Targeting the Gut–Eye Axis: An Emerging Strategy to Face Ocular Diseases
Abstract
:1. Introduction
2. Methods
3. The Ocular Surface Microbiota
3.1. OSM Composition
3.2. Factors Influencing the OSM Composition
4. Gut–Eye Axis and the Impact on Eye Diseases
4.1. Age-Related Macular Degeneration
4.2. Uveitis
4.3. Diabetic Retinopathy
4.4. Dry Eye Disease
4.5. Glaucoma
5. Therapeutic Strategies
5.1. Probiotics
5.2. Prebiotics and Symbiotics
5.3. Faecal Microbiota Transplantation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.R. In This Issue: Immunology of the Eye—Inside and Out. Int. Rev. Immunol. 2013, 32, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Yi, S.; Wei, L. Ocular Microbiota and Intraocular Inflammation. Front. Immunol. 2020, 11, 609765. [Google Scholar] [CrossRef]
- St. Leger, A.J.; Caspi, R.R. Visions of Eye Commensals: The Known and the Unknown About How the Microbiome Affects Eye Disease. BioEssays 2018, 40, 1800046. [Google Scholar] [CrossRef]
- Chiang, M.-C.; Chern, E. Ocular Surface Microbiota: Ophthalmic Infectious Disease and Probiotics. Front. Microbiol. 2022, 13, 952473. [Google Scholar] [CrossRef]
- McDermott, A.M. Antimicrobial Compounds in Tears. Exp. Eye Res. 2013, 117, 53–61. [Google Scholar] [CrossRef]
- Donabedian, P.; Dawson, E.; Li, Q.; Chen, J. Gut Microbes and Eye Disease. Ophthalmic Res. 2022, 65, 245–253. [Google Scholar] [CrossRef]
- Kugadas, A.; Wright, Q.; Geddes-McAlister, J.; Gadjeva, M. Role of Microbiota in Strengthening Ocular Mucosal Barrier Function Through Secretory IgA. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4593. [Google Scholar] [CrossRef]
- Lu, L.J.; Liu, J. Human Microbiota and Ophthalmic Disease. Yale J. Biol. Med. 2016, 89, 325–330. [Google Scholar]
- Ueta, M.; Kinoshita, S. Innate Immunity of the Ocular Surface. Brain Res. Bull. 2010, 81, 219–228. [Google Scholar] [CrossRef]
- Doan, T.; Akileswaran, L.; Andersen, D.; Johnson, B.; Ko, N.; Shrestha, A.; Shestopalov, V.; Lee, C.S.; Lee, A.Y.; Van Gelder, R.N. Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5116. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Iovieno, A. The Role of Microbial Flora on the Ocular Surface. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.G.; Mitchell, B.M.; Carothers, T.S.; Coats, D.K.; Brady-McCreery, K.M.; Paysse, E.A.; Wilhelmus, K.R. Molecular Analysis of the Pediatric Ocular Surface for Fungi. Curr. Eye Res. 2003, 26, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; Lau, S.K.P.; Teng, J.L.L.; Tse, H.; Yuen, K.-Y. Then and Now: Use of 16S RDNA Gene Sequencing for Bacterial Identification and Discovery of Novel Bacteria in Clinical Microbiology Laboratories. Clin. Microbiol. Infect. 2008, 14, 908–934. [Google Scholar] [CrossRef]
- Burns, D.G.; Camakaris, H.M.; Janssen, P.H.; Dyall-Smith, M.L. Combined Use of Cultivation-Dependent and Cultivation-Independent Methods Indicates That Members of Most Haloarchaeal Groups in an Australian Crystallizer Pond Are Cultivable. Appl. Environ. Microbiol. 2004, 70, 5258–5265. [Google Scholar] [CrossRef]
- Dong, Q.; Brulc, J.M.; Iovieno, A.; Bates, B.; Garoutte, A.; Miller, D.; Revanna, K.V.; Gao, X.; Antonopoulos, D.A.; Slepak, V.Z.; et al. Diversity of Bacteria at Healthy Human Conjunctiva. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5408. [Google Scholar] [CrossRef]
- Graham, J.E.; Moore, J.E.; Jiru, X.; Moore, J.E.; Goodall, E.A.; Dooley, J.S.G.; Hayes, V.E.A.; Dartt, D.A.; Downes, C.S.; Moore, T.C.B. Ocular Pathogen or Commensal: A PCR-Based Study of Surface Bacterial Flora in Normal and Dry Eyes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5616. [Google Scholar] [CrossRef]
- Zhou, Y.; Holland, M.J.; Makalo, P.; Joof, H.; Roberts, C.H.; Mabey, D.C.; Bailey, R.L.; Burton, M.J.; Weinstock, G.M.; Burr, S.E. The Conjunctival Microbiome in Health and Trachomatous Disease: A Case Control Study. Genome Med. 2014, 6, 99. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, B.; Li, W. Defining the Normal Core Microbiome of Conjunctival Microbial Communities. Clin. Microbiol. Infect. 2016, 22, 643.e7–643.e12. [Google Scholar] [CrossRef]
- Li, Z.; Gong, Y.; Chen, S.; Li, S.; Zhang, Y.; Zhong, H.; Wang, Z.; Chen, Y.; Deng, Q.; Jiang, Y.; et al. Comparative Portrayal of Ocular Surface Microbe with and without Dry Eye. J. Microbiol. 2019, 57, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, J.; Nielsen, S.; Diez-Vives, C.; Coroneo, M.; Thomas, T.; Willcox, M. Temporal Stability and Composition of the Ocular Surface Microbiome. Sci. Rep. 2017, 7, 9880. [Google Scholar] [CrossRef] [PubMed]
- Baim, A.D.; Movahedan, A.; Farooq, A.V.; Skondra, D. The Microbiome and Ophthalmic Disease. Exp. Biol. Med. 2019, 244, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, H.; Xia, T.; Huang, Y. Characterization of Fungal Microbiota on Normal Ocular Surface of Humans. Clin. Microbiol. Infect. 2020, 26, 123.e9–123.e13. [Google Scholar] [CrossRef]
- Kaufman, H.E.; Azcuy, A.M.; Varnell, E.D.; Sloop, G.D.; Thompson, H.W.; Hill, J.M. HSV-1 DNA in Tears and Saliva of Normal Adults. Investig. Ophthalmol. Vis. Sci. 2005, 46, 241. [Google Scholar] [CrossRef]
- Glassing, A.; Dowd, S.E.; Galandiuk, S.; Davis, B.; Chiodini, R.J. Inherent Bacterial DNA Contamination of Extraction and Sequencing Reagents May Affect Interpretation of Microbiota in Low Bacterial Biomass Samples. Gut Pathog. 2016, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.J.; Gross, R.; Bittinger, K.; Sherrill-Mix, S.; Lewis, J.D.; Collman, R.G.; Bushman, F.D.; Li, H. Power and Sample-Size Estimation for Microbiome Studies Using Pairwise Distances and PERMANOVA. Bioinformatics 2015, 31, 2461–2468. [Google Scholar] [CrossRef]
- Tedeschi, S.; Negosanti, L.; Sgarzani, R.; Trapani, F.; Pignanelli, S.; Battilana, M.; Capirossi, R.; Brillanti Ventura, D.; Giannella, M.; Bartoletti, M.; et al. Superficial Swab versus Deep-Tissue Biopsy for the Microbiological Diagnosis of Local Infection in Advanced-Stage Pressure Ulcers of Spinal-Cord-Injured Patients: A Prospective Study. Clin. Microbiol. Infect. 2017, 23, 943–947. [Google Scholar] [CrossRef]
- Prast-Nielsen, S.; Tobin, A.-M.; Adamzik, K.; Powles, A.; Hugerth, L.W.; Sweeney, C.; Kirby, B.; Engstrand, L.; Fry, L. Investigation of the Skin Microbiome: Swabs vs. Biopsies. Br. J. Dermatol. 2019, 181, 572–579. [Google Scholar] [CrossRef]
- Kugadas, A.; Gadjeva, M. Impact of Microbiome on Ocular Health. Ocul. Surf. 2016, 14, 342–349. [Google Scholar] [CrossRef]
- Zegans, M.E.; Van Gelder, R.N. Considerations in Understanding the Ocular Surface Microbiome. Am. J. Ophthalmol. 2014, 158, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, F.; Pignataro, D.; Lavano, M.A.; Santella, B.; Folliero, V.; Zannella, C.; Astarita, C.; Gagliano, C.; Franci, G.; Avitabile, T.; et al. Current Evidence on the Ocular Surface Microbiota and Related Diseases. Microorganisms 2020, 8, 1033. [Google Scholar] [CrossRef] [PubMed]
- Cavuoto, K.M.; Mendez, R.; Miller, D.; Galor, A.; Banerjee, S. Effect of Clinical Parameters on the Ocular Surface Microbiome in Children and Adults. Clin. Ophthalmol. 2018, 12, 1189–1197. [Google Scholar] [CrossRef]
- Isenberg, S.J.; Apt, L.; Yoshimori, R.; Ward McCarty, J.; Alvarez, S.R. Source of the Conjunctival Bacterial Flora at Birth and Implications for Ophthalmia Neonatorum Prophylaxis. Am. J. Ophthalmol. 1988, 106, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.W.; Jun, A.K.; Cho, B.C. A Study of Microbial Flora of Conjunctival Sac in Newborns. Korean J. Ophthalmol. 1989, 3, 38. [Google Scholar] [CrossRef]
- Eder, M.; Fariña, N.; Sanabria, R.R.; Ta, C.N.; Koss, M.; Samudio, M.; Cuevas, C.; Gines, A.; Simancas, M.; Klauß, V.; et al. Normal Ocular Flora in Newborns Delivered in Two Hospital Centers in Argentina and Paraguay. Graefe’s Arch. Clin. Exp. Ophthalmol. 2005, 243, 1098–1107. [Google Scholar] [CrossRef]
