Proteome-Level Investigation of Vitis amurensis Calli Transformed with a Constitutively Active, Ca2+-Independent Form of the Arabidopsis AtCPK1 Gene
Abstract
:1. Introduction
2. Results
2.1. Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometric Proteomic
2.2. Plant Signaling Systems
2.3. DNA/RNA, Amino Acid, and Protein Metabolic Processes
2.4. Carbohydrate Metabolic Pathways and ATP Synthesis
2.5. Pathogenesis-Related Proteins
2.6. Chaperones
2.7. Other Process
2.8. qRT-PCR Analysis of Some Important Proteins
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. 2-D-Gel Electrophoresis
4.3. Quantification of Protein Expression
4.4. Experimental Design and Statistical Rationale
4.5. MALDI-TOF Mass Spectrometry and Protein Identification
4.6. RNA Isolation, cDNA Synthesis, and Real-Time PCR
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Resentini, F.; Ruberti, C.; Grenzi, M.; Bonza, M.C.; Costa, A. The signatures of organellar calcium. Plant Physiol. 2021, 187, 1985–2004. [Google Scholar] [CrossRef]
- Romeis, T.; Ludwig, A.A.; Martin, R.; Jones, J.D. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J. 2001, 20, 5556–5567. [Google Scholar] [CrossRef]
- Delormel, T.Y.; Boudsocq, M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol. 2019, 224, 585–604. [Google Scholar] [CrossRef]
- Erickson, J.; Weckwerth, P.; Romeis, T.; Lee, J. What’s new in protein kinase/phosphatase signalling in the control of plant immunity? Essays Biochem. 2022, 66, 621–634. [Google Scholar] [CrossRef]
- Bender, K.W.; Zielinski, R.E.; Huber, S.C. Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants. Biochem. J. 2018, 475, 207–223. [Google Scholar] [CrossRef]
- Harper, J.F.; Breton, G.; Harmon, A. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 2004, 55, 263–288. [Google Scholar] [CrossRef]
- Hrabak, E.M.; Chan, C.W.; Gribskov, M.; Harper, J.F.; Choi, J.H.; Halford, N.; Kudla, J.; Luan, S.; Nimmo, H.G.; Sussman, M.R.; et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 2003, 132, 666–680. [Google Scholar] [CrossRef]
- Chandran, V.; Stollar, E.J.; Lindorff-Larsen, K.; Harper, J.F.; Chazin, W.J.; Dobson, C.M.; Luisi, B.F.; Christodoulou, J. Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): A novel mode of calmodulin-target recognition. J. Mol. Biol. 2006, 357, 400–410. [Google Scholar] [CrossRef]
- Harper, J.F.; Huang, J.F.; Lloyd, S.J. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 1994, 33, 7267–7277. [Google Scholar] [CrossRef]
- Yoo, B.C.; Harmon, A.C. Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 1996, 35, 12029–12037. [Google Scholar] [CrossRef]
- Almadanim, M.C.; Gonçalves, N.M.; Rosa, M.T.; Alexandre, B.M.; Cordeiro, A.M.; Rodrigues, M.; Saibo, N.J.; Soares, C.M.; Romão, C.V.; Oliveira, M.M.; et al. The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1865, 231–246. [Google Scholar] [CrossRef]
- Boudsocq, M.; Droillard, M.-J.; Regad, L.; Laurière, C. Characterization of Arabidopsis calcium-dependent protein kinases: Activated or not by calcium? Biochem. J. 2012, 447, 291–299. [Google Scholar] [CrossRef]
- Huang, J.-F.; Teyton, L.; Harper, J.F. Activation of a Ca2+-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry 1996, 35, 13222–13230. [Google Scholar] [CrossRef]
