Enzymatic Redox Properties and Cytotoxicity of Irreversible Nitroaromatic Thioredoxin Reductase Inhibitors in Mammalian Cells
Abstract
:1. Introduction
2. Results
2.1. Enzymatic Redox Properties of Examined Nitroaromatic Compounds
2.2. Reactions of Nitroaromatic Compounds with Reduced Glutathione
2.3. Cytotoxicity of Nitroaromatic Compounds
2.4. Inhibition of Thioredoxin Reductase and Glutathione Reductase by Nitroaromatic Compounds
3. Discussion
4. Materials and Methods
4.1. Enzymes and Chemicals
4.2. Enzymatic Assays and Chemical Reactions
4.3. Cytotoxicity Assays
4.4. Studies of Thioredoxin Reductase and Glutathione Reductase Activity in Cell Lysates
4.5. Statistical Analysis and Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Compound | E17 (V) a | kcat/Km (M−1s−1) | log kcat/Km (avge) | |
---|---|---|---|---|---|
P-450R | ADR/ADX | ||||
1 | Nitrobenzene | −0.485 | 6.8 ± 0.8 × 102 | 3.4 ± 0.2 × 103 | 3.18 |
2 | 4-Nitrobenzoic acid | −0.425 | 2.3 ± 0.2 × 103 (2.9 ± 0.2 × 103) | 2.0 ± 0.2 × 103 (2.3 ± 0.2 × 103) | 3.33 (3.41) |
3 | 2-Nitrothiophene | −0.390 | 1.4 ± 0.1 × 104 | 4.2 ± 0.3 × 104 | 4.38 |
4 | 4-Nitroacetophenone | −0.355 | 1.7 ± 0.2 × 104 | 3.2 ± 0.3 × 104 | 4.37 |
5 | 1,3-Dinitrobenzene | −0.345 | 4.9 ± 0.2 × 104 | 5.2 ± 0.4 × 104 | 4.70 |
6 | 4-Nitrobenzaldehyde | −0.325 | 3.3 ± 0.2 × 104 | 1.7 ± 0.3 × 105 | 4.87 |
7 | 2-Nitrothiophene-5-carboxymorpholide | −0.305 | 1.4 ± 0.2 × 105 | 4.1 ± 0.6 × 105 | 5.38 |
8 | 1,2-Dinitrobenzene | −0.287 | 1.6 ± 0.1 × 105 | 1.8 ± 0.2 × 105 | 5.23 |
9 | 2-Nitrothiophene-5-aldoxime | −0.280 | 2.2 ± 0.2 × 106 (1.8 ± 0.2 × 106) | 5.4 ± 0.5 × 105 (4.2 ± 0.4 × 105) | 6.04 (5.94) |
10 | 2-Nitrothiophene-5-aldehyde | −0.260 | 2.8 ± 0.1 × 105 | 4.0 ± 0.5 × 105 | 5.52 |
11 | Nitrofurantoin | −0.255 | 9.1 ± 1.4 × 104 | 1.0 ± 0.2 × 106 | 5.48 |
12 | Nifuroxime | −0.255 | 1.1 ± 0.1 × 105 | 1.0 ± 0.1 × 106 | 5.52 |
13 | 1,4-Dinitrobenzene | −0.255 | 1.2 ± 0.1 × 106 | 2.0 ± 0.2 × 106 | 6.19 |
14 | 2,4,6-Trinitrotoluene | −0.253 | 1.0 ± 0.1 × 105 (1.4 ± 0.1 × 105) | 7.3 ± 0.2 × 105 (7.0 ± 0.2 × 105) | 5.43 (5.50) |
15 | Tetryl | −0.191 | 5.9 ± 0.2 × 106 | 8.9 ± 1.0 × 105 | 6.36 |
r2 = 0.9209, F(1,13) = 150.11.