- Wen, X.; Miao, L.; Deng, Y.; Bible, P.W.; Hu, X.; Zou, Y.; Liu, Y.; Guo, S.; Liang, J.; Chen, T.; et al. The Influence of Age and Sex on Ocular Surface Microbiota in Healthy Adults. Investig. Ophthalmol. Vis. Sci. 2017, 58, 6030. [Google Scholar] [CrossRef]
- Shin, H.; Price, K.; Albert, L.; Dodick, J.; Park, L.; Dominguez-Bello, M.G. Changes in the Eye Microbiota Associated with Contact Lens Wearing. mBio 2016, 7, e00198-16. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Hutchinson, D.S.; Sun, W.; Ajami, N.J.; Lai, S.; Wong, M.C.; Petrosino, J.F.; Fang, J.; Jiang, J.; et al. Conjunctival Microbiome Changes Associated With Soft Contact Lens and Orthokeratology Lens Wearing. Investig. Ophthalmol. Vis. Sci. 2017, 58, 128. [Google Scholar] [CrossRef]
- Dave, S.B.; Toma, H.S.; Kim, S.J. Changes in Ocular Flora in Eyes Exposed to Ophthalmic Antibiotics. Ophthalmology 2013, 120, 937–941. [Google Scholar] [CrossRef]
- Ono, T.; Nejima, R.; Iwasaki, T.; Mori, Y.; Noguchi, Y.; Yagi, A.; Hanaki, H.; Miyata, K. Long-Term Effects of Cataract Surgery with Topical Levofloxacin on Ocular Bacterial Flora. J. Cataract. Refract. Surg. 2017, 43, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Celebi, A.R.C.; Onerci Celebi, O. The Effect of Topical Ocular Moxifloxacin on Conjunctival and Nasal Mucosal Flora. Sci. Rep. 2021, 11, 13782. [Google Scholar] [CrossRef]
- Ozkan, J.; Willcox, M.D.P.; Rathi, V.M.; Srikanth, D.; Zhu, H.; De La Jara, P.L.; Naduvilath, T.; Holden, B.A. Effect of Antibiotic Drops on Adverse Events During Extended Lens Wear. Optom. Vis. Sci. 2014, 91, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Honda, R.; Toshida, H.; Suto, C.; Fujimaki, T.; Kimura, T.; Ohta, T.; Murakami, A. Effect of Long-Term Treatment with Eyedrops for Glaucoma on Conjunctival Bacterial Flora. Infect. Drug Resist. 2011, 4, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Suto, C.; Morinaga, M.; Yagi, T.; Tsuji, C.; Toshida, H. Conjunctival Sac Bacterial Flora Isolated Prior to Cataract Surgery. Infect. Drug Resist. 2012, 5, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, P.; Filippelli, M.; Davinelli, S.; Bartollino, S.; dell’Omo, R.; Costagliola, C. Influence of Gut Microbiota on Eye Diseases: An Overview. Ann. Med. 2021, 53, 750–761. [Google Scholar] [CrossRef]
- Scuderi, G.; Troiani, E.; Minnella, A.M. Gut Microbiome in Retina Health: The Crucial Role of the Gut-Retina Axis. Front. Microbiol. 2022, 12, 726792. [Google Scholar] [CrossRef]
- Zysset-Burri, D.C.; Morandi, S.; Herzog, E.L.; Berger, L.E.; Zinkernagel, M.S. The Role of the Gut Microbiome in Eye Diseases. Prog. Retin. Eye Res. 2023, 92, 101117. [Google Scholar] [CrossRef]
- Zinkernagel, M.S.; Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Leichtle, A.B.; Largiadèr, C.R.; Fiedler, G.M.; Wolf, S. Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration. Sci. Rep. 2017, 7, 40826. [Google Scholar] [CrossRef]
- Lin, P. The Role of the Intestinal Microbiome in Ocular Inflammatory Disease. Curr. Opin. Ophthalmol. 2018, 29, 261–266. [Google Scholar] [CrossRef]
- Kalyana Chakravarthy, S.; Jayasudha, R.; Sai Prashanthi, G.; Ali, M.H.; Sharma, S.; Tyagi, M.; Shivaji, S. Dysbiosis in the Gut Bacterial Microbiome of Patients with Uveitis, an Inflammatory Disease of the Eye. Indian J. Microbiol. 2018, 58, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, X.; Lu, Y. Gut Microbiota and Derived Metabolomic Profiling in Glaucoma with Progressive Neurodegeneration. Front. Cell. Infect. Microbiol. 2022, 12, 968992. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhang, S.; Li, Q.; Zuo, C.; Gao, X.; Zheng, B.; Lin, M. Gut Microbiota Compositional Profile and Serum Metabolic Phenotype in Patients with Primary Open-Angle Glaucoma. Exp. Eye Res. 2020, 191, 107921. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Z.; Ma, H.; Ji, S.; Chen, Z.; Cui, Z.; Chen, J.; Tang, S. Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Front. Cell. Infect. Microbiol. 2021, 11, 646348. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Choi, S.H.; Yoon, C.H.; Kim, M.K. Gut Dysbiosis Is Prevailing in Sjögren’s Syndrome and Is Related to Dry Eye Severity. PLoS ONE 2020, 15, e0229029. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, A.; Mahdi, L.; Musat, O. Age-related macular degeneration. Rom. J. Ophthalmol. 2015, 59, 74–77. [Google Scholar]
- Deng, Y.; Qiao, L.; Du, M.; Qu, C.; Wan, L.; Li, J.; Huang, L. Age-Related Macular Degeneration: Epidemiology, Genetics, Pathophysiology, Diagnosis, and Targeted Therapy. Genes Dis. 2022, 9, 62–79. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Shanahan, F.; O’Toole, P.W. The Gut Microbiome as a Modulator of Healthy Ageing. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 565–584. [Google Scholar] [CrossRef]
- Rowan, S.; Taylor, A. Gut Microbiota Modify Risk for Dietary Glycemia-Induced Age-Related Macular Degeneration. Gut Microbes 2018, 9, 452–457. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Y.; Huang, Q.; Tan, W.; Li, B.; Zhou, H.; Wang, Z.; Zou, J.; Ding, C.; Jiang, B.; et al. Altered Fecal Microbiome and Metabolome in a Mouse Model of Choroidal Neovascularization. Front. Microbiol. 2021, 12, 738796. [Google Scholar] [CrossRef]
- Andriessen, E.M.; Wilson, A.M.; Mawambo, G.; Dejda, A.; Miloudi, K.; Sennlaub, F.; Sapieha, P. Gut Microbiota Influences Pathological Angiogenesis in Obesity-driven Choroidal Neovascularization. EMBO Mol. Med. 2016, 8, 1366–1379. [Google Scholar] [CrossRef] [PubMed]
- Rowan, S.; Jiang, S.; Korem, T.; Szymanski, J.; Chang, M.-L.; Szelog, J.; Cassalman, C.; Dasuri, K.; McGuire, C.; Nagai, R.; et al. Involvement of a Gut–Retina Axis in Protection against Dietary Glycemia-Induced Age-Related Macular Degeneration. Proc. Natl. Acad. Sci. USA 2017, 114, E4472–E4481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, T.; Wan, Z.; Bai, J.; Xue, Y.; Dai, R.; Wang, M.; Peng, Q. Alterations of the Intestinal Microbiota in Age-Related Macular Degeneration. Front. Microbiol. 2023, 14, 1069325. [Google Scholar] [CrossRef] [PubMed]
- Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Largiadèr, C.R.; Wittwer, M.; Wolf, S.; Zinkernagel, M.S. Associations of the Intestinal Microbiome with the Complement System in Neovascular Age-Related Macular Degeneration. npj Genom. Med. 2020, 5, 34. [Google Scholar] [CrossRef]
- Xue, W.; Peng, P.; Wen, X.; Meng, H.; Qin, Y.; Deng, T.; Guo, S.; Chen, T.; Li, X.; Liang, J.; et al. Metagenomic Sequencing Analysis Identifies Cross-Cohort Gut Microbial Signatures Associated With Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2023, 64, 11. [Google Scholar] [CrossRef]
- Boccuni, I.; Fairless, R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life 2022, 12, 638. [Google Scholar] [CrossRef]
- Bui, B.V.; Hu, R.G.; Acosta, M.L.; Donaldson, P.; Vingrys, A.J.; Kalloniatis, M. Glutamate Metabolic Pathways and Retinal Function. J. Neurochem. 2009, 111, 589–599. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, F. Amino Acids Metabolism in Retinopathy: From Clinical and Basic Research Perspective. Metabolites 2022, 12, 1244. [Google Scholar] [CrossRef]
- Skowronska-Krawczyk, D.; Chao, D.L. Long-Chain Polyunsaturated Fatty Acids and Age-Related Macular Degeneration. In Retinal Degenerative Diseases; Bowes Rickman, C., Grimm, C., Anderson, R.E., Ash, J.D., LaVail, M.M., Hollyfield, J.G., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Swizerland, 2019; Volume 1185, pp. 39–43. ISBN 978-3-030-27377-4. [Google Scholar]
- Tsirouki, T.; Dastiridou, A.; Symeonidis, C.; Tounakaki, O.; Brazitikou, I.; Kalogeropoulos, C.; Androudi, S. A Focus on the Epidemiology of Uveitis. Ocul. Immunol. Inflamm. 2018, 26, 2–16. [Google Scholar] [CrossRef]
