Molecular Mechanisms of Synaptic Plasticity 2.0: Dynamic Changes in Neurons Functions, Physiological and Pathological Process
Conflicts of Interest
References
- Citri, A.; Malenka, R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008, 33, 18–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, S.B.; Mrsic-Flogel, T.D.; Bonhoeffer, T.; Hübener, M. Experience Leaves a Lasting Structural Trace in Cortical Circuits. Nature 2009, 457, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Martella, G.; Madeo, G.; Maltese, M.; Vanni, V.; Puglisi, F.; Ferraro, E.; Schirinzi, T.; Valente, E.M.; Bonanni, L.; Shen, J.; et al. Exposure to Low-Dose Rotenone Precipitates Synaptic Plasticity Alterations in PINK1 Heterozygous Knockout Mice. Neurobiol. Dis. 2016, 91, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Martella, G.; Bonsi, P.; Johnson, S.W.; Quartarone, A. Synaptic Plasticity Changes: Hallmark for Neurological and Psychiatric Disorders. Neural Plast. 2018, 2018, 9230704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsi, P.; Ponterio, G.; Vanni, V.; Tassone, A.; Sciamanna, G.; Migliarini, S.; Martella, G.; Meringolo, M.; Dehay, B.; Doudnikoff, E.; et al. RGS9-2 Rescues Dopamine D2 Receptor Levels and Signaling in DYT1 Dystonia Mouse Models. EMBO Mol. Med. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Saundh, S.L.; Patnaik, D.; Gagné, S.; Bishop, J.A.; Lipsit, S.; Amat, S.; Pujari, N.; Nambisan, A.K.; Bigsby, R.; Murphy, M.; et al. Identification and Mechanistic Characterization of a Peptide Inhibitor of Glycogen Synthase Kinase (GSK3β) Derived from the Disrupted in Schizophrenia 1 (DISC1) Protein. ACS Chem. Neurosci. 2020, 11, 4128–4138. [Google Scholar] [CrossRef] [PubMed]
- Stampanoni Bassi, M.; Buttari, F.; Nicoletti, C.G.; Mori, F.; Gilio, L.; Simonelli, I.; De Paolis, N.; Marfia, G.A.; Furlan, R.; Finardi, A.; et al. Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. Int. J. Mol. Sci. 2020, 21, 6982. [Google Scholar] [CrossRef] [PubMed]
- Eltokhi, A.; Santuy, A.; Merchan-Perez, A.; Sprengel, R. Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. Int. J. Mol. Sci. 2020, 22, 59. [Google Scholar] [CrossRef] [PubMed]
- D’angelo, V.; Giorgi, M.; Paldino, E.; Cardarelli, S.; Fusco, F.R.; Saverioni, I.; Sorge, R.; Martella, G.; Biagioni, S.; Mercuri, N.B.; et al. A2a Receptor Dysregulation in Dystonia Dyt1 Knock-out Mice. Int. J. Mol. Sci. 2021, 22, 2691. [Google Scholar] [CrossRef] [PubMed]
- Di Giovanni, G.; Grandi, L.C.; Fedele, E.; Orban, G.; Salvadè, A.; Song, W.; Cuboni, E.; Stefani, A.; Kaelin-Lang, A.; Galati, S. Acute and Chronic Dopaminergic Depletion Differently Affect Motor Thalamic Function. Int. J. Mol. Sci. 2020, 21, 2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laricchiuta, D.; Balsamo, F.; Fabrizio, C.; Panuccio, A.; Termine, A.; Petrosini, L. CB1 Activity Drives the Selection of Navigational Strategies: A Behavioral and c-Fos Immunoreactivity Study. Int. J. Mol. Sci. 2020, 21, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, A.; Spiombi, E.; Frasca, A.; Landsberger, N.; Zagrebelsky, M.; Korte, M. Fingolimod Modulates Dendritic Architecture in a BDNF-Dependent Manner. Int. J. Mol. Sci. 2020, 21, 3079. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, F.; Laricchiuta, D.; Natale, G.; Marino, G.; Calabrese, V.; Picconi, B.; Petrosini, L.; Calabresi, P.; Ghiglieri, V. Long-Term Shaping of Corticostriatal Synaptic Activity by Acute Fasting. Int. J. Mol. Sci. 2021, 22, 1916. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Colangelo, A.M.; Virtuoso, A.; Alberghina, L.; Papa, M. Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. Int. J. Mol. Sci. 2020, 21, 1539. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martella, G. Molecular Mechanisms of Synaptic Plasticity 2.0: Dynamic Changes in Neurons Functions, Physiological and Pathological Process. Int. J. Mol. Sci. 2023, 24, 12685. https://doi.org/10.3390/ijms241612685
Martella G. Molecular Mechanisms of Synaptic Plasticity 2.0: Dynamic Changes in Neurons Functions, Physiological and Pathological Process. International Journal of Molecular Sciences. 2023; 24(16):12685. https://doi.org/10.3390/ijms241612685
Chicago/Turabian StyleMartella, Giuseppina. 2023. "Molecular Mechanisms of Synaptic Plasticity 2.0: Dynamic Changes in Neurons Functions, Physiological and Pathological Process" International Journal of Molecular Sciences 24, no. 16: 12685. https://doi.org/10.3390/ijms241612685
APA StyleMartella, G. (2023). Molecular Mechanisms of Synaptic Plasticity 2.0: Dynamic Changes in Neurons Functions, Physiological and Pathological Process. International Journal of Molecular Sciences, 24(16), 12685. https://doi.org/10.3390/ijms241612685