Appendix B
No. | Compound | E17 (V) | log D | MH22a cL50 (μM) | HCT-116 GI50 (μM) |
---|---|---|---|---|---|
1 | Nitrobenzene | −0.485 | 1.91 | 1800 ± 200 | ≥5000 |
2 | 4-Nitrobenzoic acid | −0.425 | −1.66 | ≥6000 | ≥6000 |
3 | 2-Nitrothiophene | −0.390 | 1.86 | 341 ± 42 | 600 ± 70 a |
4 | 4-Nitroacetophenone | −0.355 | 1.47 | 239 ± 19 | 400 ± 80 |
5 | 1,3-Dinitrobenzene | −0.345 | 1.85 | 130 ± 14 | 350 ± 20 |
6 | 4-Nitrobenzaldehyde | −0.325 | 1.63 | 200 ± 15 | 50.0 ± 6.0 |
7 | 2-Nitrothiophene-5-carboxymorpholide | −0.305 | 1.07 | 82.0 ± 12 | n.d. |
8 | 1,2-Dinitrobenzene | −0.287 | 1.85 | 25.4 ± 3.0 | 60.0 ± 10.0 |
9 | 2-Nitrothiophene-5-aldoxime | −0.280 | 1.7 | 145 ± 30 118 ± 20 a | 20.0 ± 5.0 |
10 | 2-Nitrothiophene-5-aldehyde | −0.260 | 1.26 | 42.0 ± 5.0 | 20.0 ± 3.0 a |
11 | Nitrofurantoin | −0.255 | −0.25 | 387 ± 25 320 ± 25 a | 60.0 ± 10.0 |
12 | Nifuroxime | −0.255 | −0.34 | 40.5 ± 5.0 | 70.0 ± 10.0 |
13 | 1,4-Dinitrobenzene | −0.255 | 1.85 | 12.0 ± 1.5 | 40.0 ± 7.0 |
14 | 2,4,6-Trinitrotoluene | −0.253 | 2.31 | 17.4 ± 2.0 | 40.0 ± 8.0 |
15 | Tetryl | −0.191 | 1.38 | 7.0 ± 1.0 | 8.0 ± 1.5 |
r2 = 0.9011, F(2,12) = 54.67.
r2 = 0.9372, F(2,11) = 82.10.
References
- Patterson, S.; Fairlamb, A.H. Current and future prospects of nitro-compounds as drugs for trypanosomiasis and leishmaniasis. Curr. Med. Chem. 2019, 26, 4454–4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartkoorn, R.C.; Ryabova, O.B.; Chiarelli, L.R.; Riccardi, G.; Makarov, V.; Cole, S.T. Mechanism of action of 5-nitrothiophenes agains Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014, 58, 2944–2947. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.K.E.; Souza, M.I.F.; Gomes Filho, M.A.; Silva, D.M.F.; Barros, A.L.S.; Rodrigues, M.D.; Silva, P.B.N.; Nascimento, S.C.; Aguiar, J.S.; Brondani, D.J.; et al. N-pentyl-nitrofurantoin induces apoptosis in HL-60 leukemia cell line by upregulating BAX and downregulating BCL-xL gene expression. Pharmacol. Rep. 2016, 68, 1046–1053. [Google Scholar] [CrossRef]
- Fielden, E.M.; Adams, G.E.; Cole, S.; Naylor, M.A.; O’Neill, P.; Stephens, M.A.; Stratford, I.J. Assessment of a range of novel nitro-aromatic radiosensitizers and bioreductive drugs. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 707–711. [Google Scholar] [CrossRef]
- Nepali, K.; Lee, H.-J.; Liou, J.-P. Nitro-group-containing drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [CrossRef] [PubMed]
- Orna, M.; Mason, R. Correlation of kinetic parameters of nitroreductase enzymes with redox properties of nitroaromatic compounds. J. Biol. Chem. 1989, 264, 12379–12384. [Google Scholar] [CrossRef]
- Vidakovic, M.; Crossnoe, C.R.; Neidre, C.; Kim, K.; Krause, K.L.; Germanas, J.P. Reactivity of reduced [2Fe-2S] ferredoxin parallels host susceptibility to nitroimidazoles. Antimicrob. Agents Chemother. 2003, 47, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Guise, C.P.; Dachs, G.U.; Phung, Y.; Lambie, N.K.; Patterson, A.V.; Wilson, W.R. Identification of one-electron reductases that activate both the hypoxia prodrug SN30000 and diagnostic probe EF5. Biochem. Pharmacol. 2014, 91, 436–446. [Google Scholar] [CrossRef]