- De Smet, M.D.; Taylor, S.R.J.; Bodaghi, B.; Miserocchi, E.; Murray, P.I.; Pleyer, U.; Zierhut, M.; Barisani-Asenbauer, T.; LeHoang, P.; Lightman, S. Understanding Uveitis: The Impact of Research on Visual Outcomes. Prog. Retin. Eye Res. 2011, 30, 452–470. [Google Scholar] [CrossRef]
- Burkholder, B.M.; Jabs, D.A. Uveitis for the Non-Ophthalmologist. BMJ 2021, 372, m4979. [Google Scholar] [CrossRef] [PubMed]
- Forrester, J.V.; Kuffova, L.; Dick, A.D. Autoimmunity, autoinflammation, and infection in uveitis. Am. J. Ophthalmol. 2018, 189, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Mizuki, N.; Ohno, S. Pathogenesis of Non-Infectious Uveitis Elucidated by Recent Genetic Findings. Front. Immunol. 2021, 12, 640473. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Li, N.; Liao, X.; Kijlstra, A.; Yang, P. Uveitis Genetics. Exp. Eye Res. 2020, 190, 107853. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Chan, Y.K.; Wong, H.L.; Poon, S.H.; Lo, A.C.; Shih, K.C.; Tong, L. A Review of the Impact of Alterations in Gut Microbiome on the Immunopathogenesis of Ocular Diseases. J. Clin. Med. 2021, 10, 4694. [Google Scholar] [CrossRef]
- Heissigerova, J.; Seidler Stangova, P.; Klimova, A.; Svozilkova, P.; Hrncir, T.; Stepankova, R.; Kverka, M.; Tlaskalova-Hogenova, H.; Forrester, J.V. The Microbiota Determines Susceptibility to Experimental Autoimmune Uveoretinitis. J. Immunol. Res. 2016, 2016, 5065703. [Google Scholar] [CrossRef]
- Lin, P.; Bach, M.; Asquith, M.; Lee, A.Y.; Akileswaran, L.; Stauffer, P.; Davin, S.; Pan, Y.; Cambronne, E.D.; Dorris, M.; et al. HLA-B27 and Human Β2-Microglobulin Affect the Gut Microbiota of Transgenic Rats. PLoS ONE 2014, 9, e105684. [Google Scholar] [CrossRef]
- Horai, R. Gut Microbiota Linked to Autoimmune Uveitis. Ann. Eye Sci 2018, 2, 19. [Google Scholar] [CrossRef]
- Nakamura, Y.K.; Metea, C.; Karstens, L.; Asquith, M.; Gruner, H.; Moscibrocki, C.; Lee, I.; Brislawn, C.J.; Jansson, J.K.; Rosenbaum, J.T.; et al. Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3747. [Google Scholar] [CrossRef]
- Du, Z.; Wang, Q.; Huang, X.; Yi, S.; Mei, S.; Yuan, G.; Su, G.; Cao, Q.; Zhou, C.; Wang, Y.; et al. Effect of Berberine on Spleen Transcriptome and Gut Microbiota Composition in Experimental Autoimmune Uveitis. Int. Immunopharmacol. 2020, 81, 106270. [Google Scholar] [CrossRef]
- Llorenç, V.; Nakamura, Y.; Metea, C.; Karstens, L.; Molins, B.; Lin, P. Antimetabolite Drugs Exhibit Distinctive Immunomodulatory Mechanisms and Effects on the Intestinal Microbiota in Experimental Autoimmune Uveitis. Investig. Ophthalmol. Vis. Sci. 2022, 63, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, J.; Dai, M.; Lin, D.; Zhang, R.; Liu, H.; Yu, A.; Vakal, S.; Wang, Y.; Li, X. A Combination of Inhibiting Microglia Activity and Remodeling Gut Microenvironment Suppresses the Development and Progression of Experimental Autoimmune Uveitis. Biochem. Pharmacol. 2020, 180, 114108. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Wu, J.; Wang, J.; Piri, N.; Chen, F.; Xiao, T.; Zhao, Y.; Sun, D.; Kaplan, H.J.; Shao, H. Short Chain Fatty Acids Inhibit Endotoxin-Induced Uveitis and Inflammatory Responses of Retinal Astrocytes. Exp. Eye Res. 2021, 206, 108520. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, C.; Huang, X.; Yi, S.; Pan, S.; Zhang, Y.; Yuan, G.; Cao, Q.; Ye, X.; Li, H. Gut Microbiota-Mediated Secondary Bile Acids Regulate Dendritic Cells to Attenuate Autoimmune Uveitis through TGR5 Signaling. Cell Rep. 2021, 36, 109726. [Google Scholar] [CrossRef]
- Huang, X.; Ye, Z.; Cao, Q.; Su, G.; Wang, Q.; Deng, J.; Zhou, C.; Kijlstra, A.; Yang, P. Gut Microbiota Composition and Fecal Metabolic Phenotype in Patients With Acute Anterior Uveitis. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1523. [Google Scholar] [CrossRef]
- Ma, C.; Kesarwala, A.H.; Eggert, T.; Medina-Echeverz, J.; Kleiner, D.E.; Jin, P.; Stroncek, D.F.; Terabe, M.; Kapoor, V.; ElGindi, M.; et al. NAFLD Causes Selective CD4+ T Lymphocyte Loss and Promotes Hepatocarcinogenesis. Nature 2016, 531, 253–257. [Google Scholar] [CrossRef]
- Tecer, D.; Gogus, F.; Kalkanci, A.; Erdogan, M.; Hasanreisoglu, M.; Ergin, Ç.; Karakan, T.; Kozan, R.; Coban, S.; Diker, K.S. Succinivibrionaceae Is Dominant Family in Fecal Microbiota of Behçet’s Syndrome Patients with Uveitis. PLoS ONE 2020, 15, e0241691. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, S.; Ye, X.; Tan, S.; Huang, F.; Su, G.; Kijlstra, A.; Yang, P. Gut Microbial Signatures and Their Functions in Behcet’s Uveitis and Vogt-Koyanagi-Harada Disease. J. Autoimmun. 2023, 137, 103055. [Google Scholar] [CrossRef]
- Kim, J.C.; Park, M.J.; Park, S.; Lee, E.-S. Alteration of the Fecal but Not Salivary Microbiome in Patients with Behçet’s Disease According to Disease Activity Shift. Microorganisms 2021, 9, 1449. [Google Scholar] [CrossRef]
- Yasar Bilge, N.S.; Pérez Brocal, V.; Kasifoglu, T.; Bilge, U.; Kasifoglu, N.; Moya, A.; Dinleyici, E.C. Intestinal Microbiota Composition of Patients with Behçet’s Disease: Differences between Eye, Mucocutaneous and Vascular Involvement. The Rheuma-BIOTA Study. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S127), 60–68. [Google Scholar]
- Wang, Q.; Yi, S.; Su, G.; Du, Z.; Pan, S.; Huang, X.; Cao, Q.; Yuan, G.; Kijlstra, A.; Yang, P. Changes in the Gut Microbiome Contribute to the Development of Behcet’s Disease via Adjuvant Effects. Front. Cell Dev. Biol. 2021, 9, 716760. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, N.; Wu, C.; Zhang, X.; Wang, Q.; Huang, X.; Du, L.; Cao, Q.; Tang, J.; Zhou, C.; et al. A Metagenomic Study of the Gut Microbiome in Behcet’s Disease. Microbiome 2018, 6, 135. [Google Scholar] [CrossRef]
- Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.-M. Molecular Mimicry and Autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef]
- Greiling, T.M.; Dehner, C.; Chen, X.; Hughes, K.; Iñiguez, A.J.; Boccitto, M.; Ruiz, D.Z.; Renfroe, S.C.; Vieira, S.M.; Ruff, W.E.; et al. Commensal Orthologs of the Human Autoantigen Ro60 as Triggers of Autoimmunity in Lupus. Sci. Transl. Med. 2018, 10, eaan2306. [Google Scholar] [CrossRef] [PubMed]
- Pianta, A.; Arvikar, S.L.; Strle, K.; Drouin, E.E.; Wang, Q.; Costello, C.E.; Steere, A.C. Two Rheumatoid Arthritis–Specific Autoantigens Correlate Microbial Immunity with Autoimmune Responses in Joints. J. Clin. Investig. 2017, 127, 2946–2956. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.-T.K.S.; De Clerck, E.; Polivka, J.; Potuznik, P.; Polivka, J.; et al. Diabetic Retinopathy as the Leading Cause of Blindness and Early Predictor of Cascading Complications—Risks and Mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Yan, S.; Yang, Y.; Chen, J.; Li, T.; Gao, X.; Yan, H.; Wang, Y.; Wang, J.; Wang, S.; et al. A Metagenome-Wide Association Study of the Gut Microbiome and Metabolic Syndrome. Front. Microbiol. 2021, 12, 682721. [Google Scholar] [CrossRef]
- Allin, K.H.; Tremaroli, V.; Caesar, R.; Jensen, B.A.H.; Damgaard, M.T.F.; Bahl, M.I.; Licht, T.R.; Hansen, T.H.; Nielsen, T.; Dantoft, T.M.; et al. Aberrant Intestinal Microbiota in Individuals with Prediabetes. Diabetologia 2018, 61, 810–820. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, B.; Yu, D.; Zhu, C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front. Cell. Infect. Microbiol. 2022, 12, 834485. [Google Scholar] [CrossRef]
- Hong, J.; Fu, T.; Liu, W.; Du, Y.; Min, C.; Lin, D. Specific Alterations of Gut Microbiota in Diabetic Microvascular Complications: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022, 13, 1053900. [Google Scholar] [CrossRef]
- Li, J.; Lv, J.; Cao, X.; Zhang, H.; Tan, Y.; Chu, T.; Zhao, L.; Liu, Z.; Ren, Y. Gut Microbiota Dysbiosis as an Inflammaging Condition That Regulates Obesity-Related Retinopathy and Nephropathy. Front. Microbiol. 2022, 13, 1040846. [Google Scholar] [CrossRef]