- Raichaudhuri, A.; Bhattacharyya, R.; Chaudhuri, S.; Chakrabarti, P.; Dasgupta, M. Domain analysis of a groundnut calcium-dependent protein kinase: Nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains. J. Biol. Chem. 2006, 281, 10399–10409. [Google Scholar] [CrossRef]
- Shkryl, Y.N.; Veremeichik, G.N.; Makhazen, D.S.; Silantieva, S.A.; Mishchenko, N.P.; Vasileva, E.A.; Fedoreyev, S.A.; Bulgakov, V.P. Increase of anthraquinone content in Rubia cordifolia cells transformed by native and constitutively active forms of the AtCPK1 gene. Plant Cell Rep. 2016, 35, 1907–1916. [Google Scholar] [CrossRef]
- Veremeichik, G.N.; Grigorchuk, V.P.; Shkryl, Y.N.; Bulgakov, D.V.; Silantieva, S.A.; Bulgakov, V.P. Induction of resveratrol biosynthesis in Vitis amurensis cells by heterologous expression of the Arabidopsis constitutively active, Ca2+-independent form of the AtCPK1 gene. Process. Biochem. 2017, 54, 144–155. [Google Scholar] [CrossRef]
- Veremeichik, G.N.; Grigorchuk, V.P.; Silanteva, S.A.; Shkryl, Y.N.; Bulgakov, D.V.; Brodovskaya, E.V.; Bulgakov, V.P. Increase in isoflavonoid content in Glycine max cells transformed by the constitutively active Ca2+ independent form of the AtCPK1 gene. Phytochemistry 2019, 157, 111–120. [Google Scholar] [CrossRef]
- Shkryl, Y.N.; Veremeichik, G.N.; Bulgakov, V.P.; Zhuravlev, Y.N. Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene. Biotechnol. Bioeng. 2011, 108, 1734–1738. [Google Scholar] [CrossRef]
- Coca, M.; Segundo, B.S. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J. 2010, 63, 526–540. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A Hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
- Pattyn, J.; Vaughan-Hirsch, J.; Van de Poel, B. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytol. 2021, 229, 770–782. [Google Scholar] [CrossRef]
- Peiser, G.D.; Wang, T.T.; Hoffman, N.E.; Yang, S.F.; Liu, H.W.; Walsh, C.T. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc. Natl. Acad. Sci. USA 1984, 81, 3059–3063. [Google Scholar] [CrossRef]
- Poulton, J.E. Cyanogenesis in plants. Plant Physiol. 1990, 94, 401–405. [Google Scholar] [CrossRef]
- Mortimer, J.C.; Laohavisit, A.; Macpherson, N.; Webb, A.; Brownlee, C.; Battey, N.H.; Davies, J.M. Annexins: Multifunctional components of growth and adaptation. J. Exp. Bot. 2008, 59, 533–544. [Google Scholar] [CrossRef]
- Qiu, Y.; Xi, J.; Du, L.; Poovaiah, B.W. The function of calreticulin in plant immunity: New discoveries for an old protein. Plant Signal. Behav. 2012, 7, 907–910. [Google Scholar] [CrossRef]
- Makhazen, D.S.; Veremeichik, G.N.; Shkryl, Y.N.; Grigorchuk, V.P.; Tchernoded, G.K.; Degtyarenko, A.I.; Bulgakov, V.P. RNA inhibition of the JAZ9 gene increases the production of resveratrol in grape cell cultures. Plant Cell 2021, 147, 611–618. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Baginsky, S. Plant proteomics: Concepts, application, and novel strategies for data interpretation. Mass Spectrom. Rev. 2009, 28, 93–120. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef]