- Knox, R.J.; Friedlos, F.; Boland, M. The bioactivation of CB1954 and its use as a prodrug in antibody-directed enzyme produg therapy. Cancer Metastasis Rev. 1993, 12, 195–212. [Google Scholar] [CrossRef]
- Šarlauskas, J.; Dičkancaitė, E.; Nemeikaitė, A.; Anusevičius, Ž.; Nivinskas, H.; Segura-Aguilar, J.; Čėnas, N. Nitrobenzimidazoles as substrates for DT-diaphorase and redox cycling compounds: Their enzymatic reactions and cytotoxicity. Arch. Biochem. Biophys. 1997, 346, 219–229. [Google Scholar] [CrossRef]
- Le Campion, L.; Delaforge, M.; Noel, J.P.; Ouazzani, J. Metabolism of 14C-labelled 5-nitro-1,2,4-triazol-3-one by rat liver microsomes. Evidence for the participation of cytochromes P450. Eur. J. Biochem. 1996, 248, 401–406. [Google Scholar] [CrossRef]
- Li, H.; Lin, D.; Peng, Y.; Zheng, J. Oxidative bioactivation of nitrofurantoin in rat liver microsomes. Xenobiotica 2017, 47, 103–111. [Google Scholar] [CrossRef]
- Čėnas, N.; Nemeikaitė-Čėnienė, A.; Kosychova, L. Single- and two-electron reduction of nitroaromatic compounds by flavoenzymes: Implications for their cytotoxicity. Int. J. Molec. Sci. 2021, 22, 8534. [Google Scholar] [CrossRef]
- Nordberg, J.; Arner, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free. Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, D.T.; Ali Emadi, E.M.; Tonissen, K.F.; Clarke, F.M. The thioredoxin-thioredoxin reductase system: Over-expression in human cancer. Anticancer Res. 2003, 23, 2425–2433. [Google Scholar]
- Urig, S.; Becker, K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 2006, 16, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Gencheva, R.; Arner, E.S.J. Thioredoxin reductase inhibition for cancer chemotherapy. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Lillig, C.H.; Holmgren, A. Thioredoxin and related molecules—From biology to health and disease. Antioxid. Redox Signal. 2007, 9, 25–47. [Google Scholar] [CrossRef]
- Arscott, L.; Gromer, S.; Schirmer, R.; Becker, K.; Williams, C.H., Jr. The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc. Natl. Acad. Sci. USA 1997, 94, 3621–3626. [Google Scholar] [CrossRef]
- Nordberg, J.; Zhong, L.; Holmgren, A.; Arner, E.S. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine rsidue. J. Biol. Chem. 1998, 273, 10835–10842. [Google Scholar] [CrossRef] [Green Version]
- Čėnas, N.; Prast, S.; Nivinskas, H.; Šarlauskas, J.; Arner, E.S.J. Interactions of nitroaromatic compounds with the mamalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. J. Biol. Chem. 2006, 281, 5593–5603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busker, S.; Page, B.; Arner, E.S.J. To inhibit TrxR1 is to inactivate STAT-3 inhibition of TrxR1 enzymatic function by STAT3 small molecule inhibitors. Redox Biol. 2020, 36, 101646. [Google Scholar] [CrossRef] [PubMed]
- Stafford, W.C.; Peng, X.; Olofsson, M.H.; Zhang, X.; Luci, D.K.; Lu, L.; Cheng, C.; Tresauges, L.; Dexheimer, T.S.; Coussens, N.P.; et al. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci. Transl. Med. 2018, 10, eaaf7444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Wang, G.; Jiang, M.; Liu, X.; Zhao, Y.; Song, Y.; Jiang, B.; Zhu, D.; Hu, L.; Zhang, Z.; et al. A novel biological activity of the STAT3 inhibitor Stattic in inhibiting glutathione reductase and suppressing the tumorigenicity of human cervical cancer cells via a ROS-dependent pathway. Onco. Target. Ther. 2021, 14, 4047–4060. [Google Scholar] [CrossRef]