- Beli, E.; Yan, Y.; Moldovan, L.; Vieira, C.P.; Gao, R.; Duan, Y.; Prasad, R.; Bhatwadekar, A.; White, F.A.; Townsend, S.D.; et al. Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in Db/Db Mice. Diabetes 2018, 67, 1867–1879. [Google Scholar] [CrossRef]
- Liu, K.; Zou, J.; Fan, H.; Hu, H.; You, Z. Causal Effects of Gut Microbiota on Diabetic Retinopathy: A Mendelian Randomization Study. Front. Immunol. 2022, 13, 930318. [Google Scholar] [CrossRef]
- Bai, J.; Wan, Z.; Zhang, Y.; Wang, T.; Xue, Y.; Peng, Q. Composition and Diversity of Gut Microbiota in Diabetic Retinopathy. Front. Microbiol. 2022, 13, 926926. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, Z.; Xiong, X.; Chen, X.; Peng, J.; Yao, H.; Pu, J.; Chen, Q.; Zheng, M. Gut Microbiota Composition and Fecal Metabolic Profiling in Patients With Diabetic Retinopathy. Front. Cell Dev. Biol. 2021, 9, 732204. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and Pathophysiology of Carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Mills, E.; O’Neill, L.A.J. Succinate: A Metabolic Signal in Inflammation. Trends Cell Biol. 2014, 24, 313–320. [Google Scholar] [CrossRef]
- Hofer, U. Pro-Inflammatory Prevotella? Nat. Rev. Microbiol. 2014, 12, 5. [Google Scholar] [CrossRef]
- Li, L.; Yang, K.; Li, C.; Zhang, H.; Yu, H.; Chen, K.; Yang, X.; Liu, L. Metagenomic Shotgun Sequencing and Metabolomic Profiling Identify Specific Human Gut Microbiota Associated with Diabetic Retinopathy in Patients with Type 2 Diabetes. Front. Immunol. 2022, 13, 943325. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, X.; Xu, Y.; Xu, J.; Song, X.; Yao, K. Alterations of the Gut Microbiome and Metabolome in Patients With Proliferative Diabetic Retinopathy. Front. Microbiol. 2021, 12, 667632. [Google Scholar] [CrossRef]
- Pascale, A.; Marchesi, N.; Govoni, S.; Coppola, A.; Gazzaruso, C. The Role of Gut Microbiota in Obesity, Diabetes Mellitus, and Effect of Metformin: New Insights into Old Diseases. Curr. Opin. Pharmacol. 2019, 49, 1–5. [Google Scholar] [CrossRef]
- Richdale, K.; Chao, C.; Hamilton, M. Eye Care Providers’ Emerging Roles in Early Detection of Diabetes and Management of Diabetic Changes to the Ocular Surface: A Review. BMJ Open Diabetes Res. Care 2020, 8, e001094. [Google Scholar] [CrossRef]
- Shih, K.C.; Lam, K.S.-L.; Tong, L. A Systematic Review on the Impact of Diabetes Mellitus on the Ocular Surface. Nutr. Diabetes 2017, 7, e251. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Ru, Y.-S.; Wang, X.-W.; Yang, J.-Z.; Li, C.-H.; Wang, H.-X.; Li, X.-R.; Li, B. Ocular Surface Changes in Type II Diabetic Patients with Proliferative Diabetic Retinopathy. Int. J. Ophthalmol. 2015, 8, 358–364. [Google Scholar] [CrossRef]
- Gekka, M.; Miyata, K.; Nagai, Y.; Nemoto, S.; Sameshima, T.; Tanabe, T.; Maruoka, S.; Nakahara, M.; Kato, S.; Amano, S. Corneal Epithelial Barrier Function in Diabetic Patients. Cornea 2004, 23, 35–37. [Google Scholar] [CrossRef]
- Chang, S.-W.; Hsu, H.-C.; Hu, F.-R.; Chen, M.-S. Corneal Autofluorescence and Epithelial Barrier Function in Diabetic Patients. Ophthalmic Res. 1995, 27, 74–79. [Google Scholar] [CrossRef]
- Yoon, K.-C.; Im, S.-K.; Seo, M.-S. Changes of Tear Film and Ocular Surface in Diabetes Mellitus. Korean J. Ophthalmol. 2004, 18, 168. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Tai, M.-C.; Ho, C.-H.; Chu, C.-C.; Wang, J.-J.; Tseng, S.-H.; Jan, R.-L. Risk of Corneal Ulcer in Patients with Diabetes Mellitus: A Retrospective Large-Scale Cohort Study. Sci. Rep. 2020, 10, 7388. [Google Scholar] [CrossRef]
- Ansari, A.S.; De Lusignan, S.; Hinton, W.; Munro, N.; McGovern, A. The Association between Diabetes, Level of Glycaemic Control and Eye Infection: Cohort Database Study. Prim. Care Diabetes 2017, 11, 421–429. [Google Scholar] [CrossRef]
- Grzybowski, A.; Kanclerz, P.; Huerva, V.; Ascaso, F.J.; Tuuminen, R. Diabetes and Phacoemulsification Cataract Surgery: Difficulties, Risks and Potential Complications. J. Clin. Med. 2019, 8, 716. [Google Scholar] [CrossRef] [PubMed]
- Phillips, W.B.; Tasman, W.S. Postoperative Endophthalmitis in Association with Diabetes Mellitus. Ophthalmology 1994, 101, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Dev, S.; Pulido, J.; Tessler, H.; Mittra, R.; Han, D.; Mieler, W.; Connor Jr, T. Progression of Diabetic Retinopathy after Endophthalmitis. Ophthalmology 1999, 106, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and Its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Moutschen, M.P.; Scheen, A.J.; Lefebvre, P.J. Impaired Immune Responses in Diabetes Mellitus: Analysis of the Factors and Mechanisms Involved. Relevance to the Increased Susceptibility of Diabetic Patients to Specific Infections. Diabete Metab. 1992, 18, 187–201. [Google Scholar]
- Fileta, J.B.; Scott, I.U.; Flynn, H.W. Meta-Analysis of Infectious Endophthalmitis After Intravitreal Injection of Anti-Vascular Endothelial Growth Factor Agents. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 143–149. [Google Scholar] [CrossRef]
- Vadodaria, B.; Ashtamkar, S.; Maheshgauri, R.; Motwani, D.; Sharma, A. Analysis of Conjunctival Flora in Diabetic and Non-Diabetic Individuals and Their Antibiotic Sensitivity Pattern. Indian J. Clin. Exp. Ophthalmol. 2020, 6, 138–144. [Google Scholar] [CrossRef]
- Martins, E.N.; Alvarenga, L.S.; Hofling-Lima, A.L.; Freitas, D.; Zorat-Yu, M.C.; Farah, M.E.; Mannis, M.J. Aerobic Bacterial Conjunctival Flora in Diabetic Patients. Cornea 2004, 23, 136–142. [Google Scholar] [CrossRef]
- Karimsab, D.; Razak, S. Study of Aerobic Bacterial Conjunctival Flora in Patients with Diabetes Mellitus. Nepal. J. Ophthalmol. 2013, 5, 28–32. [Google Scholar] [CrossRef]
- Domngang Noche, C.; Tchatchouang, B.; Fotsing Kwetche, P.R.; Kagmeni, G.; Bella, A.L. Ocular Bacterial Flora and Antimicrobial Susceptibility Profile of a Diabetic Population in Cameroon: An Analytical Study. Int. J. Biol. Chem. Sci. 2019, 13, 2082. [Google Scholar] [CrossRef]
- Muralidhar, C.; Moinuddin, S.; Anandi, V. Significance of Normal Conjunctival Flora in Diabetic versus Healthy Individuals. Trop. J. Ophthalmol. Otolaryngol. 2019, 4, 55–59. [Google Scholar] [CrossRef]
- Ham, B.; Hwang, H.B.; Jung, S.H.; Chang, S.; Kang, K.D.; Kwon, M.J. Distribution and Diversity of Ocular Microbial Communities in Diabetic Patients Compared with Healthy Subjects. Curr. Eye Res. 2018, 43, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Suwajanakorn, O.; Puangsricharern, V.; Kittipibul, T.; Chatsuwan, T. Ocular Surface Microbiome in Diabetes Mellitus. Sci. Rep. 2022, 12, 21527. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Balcı, M.; Bayhan, H.A.; İnkaya, A.Ç.; Uyar, M.; Gürdal, C. Conjunctival Flora in Diabetic and Nondiabetic Individuals. Turk. J. Ophthalmol. 2015, 45, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Fei, Y.; Qin, Y.; Luo, D.; Yang, S.; Kou, X.; Zi, Y.; Deng, T.; Jin, M. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes. PLoS ONE 2015, 10, e0133021. [Google Scholar] [CrossRef]
- Krolewski, A.S.; Warram, J.H.; Rand, L.I.; Christlieb, A.R.; Busick, E.J.; Kahn, C.R. Risk of Proliferative Diabetic Retinopathy in Juvenile-Onset Type I Diabetes: A 40-Yr Follow-up Study. Diabetes Care 1986, 9, 443–452. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, X.; Xue, W.; Zhang, P.; Wang, S.; Zou, H. Ocular Surface Microbiota in Diabetic Patients with Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2021, 62, 13. [Google Scholar] [CrossRef]
- Heidari, M.; Noorizadeh, F.; Wu, K.; Inomata, T.; Mashaghi, A. Dry Eye Disease: Emerging Approaches to Disease Analysis and Therapy. J. Clin. Med. 2019, 8, 1439. [Google Scholar] [CrossRef]
- Deng, C.; Xiao, Q.; Fei, Y. A Glimpse Into the Microbiome of Sjögren’s Syndrome. Front. Immunol. 2022, 13, 918619. [Google Scholar] [CrossRef]