- Zhu, H.G.; Cheng, W.H.; Tian, W.G.; Li, Y.J.; Liu, F.; Xue, F.; Zhu, Q.H.; Sun, Y.Q.; Sun, J. iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L. Plant Mol. Biol. 2017, 96, 89–102. [Google Scholar] [CrossRef]
- Klubicová, K.; Uvácková, L.; Danchenko, M.; Nemecek, P.; Skultéty, L.; Salaj, J.; Salaj, T. Insights into the early stage of Pinus nigra Arn. somatic embryogenesis using discovery proteomics. J. Proteomics. 2017, 169, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chaturvedi, P.; Fu, J.; Cai, Q.; Weckwerth, W.; Yang, P. Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn. spp. baijianlian). J. Proteomics. 2016, 131, 61–70. [Google Scholar] [CrossRef]
- Reis, R.S.; Vale Ede, M.; Heringer, A.S.; Santa-Catarina, C.; Silveira, V. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J. Proteomics. 2016, 130, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, K.; Lv, D.; Wu, C.; Li, J.; Zhao, P.; Lin, Z.; Du, L.; Yan, Y.; Ye, X. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens. PLoS ONE 2013, 8, e79390. [Google Scholar] [CrossRef] [PubMed]
- Veremeichik, G.N.; Shkryl, Y.N.; Gorpenchenko, T.Y.; Silantieva, S.A.; Avramenko, T.V.; Brodovskaya, E.V.; Bulgakov, V.P. Inactivation of the auto-inhibitory domain in Arabidopsis AtCPK1 leads to increased salt, cold and heat tolerance in the AtCPK1-transformed Rubia cordifolia L. cell cultures. Plant Physiol. Biochem. 2021, 159, 372–382. [Google Scholar] [CrossRef]
- Veremeichik, G.N.; Shkryl, Y.N.; Silantieva, S.A.; Gorpenchenko, T.Y.; Brodovskaya, E.V.; Yatsunskaya, M.S.; Bulgakov, V.P. Managing activity and Ca2+ dependence through mutation in the Junction of the AtCPK1 coordinates the salt tolerance in transgenic tobacco plants. Plant Physiol. Biochem. 2021, 165, 104–113. [Google Scholar] [CrossRef]
- Enoki, S.; Suzuki, S. Pathogenesis-related proteins in grape. InTech 2016, 43, 43–52. [Google Scholar] [CrossRef]
- Dammann, C.; Rojo, E.; Sánchez-Serrano, J.J. Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J. 1997, 11, 773–782. [Google Scholar] [CrossRef]
- Wang, C.S.; Huang, J.C.; Hu, J.H. Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 1999, 40, 807–814. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, L.; Xu, J.; Xin, P.; Guo, H.; Wu, J.; Bai, L.; Wang, G.; Chu, J.; Zuo, J.; et al. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res. 2018, 28, 448–461. [Google Scholar] [CrossRef]
- Ahn, C.S.; Lee, J.H.; Reum Hwang, A.; Kim, W.T.; Pai, H.S. Prohibitin is involved in mitochondrial biogenesis in plants. Plant J. 2006, 46, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Seguel, A.; Jelenska, J.; Herrera-Vásquez, A.; Marr, S.K.; Joyce, M.B.; Gagesch, K.R.; Shakoor, N.; Jiang, S.-C.; Fonseca, A.; Wildermuth, M.C.; et al. PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant Physiol. 2018, 176, 2515–2531. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Editorial: Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 1996, 274, 1900–1902. [Google Scholar] [CrossRef]
- Ji, J.; Yue, J.; Xie, T.; Chen, W.; Du, C.; Chang, E.; Chen, L.; Jiang, Z.; Shi, S. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar: Involving in abscisic acid and ethylene-signalling pathways. Planta 2018, 248, 675–690. [Google Scholar] [CrossRef]
