The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies
Abstract
:1. Introduction
2. Effect of Metformin on CD8+ TILs
3. Effect of Metformin on the PD1-PD-L1 Axis
4. Combination Therapy with Metformin
5. Effect of Metformin on CD4+ T Helper Cells
6. Effect of Metformin on Treg Cells
7. Effect of Metformin on B Cells
8. Effect of Metformin on γδ T Cells
9. Effect of Metformin on NK Cells
10. Effect of Metformin on Myeloid-Derived Suppressor Cells (MDSCs)
11. Effect of Metformin on Tumor-Associated Macrophages (TAMs)
12. Effect of Metformin on Tumor-Infiltrated Dendritic Cells (DCs)
13. Summary and Future Directions
14. Strategies to Enhance the Clinical Utility of Metformin
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Kruger, S.; Ilmer, M.; Kobold, S.; Cadilha, B.L.; Endres, S.; Ormanns, S.; Schuebbe, G.; Renz, B.W.; D’Haese, J.G.; Schloesser, H. Advances in cancer immunotherapy 2019–latest trends. J. Exp. Clin. Cancer Res. 2019, 38, 268. [Google Scholar] [CrossRef] [PubMed]
- Tossetta, G.; Piani, F.; Borghi, C.; Marzioni, D. Role of CD93 in Health and Disease. Cells 2023, 12, 1778. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Bailey, C.J. Metformin: Historical overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304–1305. [Google Scholar] [CrossRef]
- McFarland, M.S.; Cripps, R. Diabetes mellitus and increased risk of cancer: Focus on metformin and the insulin analogs. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2010, 30, 1159–1178. [Google Scholar] [CrossRef]
- Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Cancer risk in diabetic patients treated with metformin: A systematic review and meta-analysis. PLoS ONE 2012, 7, e33411. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Peng, M.; Wang, Z.; Zhou, S.; Xiao, D.; Deng, J.; Yang, X.; Peng, J.; Yang, X. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci. 2019, 110, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M.N. Investigating metformin for cancer prevention and treatment: The end of the beginning. Cancer Discov. 2012, 2, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, S.; Siegel, P.M.; St-Pierre, J. Metabolic profiles associated with metformin efficacy in cancer. Front. Endocrinol. 2018, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Blagih, J.; Coulombe, F.; Vincent, E.E.; Dupuy, F.; Galicia-Vázquez, G.; Yurchenko, E.; Raissi, T.C.; van der Windt, G.J.; Viollet, B.; Pearce, E.L. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 2015, 42, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Tossetta, G. Metformin Improves Ovarian Cancer Sensitivity to Paclitaxel and Platinum-Based Drugs: A Review of In Vitro Findings. Int. J. Mol. Sci. 2022, 23, 12893. [Google Scholar] [CrossRef] [PubMed]
- Paijens, S.T.; Vledder, A.; de Bruyn, M.; Nijman, H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol. Immunol. 2021, 18, 842–859. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Seo, N.; Mitsui, J.; Muraoka, D.; Tanaka, M.; Mineno, J.; Ikeda, H.; Shiku, H. Systemic CD8 T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE 2014, 9, e104669. [Google Scholar] [CrossRef]
- Matsumoto, H.; Thike, A.A.; Li, H.; Yeong, J.; Koo, S.; Dent, R.A.; Tan, P.H.; Iqbal, J. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res. Treat. 2016, 156, 237–247. [Google Scholar] [CrossRef]
- Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA 2015, 112, 1809–1814. [Google Scholar] [CrossRef]