- Schaefer, L.; Trujillo-Vargas, C.M.; Midani, F.S.; Pflugfelder, S.C.; Britton, R.A.; De Paiva, C.S. Gut Microbiota From Sjögren Syndrome Patients Causes Decreased T Regulatory Cells in the Lymphoid Organs and Desiccation-Induced Corneal Barrier Disruption in Mice. Front. Med. 2022, 9, 852918. [Google Scholar] [CrossRef]
- Zhang, M.; Liang, Y.; Liu, Y.; Li, Y.; Shen, L.; Shi, G. High-Fat Diet-Induced Intestinal Dysbiosis Is Associated with the Exacerbation of Sjogren’s Syndrome. Front. Microbiol. 2022, 13, 916089. [Google Scholar] [CrossRef]
- Watane, A.; Cavuoto, K.M.; Banerjee, S.; Galor, A. The Microbiome and Ocular Surface Disease. Curr. Ophthalmol. Rep. 2019, 7, 196–203. [Google Scholar] [CrossRef]
- De Paiva, C.S.; Jones, D.B.; Stern, M.E.; Bian, F.; Moore, Q.L.; Corbiere, S.; Streckfus, C.F.; Hutchinson, D.S.; Ajami, N.J.; Petrosino, J.F.; et al. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Sci. Rep. 2016, 6, 23561. [Google Scholar] [CrossRef]
- Mendez, R.; Watane, A.; Farhangi, M.; Cavuoto, K.M.; Leith, T.; Budree, S.; Galor, A.; Banerjee, S. Gut Microbial Dysbiosis in Individuals with Sjögren’s Syndrome. Microb. Cell Factories 2020, 19, 90. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, M.; He, Y.; Liu, T.; Xu, M. Anxiety Disorders and Gut Dysbiosis in Primary Sjögren’s Syndrome-Mediated Dry Eye Patients. Int. J. Gen. Med. 2023, 16, 1735–1746. [Google Scholar] [CrossRef]
- Yoon, C.H.; Ryu, J.S.; Moon, J.; Kim, M.K. Association between Aging-Dependent Gut Microbiome Dysbiosis and Dry Eye Severity in C57BL/6 Male Mouse Model: A Pilot Study. BMC Microbiol. 2021, 21, 106. [Google Scholar] [CrossRef]
- Connell, S.; Kawashima, M.; Nakamura, S.; Imada, T.; Yamamoto, H.; Tsubota, K.; Fukuda, S. Lactoferrin Ameliorates Dry Eye Disease Potentially through Enhancement of Short-Chain Fatty Acid Production by Gut Microbiota in Mice. Int. J. Mol. Sci. 2021, 22, 12384. [Google Scholar] [CrossRef]
- Schaefer, L.; Hernandez, H.; Coats, R.A.; Yu, Z.; Pflugfelder, S.C.; Britton, R.A.; De Paiva, C.S. Gut-Derived Butyrate Suppresses Ocular Surface Inflammation. Sci. Rep. 2022, 12, 4512. [Google Scholar] [CrossRef]
- Goodman, C.F.; Doan, T.; Mehra, D.; Betz, J.; Locatelli, E.; Mangwani-Mordani, S.; Kalahasty, K.; Hernandez, M.; Hwang, J.; Galor, A. Case–Control Study Examining the Composition of the Gut Microbiome in Individuals With and Without Immune-Mediated Dry Eye. Cornea, 2022; ahead of print. [Google Scholar] [CrossRef]
- Willis, K.A.; Postnikoff, C.K.; Freeman, A.; Rezonzew, G.; Nichols, K.; Gaggar, A.; Lal, C.V. The Closed Eye Harbours a Unique Microbiome in Dry Eye Disease. Sci. Rep. 2020, 10, 12035. [Google Scholar] [CrossRef]
- Marchesi, N.; Fahmideh, F.; Boschi, F.; Pascale, A.; Barbieri, A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021, 10, 2394. [Google Scholar] [CrossRef]
- Fahmideh, F.; Marchesi, N.; Barbieri, A.; Govoni, S.; Pascale, A. Non-Drug Interventions in Glaucoma: Putative Roles for Lifestyle, Diet and Nutritional Supplements. Surv. Ophthalmol. 2022, 67, 675–696. [Google Scholar] [CrossRef] [PubMed]
- Pascale, A.; Drago, F.; Govoni, S. Protecting the Retinal Neurons from Glaucoma: Lowering Ocular Pressure Is Not Enough. Pharmacol. Res. 2012, 66, 19–32. [Google Scholar] [CrossRef]
- Sharif, N. Glaucomatous Optic Neuropathy Treatment Options: The Promise of Novel Therapeutics, Techniques and Tools to Help Preserve Vision. Neural Regen Res. 2018, 13, 1145. [Google Scholar] [CrossRef]
- Chan, T.C.W.; Bala, C.; Siu, A.; Wan, F.; White, A. Risk Factors for Rapid Glaucoma Disease Progression. Am. J. Ophthalmol. 2017, 180, 151–157. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Fujitani, M.; Hata, K.; Tohyama, M.; Yamagishi, S.; Yamashita, T. Promotion of Axon Regeneration by Myelin-Associated Glycoprotein and Nogo through Divergent Signals Downstream of Gi/G. J. Neurosci. 2004, 24, 6826–6832. [Google Scholar] [CrossRef]
- Lusthaus, J.; Goldberg, I. Current Management of Glaucoma. Med. J. Aust. 2019, 210, 180–187. [Google Scholar] [CrossRef]
- Schuster, A.K.; Erb, C.; Hoffmann, E.M.; Dietlein, T.; Pfeiffer, N. The Diagnosis and Treatment of Glaucoma. Dtsch. Ärzteblatt Int. 2020, 117, 225–234. [Google Scholar] [CrossRef]
- Vu, T.H.K.; Jager, M.J.; Chen, D.F. The Immunology of Glaucoma. Asia-Pac. J. Ophthalmol. 2012, 1, 303–311. [Google Scholar] [CrossRef]
- Polla, D.; Astafurov, K.; Hawy, E.; Hyman, L.; Hou, W.; Danias, J. A Pilot Study to Evaluate the Oral Microbiome and Dental Health in Primary Open-Angle Glaucoma. J. Glaucoma 2017, 26, 320–327. [Google Scholar] [CrossRef]
- Chen, H.; Cho, K.-S.; Vu, T.H.K.; Shen, C.-H.; Kaur, M.; Chen, G.; Mathew, R.; McHam, M.L.; Fazelat, A.; Lashkari, K.; et al. Commensal Microflora-Induced T Cell Responses Mediate Progressive Neurodegeneration in Glaucoma. Nat. Commun. 2018, 9, 3209. [Google Scholar] [CrossRef]
- McPherson, Z.E.; Sørensen, H.T.; Horváth-Puhó, E.; Agar, A.; Coroneo, M.T.; White, A.; Francis, I.C.; Pasquale, L.R.; Kang, J.H.; Pettersson, S.; et al. Irritable Bowel Syndrome and Risk of Glaucoma: An Analysis of Two Independent Population-based Cohort Studies. United Eur. Gastroenterol. J. 2021, 9, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zeng, R.; Li, Q.; Liu, Y.; Zuo, C.; Ren, J.; Zhao, L.; Lin, M. The Profile of Gut Microbiota and Central Carbon-Related Metabolites in Primary Angle-Closure Glaucoma Patients. Int. Ophthalmol. 2022, 42, 1927–1938. [Google Scholar] [CrossRef] [PubMed]
- Skrzypecki, J.; Żera, T.; Ufnal, M. Butyrate, a Gut Bacterial Metabolite, Lowers Intraocular Pressure in Normotensive But Not in Hypertensive Rats. J. Glaucoma 2018, 27, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Skrzypecki, J.; Izdebska, J.; Kamińska, A.; Badowska, J.; Przybek-Skrzypecka, J.; Bombuy, J.; Samborowska, E.; Szaflik, J.P. Glaucoma Patients Have an Increased Level of Trimethylamine, a Toxic Product of Gut Bacteria, in the Aqueous Humor: A Pilot Study. Int. Ophthalmol. 2021, 41, 341–347. [Google Scholar] [CrossRef]
- Deng, Y.; Ge, X.; Li, Y.; Zou, B.; Wen, X.; Chen, W.; Lu, L.; Zhang, M.; Zhang, X.; Li, C.; et al. Identification of an Intraocular Microbiota. Cell Discov. 2021, 7, 13. [Google Scholar] [CrossRef]
- Chang, C.-C.J.; Somohano, K.; Zemsky, C.; Uhlemann, A.-C.; Liebmann, J.; Cioffi, G.A.; Al-Aswad, L.A.; Lynch, S.V.; Winn, B.J. Topical Glaucoma Therapy Is Associated With Alterations of the Ocular Surface Microbiome. Investig. Ophthalmol. Vis. Sci. 2022, 63, 32. [Google Scholar] [CrossRef]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef]
- Morelli, L.; Capurso, L. FAO/WHO Guidelines on Probiotics: 10 Years Later. J. Clin. Gastroenterol. 2012, 46, S1–S2. [Google Scholar] [CrossRef]
- Hale, J.D.F.; Jain, R.; Wescombe, P.A.; Burton, J.P.; Simon, R.R.; Tagg, J.R. Safety Assessment of Streptococcus Salivarius M18 a Probiotic for Oral Health. Benef. Microbes 2022, 13, 47–60. [Google Scholar] [CrossRef]
- Fu, X.; Lyu, L.; Wang, Y.; Zhang, Y.; Guo, X.; Chen, Q.; Liu, C. Safety Assessment and Probiotic Characteristics of Enterococcus Lactis JDM1. Microb. Pathog. 2022, 163, 105380. [Google Scholar] [CrossRef]
- Goya, M.E.; Xue, F.; Sampedro-Torres-Quevedo, C.; Arnaouteli, S.; Riquelme-Dominguez, L.; Romanowski, A.; Brydon, J.; Ball, K.L.; Stanley-Wall, N.R.; Doitsidou, M. Probiotic Bacillus Subtilis Protects against α-Synuclein Aggregation in C. Elegans. Cell Rep. 2020, 30, 367–380.e7. [Google Scholar] [CrossRef]
- Todorov, S.D.; Dioso, C.M.; Liong, M.-T.; Nero, L.A.; Khosravi-Darani, K.; Ivanova, I.V. Beneficial Features of Pediococcus: From Starter Cultures and Inhibitory Activities to Probiotic Benefits. World J. Microbiol. Biotechnol. 2023, 39, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xu, S.; Zhang, W.; Wu, D.; Yang, G. Probiotic Escherichia Coli NISSLE 1917 for Inflammatory Bowel Disease Applications. Food Funct. 2022, 13, 5914–5924. [Google Scholar] [CrossRef] [PubMed]