- Hodge, C.D.; Edwards, R.A.; Markin, C.J.; McDonald, D.; Pulvino, M.; Huen, M.S.; Zhao, J.; Spyracopoulos, L.; Hendzel, M.J.; Glover, J.N. Covalent inhibition of Ubc13 affects ubiquitin signaling and reveals active site elements important for targeting. ACS Chem. Biol. 2015, 10, 1718–1728. [Google Scholar] [CrossRef] [Green Version]
- Pontrelli, P.; Oranger, A.; Barozzino, M.; Divella, C.; Conserva, F.; Fiore, M.G.; Rossi, R.; Papale, M.; Castellano, G.; Simone, S.; et al. Deregulation of autophagy under hyperglycemic conditions is dependent on increased lysine 63 ubiquitination: A candidate mechanism in the progression of diabetic nephropathy. J. Mol. Med. 2018, 96, 645–659. [Google Scholar] [CrossRef]
- Ivanes, F.; Faccenda, D.; Gatliff, J.; Ahmed, A.A.; Cocco, S.; Cheng, C.H.; Allan, E.; Russell, C.; Duchen, M.R.; Campanella, M. the compound BTB06584 is an IF-1 dependent selective inhibitor of the mitochondrial F1F0-ATPase. Br. J. Pharmacol. 2014, 171, 4193–4206. [Google Scholar] [CrossRef] [Green Version]
- Adams, G.E.; Clarke, E.D.; Jacobs, R.S.; Stratford, I.J.; Wallace, R.G.; Wardman, P.; Watts, M.E. Mammalian cell cytotoxicity of nitrocompounds: Dependence upon reduction potential. Biochem. Biophys. Res. Commun. 1976, 72, 824–829. [Google Scholar] [CrossRef]
- Guissany, A.; Henry, Y.; Lougmani, N.; Hickel, B. Kinetic studies of four types of nitroheterocyclic radicals by pulse radiolysis: Correlation of pharmacological properties to decay rates. Free Rad. Biol. Med. 1990, 8, 173–189. [Google Scholar] [CrossRef]
- Čėnas, N.; Nemeikaitė-Čėnienė, A.; Sergedienė, E.; Nivinskas, H.; Anusevičius, Ž.; Šarlauskas, J. Quantitative structure-activity relationships in single-electron reduction of nitroaromatic exposives: Implications for their cytotoxicity. Biochim. Biophys. Acta 2001, 1528, 31–38. [Google Scholar] [CrossRef]
- Nemeikaitė-Čėnienė, A.; Marozienė, A.; Misevičienė, L.; Tamulienė, J.; Yantsevich, A.V.; Čėnas, N. Flavoenzyme-catalyzed single-electron reduction of nitroaromatic antiandrogens: Implications for their cytotoxicity. Free Radic. Res. 2021, 55, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Marcinkevičienė, J.; Čėnas, N.; Kulys, J.; Usanov, S.A.; Sukhova, N.M.; Selezneva, I.S.; Gryazev, V.F. Nitroreductase reactions of the NADPH–adrenodoxin reductase. Biomed. Biochim. Acta 1990, 49, 167–172. [Google Scholar] [PubMed]
- Marcus, R.; Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 1985, 811, 265–322. [Google Scholar] [CrossRef]
- Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solutions. J. Phys. Chem. Ref. Data 1989, 18, 1637–1755. [Google Scholar] [CrossRef] [Green Version]
- Tedeschi, G.; Chen, S.; Massey, V. DT-diaphorase. Redox potential, steady-state, and rapid reaction studies. J. Biol. Chem. 1995, 270, 1198–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misevičienė, L.; Anusevičius, Ž.; Šarlauskas, J.; Čėnas, N. Reduction of nitroaromatic compounds by NAD(P)H:quinone oxidoreductase (NQO1): The role of electron-accepting potency and structural parameters in the substrate specificity. Acta Biochim. Pol. 2006, 53, 569–576. [Google Scholar]