- Nojima, I.; Eikawa, S.; Tomonobu, N.; Hada, Y.; Kajitani, N.; Teshigawara, S.; Miyamoto, S.; Tone, A.; Uchida, H.A.; Nakatsuka, A. Dysfunction of CD8 PD-1 T cells in type 2 diabetes caused by the impairment of metabolism-immune axis. Sci. Rep. 2020, 10, 14928. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Yin, K.; Tang, X.; Tian, J.; Zhang, Y.; Ma, J.; Xu, H.; Xu, Q.; Wang, S. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed. Pharmacother. 2019, 120, 109458. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.V.; Melo, A.C.L.; Low, J.S.; de Castro, Í.A.; Braga, T.T.; Almeida, D.C.; de Lima, A.G.U.B.; Hiyane, M.I.; Correa-Costa, M.; Andrade-Oliveira, V. Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget 2018, 9, 25808. [Google Scholar] [CrossRef] [PubMed]
- Nishida, M.; Yamashita, N.; Ogawa, T.; Koseki, K.; Warabi, E.; Ohue, T.; Komatsu, M.; Matsushita, H.; Kakimi, K.; Kawakami, E. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. J. Immunother. Cancer 2021, 9, e002954. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Li, Y.; Hou, Z.; Zhang, M.; Li, L.; Wei, J. Combination therapy with PD-1 inhibition plus rapamycin and metformin enhances anti-tumor efficacy in triple negative breast cancer. Exp. Cell Res. 2023, 429, 113647. [Google Scholar] [CrossRef]
- Amin, D.; Richa, T.; Mollaee, M.; Zhan, T.; Tassone, P.; Johnson, J.; Luginbuhl, A.; Cognetti, D.; Martinez-Outschoorn, U.; Stapp, R. Metformin effects on FOXP3 and CD8 T cell infiltrates of head and neck squamous cell carcinoma. Laryngoscope 2020, 130, E490–E498. [Google Scholar] [CrossRef] [PubMed]
- Curry, J.; Johnson, J.; Tassone, P.; Vidal, M.D.; Menezes, D.W.; Sprandio, J.; Mollaee, M.; Cotzia, P.; Birbe, R.; Lin, Z. Metformin effects on head and neck squamous carcinoma microenvironment: Window of opportunity trial. Laryngoscope 2017, 127, 1808–1815. [Google Scholar] [CrossRef]
- Wang, S.; Lin, Y.; Xiong, X.; Wang, L.; Guo, Y.; Chen, Y.; Chen, S.; Wang, G.; Lin, P.; Chen, H. Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial. Clin. Cancer Res. 2020, 26, 4921–4932. [Google Scholar] [CrossRef]
- Saito, A.; Kitayama, J.; Horie, H.; Koinuma, K.; Ohzawa, H.; Yamaguchi, H.; Kawahira, H.; Mimura, T.; Lefor, A.K.; Sata, N. Metformin changes the immune microenvironment of colorectal cancer in patients with type 2 diabetes mellitus. Cancer Sci. 2020, 111, 4012–4020. [Google Scholar] [CrossRef]
- Tsukioki, T.; Shien, T.; Tanaka, T.; Suzuki, Y.; Kajihara, Y.; Hatono, M.; Kawada, K.; Kochi, M.; Iwamoto, T.; Ikeda, H. Influences of preoperative metformin on immunological factors in early breast cancer. Cancer Chemother. Pharmacol. 2020, 86, 55–63. [Google Scholar] [CrossRef]
- Taylor, S.E.; Chan, D.K.; Yang, D.; Bruno, T.; Lieberman, R.; Siddiqui, J.; Soong, T.R.; Coffman, L.; Buckanovich, R.J. Shifting the Soil: Metformin Treatment Decreases the Protumorigenic Tumor Microenvironment in Epithelial Ovarian Cancer. Cancers 2022, 14, 2298. [Google Scholar] [CrossRef] [PubMed]