- Schifano, E.; Tomassini, A.; Preziosi, A.; Montes, J.; Aureli, W.; Mancini, P.; Miccheli, A.; Uccelletti, D. Leuconostoc Mesenteroides Strains Isolated from Carrots Show Probiotic Features. Microorganisms 2021, 9, 2290. [Google Scholar] [CrossRef] [PubMed]
- Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut Bifidobacteria Populations in Human Health and Aging. Front. Microbiol. 2016, 7, 1204. [Google Scholar] [CrossRef]
- Devi, T.B.; Devadas, K.; George, M.; Gandhimathi, A.; Chouhan, D.; Retnakumar, R.J.; Alexander, S.M.; Varghese, J.; Dharmaseelan, S.; Chandrika, S.K.; et al. Low Bifidobacterium Abundance in the Lower Gut Microbiota Is Associated With Helicobacter Pylori-Related Gastric Ulcer and Gastric Cancer. Front. Microbiol. 2021, 12, 631140. [Google Scholar] [CrossRef] [PubMed]
- Heeney, D.D.; Gareau, M.G.; Marco, M.L. Intestinal Lactobacillus in Health and Disease, a Driver or Just along for the Ride? Curr. Opin. Biotechnol. 2018, 49, 140–147. [Google Scholar] [CrossRef]
- Wang, W.; Chen, L.; Zhou, R.; Wang, X.; Song, L.; Huang, S.; Wang, G.; Xia, B. Increased Proportions of Bifidobacterium and the Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease. J. Clin. Microbiol. 2014, 52, 398–406. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-Biotics, and Post-Biotics. Front. Nutr. 2022, 8, 634897. [Google Scholar] [CrossRef]
- Nagpal, R.; Wang, S.; Ahmadi, S.; Hayes, J.; Gagliano, J.; Subashchandrabose, S.; Kitzman, D.W.; Becton, T.; Read, R.; Yadav, H. Human-Origin Probiotic Cocktail Increases Short-Chain Fatty Acid Production via Modulation of Mice and Human Gut Microbiome. Sci. Rep. 2018, 8, 12649. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Versalovic, J. Probiotics-Host Communication: Modulation of Signaling Pathways in the Intestine. Gut Microbes 2010, 1, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammad, S.; Sepehr, A.; Miri, S.T.; Najafi, S.; Rohani, M.; Pourshafiea, M.R. The Effects of the Probiotic Cocktail on Modulation of the NF-KB and JAK/STAT Signaling Pathways Involved in the Inflammatory Response in Bowel Disease Model. BMC Immunol. 2022, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Probiotics and Immune Health. Curr. Opin. Gastroenterol. 2011, 27, 496–501. [Google Scholar] [CrossRef]
- Fedorak, R.N. Probiotics in the Management of Ulcerative Colitis. Gastroenterol. Hepatol. 2010, 6, 688–690. [Google Scholar]
- Li, B.; Liang, L.; Deng, H.; Guo, J.; Shu, H.; Zhang, L. Efficacy and Safety of Probiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2020, 11, 332. [Google Scholar] [CrossRef]
- Liu, Y.; Alookaran, J.; Rhoads, J. Probiotics in Autoimmune and Inflammatory Disorders. Nutrients 2018, 10, 1537. [Google Scholar] [CrossRef]
- Śliżewska, K.; Markowiak-Kopeć, P.; Śliżewska, W. The Role of Probiotics in Cancer Prevention. Cancers 2020, 13, 20. [Google Scholar] [CrossRef]
- Wallace, C.J.K.; Milev, R. The Effects of Probiotics on Depressive Symptoms in Humans: A Systematic Review. Ann. Gen. Psychiatry 2017, 16, 14. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Gkerdi, A.; Reilly, J.; Tan, Z.; Shu, X. Association of Nutrients, Specific Dietary Patterns, and Probioticswith Age-Related Macular Degeneration. Curr. Med. Chem. 2022, 29, 6141–6158. [Google Scholar] [CrossRef]
- Hardianti Gunardi, T.; Paramita Susantono, D.; Arus Victor, A.; Sitompul, R. Atopobiosis and Dysbiosis in Ocular Diseases: Is Fecal Microbiota Transplant and Probiotics a Promising Solution? J. Ophthalmic Vis. Res. 2021, 16, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.W.; Muste, J.C.; Kuo, B.L.; Wu, A.K.; Singh, R.P. Clinical Trials Targeting the Gut-Microbiome to Effect Ocular Health: A Systematic Review. Eye 2023. [Google Scholar] [CrossRef] [PubMed]
- Salvador, R.; Zhang, A.; Horai, R.; Caspi, R.R. Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Front. Cell Dev. Biol. 2021, 8, 606751. [Google Scholar] [CrossRef] [PubMed]
- Askari, G.; Moravejolahkami, A.R. Synbiotic Supplementation May Relieve Anterior Uveitis, an Ocular Manifestation in Behcet’s Syndrome. Am. J. Case Rep. 2019, 20, 548–550. [Google Scholar] [CrossRef]
- Chisari, G.; Chisari, E.M.; Francaviglia, A. The Mixture of Bifidobacterium Associated with Fructo- Oligosaccharides Reduces the Damage of the Ocular Surface. La Clin. Ter. 2017, 168, 181–185. [Google Scholar] [CrossRef]
- Choi, S.H.; Oh, J.W.; Ryu, J.S.; Kim, H.M.; Im, S.-H.; Kim, K.P.; Kim, M.K. IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Investig. Ophthalmol. Vis. Sci. 2020, 61, 42. [Google Scholar] [CrossRef]
- Dusek, O.; Fajstova, A.; Klimova, A.; Svozilkova, P.; Hrncir, T.; Kverka, M.; Coufal, S.; Slemin, J.; Tlaskalova-Hogenova, H.; Forrester, J.V.; et al. Severity of Experimental Autoimmune Uveitis Is Reduced by Pretreatment with Live Probiotic Escherichia Coli Nissle 1917. Cells 2020, 10, 23. [Google Scholar] [CrossRef]
- Farajipour, H.; Sadr, S.; Matin, H.R.; Aschner, M.; Asemi, Z.; Banikazemi, Z.; Mirzaei, H.; Taghizadeh, M. Therapeutic Effect of Probiotics on Metabolic Indices and Clinical Signs in Age-Related Macular Degeneration. J. Immunoass. Immunochem. 2023, 44, 229–241. [Google Scholar] [CrossRef]
- Filippelli, M.; Amoruso, A.; Paiano, I.; Pane, M.; Napolitano, P.; Campagna, G.; Bartollino, S.; Costagliola, C.; Dell’Omo, R. Effectiveness of Oral Probiotics Supplementation in the Treatment of Adult Small Chalazion. Int. J. Ophthalmol. 2022, 15, 40–44. [Google Scholar] [CrossRef]
- Filippelli, M.; dell’Omo, R.; Amoruso, A.; Paiano, I.; Pane, M.; Napolitano, P.; Bartollino, S.; Costagliola, C. Intestinal Microbiome: A New Target for Chalaziosis Treatment in Children? Eur. J. Pediatr. 2021, 180, 1293–1298. [Google Scholar] [CrossRef]
- Kim, J.; Choi, S.; Kim, Y.; Jeong, H.; Ryu, J.; Lee, H.; Kim, T.; Im, S.-H.; Oh, J.; Kim, M. Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye. Nutrients 2017, 9, 1166. [Google Scholar] [CrossRef]
- Layús, B.I.; Gomez, M.A.; Cazorla, S.I.; Rodriguez, A.V. Drops of Lactiplantibacillus Plantarum CRL 759 Culture Supernatant Attenuates Eyes Inflammation Induced by Lipopolysaccharide. Benef. Microbes 2021, 12, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Ryu, J.S.; Kim, J.Y.; Im, S.-H.; Kim, M.K. Effect of IRT5 Probiotics on Dry Eye in the Experimental Dry Eye Mouse Model. PLoS ONE 2020, 15, e0243176. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, P.; Filippelli, M.; D’andrea, L.; Carosielli, M.; dell’Omo, R.; Costagliola, C. Probiotic Supplementation Improved Acute Anterior Uveitis of 3-Year Duration: A Case Report. Am. J. Case Rep. 2021, 22, e931321. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Adu-Agyeiwaah, Y.; Floyd, J.L.; Asare-Bediako, B.; Li Calzi, S.; Chakraborty, D.; Harbour, A.; Rohella, A.; Busik, J.V.; Li, Q.; et al. Sustained ACE2 Expression by Probiotic Improves Integrity of Intestinal Lymphatics and Retinopathy in Type 1 Diabetic Model. J. Clin. Med. 2023, 12, 1771. [Google Scholar] [CrossRef]
- Prasad, R.; Floyd, J.L.; Dupont, M.; Harbour, A.; Adu-Agyeiwaah, Y.; Asare-Bediako, B.; Chakraborty, D.; Kichler, K.; Rohella, A.; Li Calzi, S.; et al. Maintenance of Enteral ACE2 Prevents Diabetic Retinopathy in Type 1 Diabetes. Circ. Res. 2023, 132, e1–e21. [Google Scholar] [CrossRef]
- Tavakoli, A.; Markoulli, M.; Papas, E.; Flanagan, J. The Impact of Probiotics and Prebiotics on Dry Eye Disease Signs and Symptoms. J. Clin. Med. 2022, 11, 4889. [Google Scholar] [CrossRef]
- Verma, A.; Zhu, P.; Xu, K.; Du, T.; Liao, S.; Liang, Z.; Raizada, M.K.; Li, Q. Angiotensin-(1–7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Trans. Vis. Sci. Tech. 2020, 9, 20. [Google Scholar] [CrossRef]
- Verma, A.; Xu, K.; Du, T.; Zhu, P.; Liang, Z.; Liao, S.; Zhang, J.; Raizada, M.K.; Grant, M.B.; Li, Q. Expression of Human ACE2 in Lactobacillus and Beneficial Effects in Diabetic Retinopathy in Mice. Mol. Ther.-Methods Clin. Dev. 2019, 14, 161–170. [Google Scholar] [CrossRef]