- Schröder, F.; Lisso, J.; Lange, P.; Müssig, C. The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant Biol. 2009, 9, 20. [Google Scholar] [CrossRef]
- Sadura, I.; Libik-Konieczny, M.; Jurczyk, B.; Gruszka, D.; Janeczko, A. HSP transcript and protein accumulation in brassinosteroid Barley mutants acclimated to low and high temperatures. Int. J. Mol. Sci. 2020, 21, 1889. [Google Scholar] [CrossRef]
- Wang, K.L.; Li, H.; Ecker, J.R. Ethylene biosynthesis and signaling networks. Plant Cell 2002, 14, S131–S151. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Vereshchagina, Y.V.; Bulgakov, D.V.; Veremeichik, G.N.; Shkryl, Y.N. The rolB plant oncogene affects multiple signaling protein modules related to hormone signaling and plant defense. Sci. Rep. 2018, 8, 2285. [Google Scholar] [CrossRef]
- Veremeichik, G.; Bulgakov, V.; Shkryl, Y. Modulation of NADPH-oxidase gene expression in rolB-transformed calli of Arabidopsis thaliana and Rubia cordifolia. Plant Physiol. Biochem. 2016, 105, 282–289. [Google Scholar] [CrossRef]
- Veremeichik, G.N.; Brodovskaya, E.V.; Grigorchuk, V.P.; Butovets, E.S.; Lukyanchuk, L.M.; Bulgakov, V.P. ABA-dependent regulation of calcium-dependent protein kinase gene GmCDPK5 in cultivated and wild soybeans. Life 2022, 12, 1576. [Google Scholar] [CrossRef] [PubMed]
Spot Number/Short Name | Mean Value | Uniprot, V.vinifera/A.thaliana/ TAIR ID, A.thaliana | ||||||
---|---|---|---|---|---|---|---|---|
Signaling | ||||||||
Ethylene biosynthesis | ||||||||
101/NIT4B | *2 | A0A438IX76_VITVI/P46011/At5g22300.1 | ||||||
17/NIT4B_3 | *8 | A0A438IX97_VITVI/P46011/At5g22300.1 | ||||||
147/METK4_1 | A0A438D081_VITVI/P23686/At1g02500 | |||||||
Calcium signaling | ||||||||
138/CRT | *8 | D7U2H8_VITVI/O04151/At1g56340.1 | ||||||
138/CRT | *8 | D7UA21_VITVI/Q38858/At1g09210.1 | ||||||
64/ANN1_0 | /5 | A0A438FZR3_VITVI/Q9SYT0/At1g35720 | ||||||
Auxin signaling | ||||||||
105/DAO_1 | *5 | A0A438D270_VITVI/Q9XI75/At1g14130.1 | ||||||
Brassinosteroid signaling | ||||||||
55/EXO | /10 | A0A438F8N5_VITVI/Q9ZPE7/At4g08950 | ||||||
MeJA signaling | ||||||||
35/TIFY10C | TI10C_ORYSI/Q9LMA8/At1g19180 | |||||||
ROS catabolic process | ||||||||
4/GST | *7 | A0A438BWJ7_VITVI/Q9C8M3/At1g53680 | ||||||
52/GSTU10_5 | *2 | A0A438CQC2_VITVI/Q9CA57/AT1G74590.1 | ||||||
3/GSTF13_0 | *7 | A0A438F3E1_VITVI/Q96266-2/At2g47730 | ||||||
140/CAT1_2 | A0A438HMK9_VITVI/P25819/At4g35090 | |||||||
153/CAT | A0A0F7G9V6_VITVI/P25819/At4g35090: | |||||||
123/MDAR3 | A0A438JS91_VITVI/Q9LFA3/At3g52880 | |||||||
10/PNC1_16 | /9 | A0A438C3M1_VITVI/Q9FLC0/At5g05340 | ||||||
Programmed cell death (PCD) signaling mechanism | ||||||||
28/EP1_2 | *7 | A0A438E5H3_VITVI/Q9ZVA4/AT1G78850. | ||||||
DNA/RNA metabolic process | ||||||||
103/ADK2_1 | A0A438GPM6_VITVI/Q9LZG0/At5g03300 | |||||||
144/MPP | D7U090_VITVI/O04308/At3g16480 | |||||||
127/NPK | A5B878_VITVI/P39207/At4g09320 | |||||||
Protein and amino acid synthesis | ||||||||
24/CYSK_6 | *5 | A0A438CWC5_VITVI/OASA1/AT4G14880.1 | ||||||
119/SAHH_1 | A0A438ISZ9_VITVI/O23255/At4g13940 | |||||||
146/EIF4A3A | A0A438J912_VITVI/P41377/At1g54270 | |||||||
95/METE | A5C7K7_VITVI/O50008/AT5G17920.1 | |||||||
