Commun. 2019, 7, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, J.S.; Ferreira, D.R.; Herai, R.; Carromeu, C.; Torres, L.B.; Araujo BH, S.; Cugola, F.; Maciel RM, B.; Muotri, A.R.; Giannocco, G. Altered Gene Expression of Thyroid Hormone Transporters and Deiodinases in iPS MeCP2-Knockout Cells-Derived Neurons. Mol. Neurobiol. 2019, 56, 8277–8295. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ning, D.; Wang, F.; Liu, C.; Xu, Y.; Jia, X.; Zhu, D. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats. Eur. J. Histochem. 2012, 56, 135–141. [Google Scholar] [CrossRef]
- Yajima, H.; Amano, I.; Ishii, S.; Sadakata, T.; Miyazaki, W.; Takatsuru, Y.; Koibuchi, N. Absence of Thyroid Hormone Induced Delayed Dendritic Arborization in Mouse Primary Hippocampal Neurons Through Insufficient Expression of Brain-Derived Neurotrophic Factor. Front. Endocrinol. 2021, 12, 629100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaide Martin, A.; Mayerl, S. Local Thyroid Hormone Action in Brain Development. Int. J. Mol. Sci. 2023, 24, 12352. https://doi.org/10.3390/ijms241512352
Alcaide Martin A, Mayerl S. Local Thyroid Hormone Action in Brain Development. International Journal of Molecular Sciences. 2023; 24(15):12352. https://doi.org/10.3390/ijms241512352
Chicago/Turabian StyleAlcaide Martin, Andrea, and Steffen Mayerl. 2023. "Local Thyroid Hormone Action in Brain Development" International Journal of Molecular Sciences 24, no. 15: 12352. https://doi.org/10.3390/ijms241512352
APA StyleAlcaide Martin, A., & Mayerl, S. (2023). Local Thyroid Hormone Action in Brain Development. International Journal of Molecular Sciences, 24(15), 12352. https://doi.org/10.3390/ijms241512352