- Yun, S.; Son, Y.-H.; Lee, D.-Y.; Shin, Y.-J.; Han, M.J.; Kim, D.-H. Lactobacillus Plantarum and Bifidobacterium Bifidum Alleviate Dry Eye in Mice with Exorbital Lacrimal Gland Excision by Modulating Gut Inflammation and Microbiota. Food Funct. 2021, 12, 2489–2497. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Xu, Q.; Zhang, W.; Wang, C. The Gut–Eye Axis: Correlation Between the Gut Microbiota and Autoimmune Dry Eye in Individuals With Sjögren Syndrome. Eye Contact Lens Sci. Clin. Pract. 2023, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson-Berka, J.L. Angiotensin and Diabetic Retinopathy. Int. J. Biochem. Cell Biol. 2006, 38, 752–765. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Beli, E.; Li Calzi, S.; Quigley, J.L.; Miller, R.C.; Moldovan, L.; Feng, D.; Salazar, T.E.; Hazra, S.; Al-Sabah, J.; et al. Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction. Stem Cells 2018, 36, 1430–1440. [Google Scholar] [CrossRef]
- Verma, A.; Shan, Z.; Lei, B.; Yuan, L.; Liu, X.; Nakagawa, T.; Grant, M.B.; Lewin, A.S.; Hauswirth, W.W.; Raizada, M.K.; et al. ACE2 and Ang-(1-7) Confer Protection Against Development of Diabetic Retinopathy. Mol. Ther. 2012, 20, 28–36. [Google Scholar] [CrossRef]
- Das, T.; Jayasudha, R.; Chakravarthy, S.; Prashanthi, G.S.; Bhargava, A.; Tyagi, M.; Rani, P.K.; Pappuru, R.R.; Sharma, S.; Shivaji, S. Alterations in the Gut Bacterial Microbiome in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. Sci. Rep. 2021, 11, 2738. [Google Scholar] [CrossRef]
- Serban, D.; Dascalu, A.M.; Arsene, A.L.; Tribus, L.C.; Vancea, G.; Pantea Stoian, A.; Costea, D.O.; Tudosie, M.S.; Stana, D.; Cristea, B.M.; et al. Gut Microbiota Dysbiosis in Diabetic Retinopathy—Current Knowledge and Future Therapeutic Targets. Life 2023, 13, 968. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Zhu, L.; Wang, Q. Reverse Cholesterol Transport Pathway and Cholesterol Efflux in Diabetic Retinopathy. J. Diabetes Res. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Shi, F.-J.; Zhang, C.-Y.; Qin, H.-F.; Zeng, X.-W.; Lou, H.; Zhang, L.; Xu, G.-T.; Zhang, J.-F.; Xie, H. Is Iba-1 Protein Expression a Sensitive Marker for Microglia Activation in Experimental Diabetic Retinopathy? Int. J. Ophthalmol. 2021, 14, 200–208. [Google Scholar] [CrossRef]
- Fafure, A.A.; Edem, E.E.; Obisesan, A.O.; Enye, L.A.; Adekeye, A.O.; Adetunji, A.E.; Nebo, K.E.; Olusegun, A.A.; Fafure, O.E. Fermented Maize Slurry (Ogi) and Its Supernatant (Omidun) Mitigate Elevated Intraocular Pressure by Modulating BDNF Expression and Glial Plasticity in the Retina-Gut Axis of Glaucomatous Rats. J. Complement. Integr. Med. 2022, 19, 887–896. [Google Scholar] [CrossRef]
- Chisari, G.; Chisari, E.M.; Borzi, A.M.; Chisari, C.G. Aging Eye Microbiota in Dry Eye Syndrome in Patients Treated with Enterococcus Faecium and Saccharomyces Boulardii. Curr. Clin. Pharmacol. 2018, 12, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Lindsay, J.O. Clinical, Microbiological, and Immunological Effects of Fructo-Oligosaccharide in Patients with Crohn’s Disease. Gut 2006, 55, 348–355. [Google Scholar] [CrossRef]
- Moro, G. A Mixture of Prebiotic Oligosaccharides Reduces the Incidence of Atopic Dermatitis during the First Six Months of Age. Arch. Dis. Child. 2006, 91, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Chimienti, G.; Riezzo, G.; Pepe, G.; Petrosillo, G.; Chiloiro, M.; Marconi, E. Inulin-Enriched Pasta Affects Lipid Profile and Lp(a) Concentrations in Italian Young Healthy Male Volunteers. Eur. J. Nutr. 2008, 47, 453–459. [Google Scholar] [CrossRef]
- Varesi, A.; Pierella, E.; Romeo, M.; Piccini, G.B.; Alfano, C.; Bjørklund, G.; Oppong, A.; Ricevuti, G.; Esposito, C.; Chirumbolo, S.; et al. The Potential Role of Gut Microbiota in Alzheimer’s Disease: From Diagnosis to Treatment. Nutrients 2022, 14, 668. [Google Scholar] [CrossRef]
- Varesi, A.; Campagnoli, L.I.M.; Fahmideh, F.; Pierella, E.; Romeo, M.; Ricevuti, G.; Nicoletta, M.; Chirumbolo, S.; Pascale, A. The Interplay between Gut Microbiota and Parkinson’s Disease: Implications on Diagnosis and Treatment. Int. J. Mol. Sci. 2022, 23, 12289. [Google Scholar] [CrossRef]
- Vivero-Lopez, M.; Pereira-da-Mota, A.F.; Carracedo, G.; Huete-Toral, F.; Parga, A.; Otero, A.; Concheiro, A.; Alvarez-Lorenzo, C. Phosphorylcholine-Based Contact Lenses for Sustained Release of Resveratrol: Design, Antioxidant and Antimicrobial Performances, and In Vivo Behavior. ACS Appl. Mater. Interfaces 2022, 14, 55431–55446. [Google Scholar] [CrossRef]
- Huang, G.; Su, L.; Zhang, N.; Han, R.; Leong, W.K.; Li, X.; Ren, X.; Hsiao, W.L.W. The Prebiotic and Anti-Fatigue Effects of Hyaluronan. Front. Nutr. 2022, 9, 977556. [Google Scholar] [CrossRef]
- Rastmanesh, R. Aquaporin5-Targeted Treatment for Dry Eye Through Bioactive Compounds and Gut Microbiota. J. Ocul. Pharmacol. Ther. 2021, 37, 464–471. [Google Scholar] [CrossRef]
- Ren, Y.; Lu, H.; Reinach, P.S.; Zheng, Q.; Li, J.; Tan, Q.; Zhu, H.; Chen, W. Hyperosmolarity-Induced AQP5 Upregulation Promotes Inflammation and Cell Death via JNK1/2 Activation in Human Corneal Epithelial Cells. Sci. Rep. 2017, 7, 4727. [Google Scholar] [CrossRef]
- Erdem, B.; Kaya, Y.; Kıran, T.R.; Yılmaz, S. An Association between the Intestinal Permeability Biomarker Zonulin and the Development of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Turk. J. Ophthalmol. 2023, 53, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Khanna, S. Fecal Microbiota Transplantation. JAMA 2017, 318, 102. [Google Scholar] [CrossRef] [PubMed]
- Ramai, D. Fecal Microbiota Transplantation: Donor Relation, Fresh or Frozen, Delivery Methods, Cost-Effectiveness. Ann. Gastroenterol. 2018, 32, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.; Li, T.; Liu, W.; Zhou, C.; Gao, F. Fecal Microbiota Transplantation for Treatment of Recurrent C. Difficile Infection: An Updated Randomized Controlled Trial Meta-Analysis. PLoS ONE 2019, 14, e0210016. [Google Scholar] [CrossRef]
- Surawicz, C.M.; Brandt, L.J.; Binion, D.G.; Ananthakrishnan, A.N.; Curry, S.R.; Gilligan, P.H.; McFarland, L.V.; Mellow, M.; Zuckerbraun, B.S. Guidelines for Diagnosis, Treatment, and Prevention of Clostridium Difficile Infections. Am. J. Gastroenterol. 2013, 108, 478–498. [Google Scholar] [CrossRef]
- Juul, F.E.; Garborg, K.; Bretthauer, M.; Skudal, H.; Øines, M.N.; Wiig, H.; Rose, Ø.; Seip, B.; Lamont, J.T.; Midtvedt, T.; et al. Fecal Microbiota Transplantation for Primary Clostridium Difficile Infection. N. Engl. J. Med. 2018, 378, 2535–2536. [Google Scholar] [CrossRef] [PubMed]
- Fehily, S.R.; Basnayake, C.; Wright, E.K.; Kamm, M.A. Fecal Microbiota Transplantation Therapy in Crohn’s Disease: Systematic Review. J. Gastroenterol. Hepatol. 2021, 36, 2672–2686. [Google Scholar] [CrossRef]
- El-Salhy, M.; Patcharatrakul, T.; Gonlachanvit, S. Fecal Microbiota Transplantation for Irritable Bowel Syndrome: An Intervention for the 21st Century. World J. Gastroenterol. 2021, 27, 2921–2943. [Google Scholar] [CrossRef]
- Varesi, A.; Deumer, U.-S.; Ananth, S.; Ricevuti, G. The Emerging Role of Gut Microbiota in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Current Evidence and Potential Therapeutic Applications. J. Clin. Med. 2021, 10, 5077. [Google Scholar] [CrossRef]
- Lai, Z.-L.; Tseng, C.-H.; Ho, H.J.; Cheung, C.K.Y.; Lin, J.-Y.; Chen, Y.-J.; Cheng, F.-C.; Hsu, Y.-C.; Lin, J.-T.; El-Omar, E.M.; et al. Fecal Microbiota Transplantation Confers Beneficial Metabolic Effects of Diet and Exercise on Diet-Induced Obese Mice. Sci. Rep. 2018, 8, 15625. [Google Scholar] [CrossRef]
- Pascale, A.; Marchesi, N.; Govoni, S.; Barbieri, A. Targeting the Microbiota in Pharmacology of Psychiatric Disorders. Pharmacol. Res. 2020, 157, 104856. [Google Scholar] [CrossRef]