- Misevičienė, L.; Krikštopaitis, K.; Čėnas, N. The comparative study of redox properties of recombinant human and mitochondrial NADPH:thioredoxin reductases. Chemija 2022, 33, 40–45. [Google Scholar] [CrossRef]
- Miškinienė, V.; Anusevičius, Ž.; Marozienė, A.; Kliukienė, R.; Nivinskas, H.; Šarlauskas, J.; Čėnas, N.; Becker, K. Tetryl as inhibitor and ‘subversive substrate’ for human erythrocyte glutathione reductase. In Proceedings of the 13th International Symposium of Flavins and Flavoproteins, Konstanz, Germany, 29 August–4 September 1999. [Google Scholar]
- Egolf, R.A.; Heindel, N.D. The synthesis of aryl 4-nitro-5-imidazolyl sulfone radiation sensitizers sterically protected against glutathione reaction. J. Heterocycl. Chem. 1991, 28, 577–582. [Google Scholar] [CrossRef]
- Nemeikaitė-Čėnienė, A.; Šarlauskas, J.; Jonušienė, V.; Misevičienė, L.; Marozienė, A.; Yantsevich, A.V.; Čėnas, N. QSARs in prooxidant mammalian cell cytotoxicity of nitroaromatic compounds: The roles of compound lipophilicity and cytochrome P-450- and DT-diaphorase catalyzed reactions. Chemija 2020, 31, 170–177. [Google Scholar] [CrossRef]
- Lalazar, G.; Requena, D.; Ramos-Espiritu, L.; Ng, D.; Bhola, P.D.; De Jong, Y.P.; Wang, R.; Narayan, N.J.C.; Shebl, S.; Levin, S.; et al. Identification of novel therapeutic targets for fibrolamellar carcinoma using patient-derived xenografts and direct-from-patient screening. Cancer Discov. 2021, 11, 2544–2563. [Google Scholar] [CrossRef]
- Boghdeh, N.; McGraw, B.; Barrera, M.D.; Anderson, C.; Baha, H.; Risner, K.H.; Ogungbe, I.V.; Alem, F. Inhibitors of the ubiquitin-mediated signaling pathway exhibit broad-spectrum antiviral activities against New World alphaviruses. Viruses 2023, 15, 655. [Google Scholar] [CrossRef] [PubMed]
- Miliukienė, V.; Čėnas, N. Cytotoxicity of nitroaromatic explosives and their biodegradation products in mice splenocytes: Implications for their immunotoxicity. Z. Naturforsch. C 2008, 63, 519–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatier, P.; Beusch, C.M.; Gencheva, R.; Cheng, Q.; Zubarev, R.; Arner, E.S.J. Comprehensive chemical proteomics analyses reveal that the new Tri-1 and Tri-2 compounds are more specific thioredoxin reductase 1 inhibitors than auranofin. Redox Biol. 2021, 48, 102184. [Google Scholar] [CrossRef] [PubMed]
- Johnson, F.D.; Ferrarone, J.; Liu, A.; Brandstädter, C.; Munuganti, R.; Famsworth, D.A.; Lu, D.; Luu, J.; Sihota, T.; Jansen, S.; et al. Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells. Cell Rep. 2022, 38, 110343. [Google Scholar] [CrossRef]
- Fritz-Wolf, K.; Urig, S.; Becker, K. The structure of human thioredoxin reductase 1 provides insight into C-terminal rearrangements during catalysis. J. Mol. Biol. 2007, 370, 116–127. [Google Scholar] [CrossRef]