136/PDI_1 | A0A438F8P6_VITVI/Q9XI01/At1g21750 | |||||||
26/PDIA6_0 | A0A438IMJ7_VITVI/O22263/At2g47470 | |||||||
130/TEF1_1 | /9 | A0A438BNW3_VITVI/Q8GTY0/At5g60390. | ||||||
110/GS | /9 | A0A0A0QQR7_9ROSI/Q56WN1/At5g37600 | ||||||
71/KAR | /4 | A5AGN5_VITVI/Q05758/At3g58610 | ||||||
84/GDH1_1 | /6 | A0A438EGS1_VITVI/Q43314/At5g18170 | ||||||
68/PSAT | /6 | A0A438DBR8_VITVI/Q9SHP0/At2g17630 | ||||||
Protein and amino acid catabolism | ||||||||
18/RD21B | *9 | A0A438ITG1_VITVI/ Q9FMH8/AT5G43060.1 | ||||||
9/AED3_2 | /10 | A0A438G0C6_VITVI/O04496/At1g09750 | ||||||
116/RPT1_1 | A0A438EWK5_VITVI/Q9SSB5/At1g53750 | |||||||
51/PAD1_1 | A0A438DSU8_VITVI/O24616/At5g66140 | |||||||
56/PAD | D7U7S6_VITVI/P42742/At3g60820 | |||||||
118/MPPB | A0A438D4P9_VITVI/Q42290-2/At3g02090 | |||||||
Carbohydrate metabolic pathways | ||||||||
97/EPHX2_2 | *3 | A0A438JK35_VITVI/Q9SD45/AT3g51000 | ||||||
96/FRK2 | *3 | A0A438DJZ1_VITVI/Q9M1B9/AT3G59480.1 | ||||||
22/PDH | *3 | F6I1P0_VITVI/Q38799/At5g50850 | ||||||
102/SUCB_0 | *4 | A0A438F186_VITVI/O82662/At2g20420 | ||||||
78/ADH1_8 | *5 | A0A438DAW3_VITVI/P06525/At1g77120 | ||||||
43/FBA1_2 | *5 | A0A438EJU4_VITVI/Q9SJQ9/AT2G36460.1 | ||||||
40/GAPDH | *7 | F6GSG7_VITVI/Q9FX54/At1g13440.1 | ||||||
47/PGM1_0 | *5 | A0A438D2Y0_VITVI/Q9M9K1/AT3G08590.1 | ||||||
27/PGKY_0 | *5 | A0A438DH18_VITVI/Q9SAJ4/ AT1G79550.1 | ||||||
77/NADP-ME | *8 | A0A1Z2THL4_9ROSI/Q9XGZ0/At5g25880.1 | ||||||
32/GAPC2_2 | *9 | A0A438DIR9_VITVI/P25858/At3g04120 | ||||||
88/ACO | /9 | D7T7Y3_VITVI/Q9SIB9/At2g05710.1 | ||||||
89/ACO1_1 | /9 | A0A438EV70_VITVI/Q42560/At4G35830.1 | ||||||
81/FDH1_0 | /9 | A0A438EFK8_VITVI/A0A1P8B9N1/At5g14780 | ||||||
111/ICDH | /9 | D7TQM9_VITVI/Q945K7/At5g03290 | ||||||
65/FBA3_0 | /7 | A0A438JUA2_VITVI/Q9ZU52/At2g01140 | ||||||
152/GME-1_0 | /5 | A0A438IH22_VITVI/Q93VR3/At5g28840 | ||||||
86/ICDH-1 | /5 | A0A438DVA0_VITVI/Q9SRZ6/At1g65930 | ||||||
115/UGPT | /7 | F6I0H8_VITVI/P57751/At5g17310 | ||||||
112/CMDH_1 | /10 | A0A438CMY8_VITVI/P57106/At5g43330 | ||||||
112/CMDH_3 | /10 | A0A438KDL0_VITVI/P57106/At5g43330 | ||||||
120/ALDH2B4_6 | /2 | A0A438EHU2_VITVI/Q9SU63/At3g48000 | ||||||
79/MDH | /2 | A0A1Z2THL9_9ROSI/Q9ZP06/At1g53240 | ||||||
54/TPI | /4 | A5BV65_VITVI/P48491/At3g55440 | ||||||
75/ENO | F6HKH3_VITVI/P25696/ | |||||||
ATP synthesis | ||||||||
134/ATPB_1 | *4 | A0A438JUR7_VITVI/P83484/At5g08690.1 | ||||||
135/ATPB_3 | *3 | F6GTT2_VITVI/P83484/At5g08690.1 | ||||||
117/ATPA_1 | /7 | A0A654ICF0_9ROSI/F4IMB5/At2g07698 | ||||||
139/VPP | A5B7R2_VITVI/Q9SZN1/At4g38510, | |||||||
108/VATA_3 | A0A438E4U3_VITVI/O23654/At1g78900 | |||||||
Pathogenesis-Related Proteins | ||||||||
60/E13A_1 | *5 | A0A438I656_VITVI/F4J270/At3g57240.1 | ||||||
37/BG3 | *10 | F6HLL8_VITVI/F4J270/At3g57240.1 | ||||||
19/OS13_1 (PR-5) | *7 | A0A438JJ78_VITVI/P50700/At4g11650.1 | ||||||
2/BetvI (PR-10) | *10 | D7SY76_VITVI/Q93VR4/At1g24020.1 | ||||||
13/PR10.1 | *9 | Q9FS42_VITVI/Q93VR4/At1g24020.1 | ||||||
11/PR10.2 | *9 | Q9FS43_VITVI/Q93VR4/At1g24020.1 | ||||||
36/HGN1_0 | *9 | A0A438DWY2_VITVI/Q8VZJ2/At4g16260 | ||||||
1/PR10.3 | *10 | B7SL50_VITVI/Q93VR4/At1g24020.1 | ||||||
23/Tl3 (PR-5) | *5 | Q7XAU7_VITVI/P50700/At4g11650.1 | ||||||