- Wei, Y.; Gong, J.; Zhu, W.; Guo, D.; Gu, L.; Li, N.; Li, J. Fecal Microbiota Transplantation Restores Dysbiosis in Patients with Methicillin Resistant Staphylococcus Aureus Enterocolitis. BMC Infect. Dis. 2015, 15, 265. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Su, J.; Gao, X.; Yang, H.; Weng, R.; Ni, W.; Gu, Y. The Microbiota-Gut-Brain Axis Participates in Chronic Cerebral Hypoperfusion by Disrupting the Metabolism of Short-Chain Fatty Acids. Microbiome 2022, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ning, J.; Bao, X.; Shang, M.; Ma, J.; Li, G.; Zhang, D. Fecal Microbiota Transplantation Protects Rotenone-Induced Parkinson’s Disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway through the Microbiota-Gut-Brain Axis. Microbiome 2021, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.Y.; Asquith, M.; Rosenbaum, J.T. Fecal Transplants in Spondyloarthritis and Uveitis: Ready for a Clinical Trial? Curr. Opin. Rheumatol. 2018, 30, 303–309. [Google Scholar] [CrossRef]
- Wang, C.; Zaheer, M.; Bian, F.; Quach, D.; Swennes, A.; Britton, R.; Pflugfelder, S.; De Paiva, C. Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int. J. Mol. Sci. 2018, 19, 565. [Google Scholar] [CrossRef]
- Zaheer, M.; Wang, C.; Bian, F.; Yu, Z.; Hernandez, H.; De Souza, R.G.; Simmons, K.T.; Schady, D.; Swennes, A.G.; Pflugfelder, S.C.; et al. Protective Role of Commensal Bacteria in Sjögren Syndrome. J. Autoimmun. 2018, 93, 45–56. [Google Scholar] [CrossRef]
- Parker, A.; Romano, S.; Ansorge, R.; Aboelnour, A.; Le Gall, G.; Savva, G.M.; Pontifex, M.G.; Telatin, A.; Baker, D.; Jones, E.; et al. Fecal Microbiota Transfer between Young and Aged Mice Reverses Hallmarks of the Aging Gut, Eye, and Brain. Microbiome 2022, 10, 68. [Google Scholar] [CrossRef]
- Watane, A.; Cavuoto, K.M.; Rojas, M.; Dermer, H.; Day, J.O.; Banerjee, S.; Galor, A. Fecal Microbial Transplant in Individuals With Immune-Mediated Dry Eye. Am. J. Ophthalmol. 2022, 233, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Jayasudha, R.; Kalyana Chakravarthy, S.; Sai Prashanthi, G.; Sharma, S.; Tyagi, M.; Shivaji, S. Implicating Dysbiosis of the Gut Fungal Microbiome in Uveitis, an Inflammatory Disease of the Eye. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1384. [Google Scholar] [CrossRef] [PubMed]
PROBIOTICS | ||||||
---|---|---|---|---|---|---|
Probiotic | Strain | Condition | Experimental Model | Study Design | Results | Ref. |
Lactiplantibacillus plantarum | CRL759 | Inflammatory eye disorder | Mice | Eye drops of Lactiplantibacillus plantarum supernatant | ↓ Ocular TNF-α, IFN-γ ↓ Pro-inflammatory cell infiltrate | [205] |
Lactiplantibacillus plantarum + Bifidobacterium bifidum | NK151 (L. plantarum) and NK175 (B. bifidum) | Dry eye | Mice, n = 8 Vehicle (n = 4) Probiotics (n = 4) | Daily for 10 days | ↑ Tear secretion ↑ Goblet cell density ↑ IL-10 ↓ IL-1β, TNF-α, myeloperoxidase ↓ Gut inflammation ↓ Verrucomicrobia, Actinobacteria ↑ Lactobacillaceae, Muribaculaceae | [213] |
Streptococcus thermophilus + Lactococcus lactis + Lactobacillus delbrueckii | ST10 (S. thermophilus), and LLC02 (L. lactis) and subsp. bulgaricus (L. delbrueckii) | Chalaziosis | Humans, n = 20: Std (n = 10) Std + probiotics (n = 10) | Daily for 3 months | ↓ Time for chalazia resolution | [202] |
Children, n = 26: Std (n = 13) Std + probiotics (n = 13) | [203] | |||||
Escherichia coli | Nissle 1917 | Uveitis | Mice, n = 52 Placebo (n = 25) Probiotics (n = 27) | 3 times/week in a preventive or therapeutic setting | ↓ T cell immunoreactivity (lymph nodes) ↓ Inflammation (Peyer’s patches) ↓ iNOS (macrophages) ↑ Antimicrobial peptides (gut) | [200] |
Bifidobacterium lactis + Bifidobacterium bifidum + Bifidobacterium breve | BL04 (B. lactis), BB01 (B bifidum), and BR03 (B. breve) | Uveitis | Human, n = 1 Std + probiotics | Daily for 1 year | ↓ Ocular inflammation ↑ Visual acuity | [207] |
ACE2-expressing Lactobacillus paracasei | N/A | Diabetic retinopathy | Mice, n = 12 Untreated (n = 6) Probiotics (n = 6) | 3 times/week for 3 months | ↓ Gut lacteal damage expression ↑ Gut epithelial barrier integrity ↑ Gut endothelial barrier integrity ↓ Plasma LDL ↓ Blood–retinal barrier damage ↓ Acellular capillaries (retina) | [208] |
Mice, n = 21 Untreated (n = 9) Probiotics (n = 12) | 9 months (prevention group) or 3 months (intervention group) | ↓ Diabetic retinopathy ↑ Gut barrier integrity ↓ Gut anti-inflammatory macrophages ↓ IL-2, IL-1β, IL-17, IL-6, TNF-α, IFN-γ (gut) | [209] | |||
ATCC 27092 | Mice, n = 16 Vehicle (n = 8) Probiotics (n = 8) | 3 times/week for 8 weeks (eNOS−/− mice) or 12 weeks (Akita mice) | ↓ Acellular capillaries (retina) ↓ TNF-α, ICAM-1, MCP-1, IL-1α (retina) | [212] | ||
Ang-(1-7)-expressing Lactobacillus paracasei | ATCC 27092 | Diabetic retinopathy | Mice, n = 12 Vehicle (n = 6) Probiotics (n = 6) | 3 times/week for 8 weeks (eNOS−/− mice) or 12 weeks (Akita mice) | ↑ Vascular capillaries (retina) ↑ Ganglion cells (retina) ↓ MCP-1, TNF-α, IL-1β, VEGF, ICAM-1 (retina) | [211] |
Multi-probiotics mixture | Lactobacillus acidophilus, Lactobacillus casei, Bacillus coagulans, Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium lactis | Age-related macular degeneration | Humans, n = 57 Placebo (n = 29) Probiotics (n = 28) | Daily for 8 weeks | ↑ HDL cholesterol ↑ TAC (plasma) ↓ MDA = clinical symptoms | [201] |
Multi-probiotics mixture (IRT5) | Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium bifidum and Streptococcus thermophilus | Dry eye | Mice, n = 35 Vehicle (n = 16) Probiotics (n = 19) | Daily for 3 weeks | ↑ Tear secretion ↓ Ocular staining score ↑ Lactobacillus hamsteri and Lactobacillus helveticus, Christensenellaceae ↓ CD8+ IFN-γ+ cells | [199] |
Uveitis and dry eye | Mice, n = 21 Vehicle (n = 10) Probiotics (n = 11) | [204] | ||||
Dry eye | Mice, n = 25 Vehicle (n = 16) Probiotics (n = 9) | Daily for 11–12 days | [206] | |||
Saccharomyces boulardii and Enterococcus faecium | MUCL 53,837 (S. boulardii) and LMG S-28935 (E. faecium) | Dry eye | Humans, n = 60 Std (n = 30) Std + probiotics (n = 30) | N/A | ↓ Dry eye symptoms | [198] |
SYMBIOTICS | ||||||
Probiotic | Prebiotic | Condition | Experimental Model | Study Design | Results | Ref. |
Lactobacillus rhamnosus + Lactobacillus bulgaricus + Lactobacillus casei + Lactobacillus acidophilus + Bifidobacterium breve + Bifidobacterium longum + Streptococcus thermophilus | FOS | Uveitis | Humans, n = 1 Symbiotics | Twice a day for 7 months | ↓ Uveitis ↓ CRP, hs-CRP, ESR | [197] |
MULTIBIOTICTM | NutriKane D | Dry eye | Humans, n = 41 Placebo (n = 18) Symbiotics (n = 23) | 4 months | ↓ Ocular surface disease ↓ Dry eye ↑ Tear secretion | [210] |
Bifidobacterium lactis + Bifidobacterium bifidum | FOS | Humans, n = 40 Std (n = 20) Std + symbiotics (n = 20) | Daily for 1 month | ↓ Dry eye ↑ Intestinal homeostasis | [198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campagnoli, L.I.M.; Varesi, A.; Barbieri, A.; Marchesi, N.; Pascale, A. Targeting the Gut–Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int. J. Mol. Sci. 2023, 24, 13338. https://doi.org/10.3390/ijms241713338
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut–Eye Axis: An Emerging Strategy to Face Ocular Diseases. International Journal of Molecular Sciences. 2023; 24(17):13338. https://doi.org/10.3390/ijms241713338
Chicago/Turabian StyleCampagnoli, Lucrezia Irene Maria, Angelica Varesi, Annalisa Barbieri, Nicoletta Marchesi, and Alessia Pascale. 2023. "Targeting the Gut–Eye Axis: An Emerging Strategy to Face Ocular Diseases" International Journal of Molecular Sciences 24, no. 17: 13338. https://doi.org/10.3390/ijms241713338
APA StyleCampagnoli, L. I. M., Varesi, A., Barbieri, A., Marchesi, N., & Pascale, A. (2023). Targeting the Gut–Eye Axis: An Emerging Strategy to Face Ocular Diseases. International Journal of Molecular Sciences, 24(17), 13338. https://doi.org/10.3390/ijms241713338