- Marozienė, A.; Lesanavičius, M.; Davioud-Charvet, E.; Aliverti, A.; Grellier, P.; Šarlauskas, J.; Čėnas, N. Antiplasmodial activity of nitroaromatic compounds: Correlation with their reduction potential and inhibitory action on Plasmodium falciparum glutathione reductase. Molecules 2019, 24, 4509. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Xu, W.; Zhang, Y.; Yang, Y.; Ma, Q.; Xu, J. Menadione inhibits thioredoxin reductase 1 via arylation of the Sec498 residue and enhances both NADPH oxidation and superoxide production in Sec498 to Cys498 substitution. Free Rad. Biol. Med. 2021, 172, 482–489. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, H.; Corbet, C.; de Mey, S.; Law, K.; Gevaert, T.; Feron, O.; De Ridder, M. Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. Cancer Lett. 2019, 450, 42–52. [Google Scholar] [CrossRef]
- Pechurskaja, T.A.; Harnastai, I.N.; Grabovec, I.P.; Gilep, A.A.; Usanov, S.A. Adrenodoxin supports reactions catalyzed by microsomal steroidgenetic cytochrome P450s. Biochem. Biophys. Res. Commun. 2007, 353, 598–604. [Google Scholar] [CrossRef]
- Becker, K.; Gui, M.; Schirmer, R.H. Inhibition of human glutathione reductase by S-nitrosoglutathione. Eur. J. Biochem. 1995, 234, 472–478. [Google Scholar] [CrossRef]
- Rackham, O.; Shearwood, A.-M.; Thyer, R.; McNamara, E.; Davies, S.M.; Callus, B.A.; Miranda-Vizuete, A.; Berniers-Price, S.J.; Cheng, Q.; Arnér, E.S.; et al. Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors. Free Rad. Biol. Med. 2011, 50, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, H.J. Purification and crystallization of rat liver NAD(P)H:quinone-acceptor oxidoreductase by cibacron blue affinity chromatography: Identification of a new and potent inhibitor. Arch. Biochem. Biophys. 1988, 267, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Bacon, J.R.; Demas, J.N. Phase-plane and Guggenheim methods for treatment of kinetic data. Anal. Chem. 1997, 55, 653–656. [Google Scholar] [CrossRef]
- Ito, M. Microassay for studying anticellular effects of human interferons. J. Interferon. Res. 1984, 4, 603–608. [Google Scholar] [CrossRef]
- Hill, K.E.; McCollum, G.W.; Burk, R.F. Determination of thioredoxin reductase activity in rat liver supernatant. Anal. Biochem. 1997, 253, 123–125. [Google Scholar] [CrossRef]
- Breccia, A.; Busi, F.; Gattavechia, E.; Tamba, M. Reactivity of nitro-thiophene derivatives with electron and oxygen radicals studied by pulse radiolysis and polarographic techniques. Radiat. Environ. Biophys. 1990, 29, 153–160. [Google Scholar] [CrossRef]
Compound | kcat/Km (M−1s−1) | E17(calc.) (V) | ||
---|---|---|---|---|
P-450R | ADR/ADX | NQO1 | ||
1-Chloro-2,4-dinitro- benzene | 1.7 ± 0.1 × 105 | 3.6 ± 0.2 × 105 | ≤102 (≤0.1) a | −0.285 |
NSC697923 | 5.0 ± 0.4 × 104 | 1.1 ± 0.1 × 106 | 2.5 ± 0.4 × 103 (≤0.25) a | −0.287 |
Stattic | 1.3 ± 0.1 × 105 | 1.6 ± 0.1 × 105 | 6.8 ± 0.8 × 102 (0.15 ± 0.02) a | −0.304 |
BTB06584 | 1.6 ± 0.1 × 104 | 3.7 ± 0.2 × 105 | (≤0.07) b | −0.326 |
Tri-1 | 1.7 ± 0.1 × 104 | 3.7 ± 0.2 × 104 | 2.1 ± 0.2 × 103 (0.10 ± 0.02) a | −0.365 |
Compound | E17(calc.) (V) | log D | cL50 MH22a (µM) | GI50 HCT-116 (µM) |
---|---|---|---|---|
CDNB | −0.285 | 2.46 | 1.9 ± 0.1 (28.3) | 5.0 ± 0.3 (40.2) |
NSC697923 | −0.287 | 2.70 | 1.0 ± 0.1 (25.1) | 1.0 ± 0.1 (38.3) |
Stattic | −0.304 | 1.12 | 1.8 ± 0.2 (100) | 2.0 ± 0.2 (106) |
BTB06584 | −0.326 | 5.13 | 28.0 ± 4.0 (10.5) | 80.0 ± 9.0 (36) |
Tri-1 | −0.365 | 3.29 | 6.6 ± 0.5 (77.6) | 7.0 ± 0.7 (184) |
Compound | Cell Viability (%) | ||||||
---|---|---|---|---|---|---|---|