20/EP3_15 | A0A438HVS3_VITVI/Q9M2U5/At3g54420 | |||||||
8/BXL1_0 | /10 | A0A438DWR0_VITVI/Q9FGY1/At5g49360 | ||||||
70/Xyl2_0 | /9 | A0A438CN60_VITVI/Q9FLG1/At5g64570 | ||||||
7/Chi4D | /10 | Q7XAU6_VITVI/Q9M2U5/At3g54420 | ||||||
63/E13ip5.23 | /10 | A0A438KGT6_VITVI/F4J270/At3g57240 | ||||||
74/CEL1_4 | /4 | A0A438I4T3_VITVI/Q9SRX3/At1g02800 | ||||||
Chaperonins | ||||||||
48/HSP90 | *7 | E0CQ80_VITVI/Q9STX5/At4g24190.1 | ||||||
143/CPN60-2_1 | *5 | A0A438BRG7_VITVI/P29197/At3g23990 | ||||||
46/RUBB_0 | *4 | A0A438ELV8_VITVI/Q9LJE4/At3g13470.1 | ||||||
107/HSP7M_1 | A0A438FBI8_VITVI/Q9LDZ0/At5g09590 | |||||||
109/HSP70_16 | /8 | A0A438JXP4_VITVI/P22953/At5g02500 | ||||||
128/PCKR1_1 | /9 | A0A438E487_VITVI/P34790/At4g38740 | ||||||
Microtubule-based process | ||||||||
33/TUBA_1 | A0A438C3Y7_VITVI/Q0WV25/At1g04820.1 | |||||||
133/TUBA_3 | A0A438HDT1_VITVI/Q0WV25/At1g04820.1 | |||||||
141/TUBA5_3 | A0A438EM73_VITVI/B9DHQ0/At5g19780.1 | |||||||
142/TUB | F6HLZ6_VITVI/P29516/At5g23860 | |||||||
98/ACT7_2 | A0A438CNF0_VITVI/P53492/At5g09810.1 | |||||||
99/ACT1_1 | A0A438EPH9_VITVI/P53496/At3g12110.1 | |||||||
Membrane transport | ||||||||
67/VDAC1_1 | *5 | A0A438CTH2_VITVI/Q9SRH5/At3g01280 | ||||||
67/PHB3_0 | *5 | A0A438BT27_VITVI/O04331/At5g40770 | ||||||
Other metabolic process | ||||||||
59/MO3_7 | /9 | A0A438ETS1_VITVI/O81816/At4g38540 | ||||||
69/GDSL | /9 | A0A438D1S8_VITVI/Q9LY84/At5g14450 | ||||||
72/PE | /10 | F6I0G4_VITVI/Q9LXD9/At5g09760 | ||||||
125/FATB1_1 | A0A438JQE3_VITVI/Q9SJE2/At1g08510 | |||||||
61/SALR_0 | A0A438C2P8_VITVI/Q94K30/At1g01800 | |||||||
Relative Expression Folds | ||||||||
−10 | −8 | −5 | −2 | 0 | 2 | 5 | 8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veremeichik, G.N.; Bulgakov, D.V.; Konnova, Y.A.; Brodovskaya, E.V.; Grigorchuk, V.P.; Bulgakov, V.P. Proteome-Level Investigation of Vitis amurensis Calli Transformed with a Constitutively Active, Ca2+-Independent Form of the Arabidopsis AtCPK1 Gene. Int. J. Mol. Sci. 2023, 24, 13184. https://doi.org/10.3390/ijms241713184
Veremeichik GN, Bulgakov DV, Konnova YA, Brodovskaya EV, Grigorchuk VP, Bulgakov VP. Proteome-Level Investigation of Vitis amurensis Calli Transformed with a Constitutively Active, Ca2+-Independent Form of the Arabidopsis AtCPK1 Gene. International Journal of Molecular Sciences. 2023; 24(17):13184. https://doi.org/10.3390/ijms241713184
Chicago/Turabian StyleVeremeichik, Galina N., Dmitry V. Bulgakov, Yuliya A. Konnova, Evgenia V. Brodovskaya, Valeria P. Grigorchuk, and Victor P. Bulgakov. 2023. "Proteome-Level Investigation of Vitis amurensis Calli Transformed with a Constitutively Active, Ca2+-Independent Form of the Arabidopsis AtCPK1 Gene" International Journal of Molecular Sciences 24, no. 17: 13184. https://doi.org/10.3390/ijms241713184
APA StyleVeremeichik, G. N., Bulgakov, D. V., Konnova, Y. A., Brodovskaya, E. V., Grigorchuk, V. P., & Bulgakov, V. P. (2023). Proteome-Level Investigation of Vitis amurensis Calli Transformed with a Constitutively Active, Ca2+-Independent Form of the Arabidopsis AtCPK1 Gene. International Journal of Molecular Sciences, 24(17), 13184. https://doi.org/10.3390/ijms241713184