Additions: | |||||||
None | DPPD (2.0 µM) | Desferri- Oxamine (1.0 mM) | Dicoumarol (20 µM) | α-Naphtho- Flavone (5.0 µM) | Isoniazid (1.0 mM) | Miconazole (5.0 µM) | |
1-Chloro-2,4-dinitrobenzene (2.0 µM) | 49.3 ± 4.2 | 77.3 ± 5.6 *** | 67.0 ± 4.6 ** | 69.5 ± 4.8 ** | 63.3 ± 3.8 * | 64.9 ± 4.8 * | 74.9 ± 7.7 ** |
NSC697923 (1.0 µM) | 45.1 ± 3.5 | 55.7 ± 5.2 | 61.7 ± 4.4 ** | 63.1 ± 5.0 ** | 69.0 ± 6.4 ** | 71.0 ± 5.5 *** | 71.0 ± 5.3 *** |
Stattic (2.0 µM) | 50.3 ± 5.5 | 79.1 ± 6.6 ** | 75.0 ± 3.1 ** | 76.7 ± 10 * | 38.6 ± 4.8 * | 32.6 ± 2.8 *** | 74.5 ± 10.7 * |
Tri-1 (6.0 µM) | 49.9 ± 4.5 | 67.7 ± 4.6 ** | 64.7 ± 4.3 * | 78.3 ± 4.8 *** | 70.5 ± 4.6 ** | 77.0 ± 4.8 *** | 68.6 ± 3.3 ** |
Tetryl (10.0 µM) | 45.5 ± 4.2 | 78.4 ± 5.8 *** | 79.9 ± 5.0 *** | 28.2 ± 2.8 *** | 55.4 ± 5.0 | 54.4 ± 3.6 | 24.2 ± 1.1 *** |
Compound | Enzyme | |||
---|---|---|---|---|
Rat TrxR1 | HGR | |||
IC50 (µM) | ki (min−1) | IC50 (µM) | ki (min−1) | |
1-Chloro-2,4-dinitrobenzene | 25 ± 5.0 | 0.10 ± 0.01 (10 µM) | 40 ± 6.0 | ≤0.005 (10 µM) |
NSC697923 | 1.1 ± 0.1 | 0.12 ± 0.02 (1.0 µM) | 0.5 ± 0.1 | 0.02 ± 0.003 (1.0 µM) |
Stattic | 15 ± 2.0 | 0.14 ± 0.02 (10 µM) | 14.0 ± 1.0 | 0.02 ± 0.003 (10 µM) |
Tri-1 | 2.0 ± 0.3 | 0.12 ± 0.01 (1.0 µM) | 32.0 ± 5.0 | ≤0.005 (10 µM) |
Tetryl | 10 ± 1.3 | 0.04 ± 0.01 (1.0 µM) 0.30 ± 0.04 (10 µM) | 14 ± 2.0 | ≤0.002 (10 µM) |
Compound | Cells | Compound Concentration, Incubation Time | Residual Activity (%) | |
---|---|---|---|---|
TrxR | GR | |||
Tri-1 | HCT-116 [23] | 3.3 µM, 3 h | 20 | n.d. |
BF16-F10 [44] | 2.0 µM, 3 h | 50 | n.d. | |
20 µM, 3 h | 10 | n.d. | ||
Stattic | A549 [22] | 10 µM, 4 h | 25 | n.d. |
Various human cervical carcinoma cells [24] | 20 µM, 0.5 h | n.d. | 30–50 | |
1-Chloro-2,4-dinitrobenzene | A549 [21] | 50 µM, 4 h | 30 | 80 |
HeLa [21] | 50 µM, 4 h | 30 | 100 | |
Tetryl | A549 [21] | 50 µM, 4 h | 80 | 100 |
HeLa [21] | 50 µM, 4 h | 75 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemeikaitė-Čėnienė, A.; Misevičienė, L.; Marozienė, A.; Jonušienė, V.; Čėnas, N. Enzymatic Redox Properties and Cytotoxicity of Irreversible Nitroaromatic Thioredoxin Reductase Inhibitors in Mammalian Cells. Int. J. Mol. Sci. 2023, 24, 12460. https://doi.org/10.3390/ijms241512460
Nemeikaitė-Čėnienė A, Misevičienė L, Marozienė A, Jonušienė V, Čėnas N. Enzymatic Redox Properties and Cytotoxicity of Irreversible Nitroaromatic Thioredoxin Reductase Inhibitors in Mammalian Cells. International Journal of Molecular Sciences. 2023; 24(15):12460. https://doi.org/10.3390/ijms241512460
Chicago/Turabian StyleNemeikaitė-Čėnienė, Aušra, Lina Misevičienė, Audronė Marozienė, Violeta Jonušienė, and Narimantas Čėnas. 2023. "Enzymatic Redox Properties and Cytotoxicity of Irreversible Nitroaromatic Thioredoxin Reductase Inhibitors in Mammalian Cells" International Journal of Molecular Sciences 24, no. 15: 12460. https://doi.org/10.3390/ijms241512460
APA StyleNemeikaitė-Čėnienė, A., Misevičienė, L., Marozienė, A., Jonušienė, V., & Čėnas, N. (2023). Enzymatic Redox Properties and Cytotoxicity of Irreversible Nitroaromatic Thioredoxin Reductase Inhibitors in Mammalian Cells. International Journal of Molecular Sciences, 24(15), 12460. https://doi.org/10.3390/ijms241512460