- Orecchioni, S.; Talarico, G.; Mancuso, P.; Labanca, V.; Reggiani, F.; Bertolini, F. Metformin reduces intratumoral CD8 PD-1 and Treg lymphocytes in orthotopic models of breast cancer and lymphoma, and has paradoxic effects on anti-PD-L1 treatment. Cancer Res. 2016, 76, 4003. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Zhao, Y.; Shi, F.; Zhou, Q.; Wu, J.; Lyu, S.; Song, Q. Metformin Inducing the Change of Functional and Exhausted Phenotypic Tumor-Infiltrated Lymphocytes and the Correlation with JNK Signal Pathway in Triple-Negative Breast Cancer. Breast Cancer Targets Ther. 2022, 14, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Yang, W.; Xia, W.; Wei, Y.; Chan, L.; Lim, S.; Li, C.; Kim, T.; Chang, S.; Lee, H. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 2018, 71, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.M.; Khan, P.P.; Wang, H.; Tsai, W.; Qiao, Y.; Yu, B.; Larrick, J.W.; Hu, M.C. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8 T cells via pharmacological activation of FOXO3. J. Immunother. Cancer 2021, 9, e002772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, F.; Tian, Y.; Cao, L.; Gao, Q.; Zhang, C.; Zhang, K.; Shen, C.; Ping, Y.; Maimela, N.R. Metformin enhances the antitumor activity of CD8 T lymphocytes via the AMPK–miR-107–Eomes–PD-1 pathway. J. Immunol. 2020, 204, 2575–2588. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Qi, X.; Li, M.; Wu, Y.; Sun, L.; Fan, X.; Yuan, Y.; Li, J. Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner. Oncoimmunology 2021, 10, 1995999. [Google Scholar] [CrossRef]
- Veeramachaneni, R.; Yu, W.; Newton, J.M.; Kemnade, J.O.; Skinner, H.D.; Sikora, A.G.; Sandulache, V.C. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J. Immunother. Cancer 2021, 9, e002773. [Google Scholar] [CrossRef]
- Kubo, T.; Ninomiya, T.; Hotta, K.; Kozuki, T.; Toyooka, S.; Okada, H.; Fujiwara, T.; Udono, H.; Kiura, K. Study protocol: Phase-Ib trial of nivolumab combined with metformin for refractory/recurrent solid tumors. Clin. Lung Cancer 2018, 19, e861–e864. [Google Scholar] [CrossRef]
- Abdelmoneim, M.; Eissa, I.R.; Aboalela, M.A.; Naoe, Y.; Matsumura, S.; Sibal, P.A.; Bustos-Villalobos, I.; Tanaka, M.; Kodera, Y.; Kasuya, H. Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Sci. Rep. 2022, 12, 21570. [Google Scholar] [CrossRef]
- Reiser, J.; Banerjee, A. Effector, memory, and dysfunctional CD8 T cell fates in the antitumor immune response. J. Immunol. Res. 2016, 2016, 8941260. [Google Scholar] [CrossRef] [PubMed]
- Hensel, J.; Alfaro, A.; Rau, M.; Perez-Villarroel, P.; Sannasardo, Z.; Pilon-Thomas, S.; Mullinax, J. 179 CD8 CD69 expanded tumor infiltrating lymphocytes from soft tissue sarcoma have increased tumor-specific functional capacity. J. Immunother. Cancer 2021, 9, A191. [Google Scholar] [CrossRef]
- Munoz, L.E.; Huang, L.; Bommireddy, R.; Sharma, R.; Monterroza, L.; Guin, R.N.; Samaranayake, S.G.; Pack, C.D.; Ramachandiran, S.; Reddy, S.J. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J. Immunother. Cancer 2021, 9, e002614. [Google Scholar] [CrossRef] [PubMed]
- Guisier, F.; Barros-Filho, M.C.; Rock, L.D.; Strachan-Whaley, M.; Marshall, E.A.; Dellaire, G.; Lam, W.L. Janus or Hydra: The many faces of T helper cells in the human tumour microenvironment. Tumor Microenviron. Hematop. Cells—Part A 2020, 1224, 35–51. [Google Scholar]
- Showalter, L.; Czerniecki, B.J.; Koski, G.K. Th1 cytokines in conjunction with pharmacological Akt inhibition potentiate apoptosis of breast cancer cells in vitro and suppress tumor growth in vivo. Oncotarget 2020, 11, 2873–2888. [Google Scholar] [CrossRef]
- Najafi, S.; Mirshafiey, A. The role of T helper 17 and regulatory T cells in tumor microenvironment. Immunopharmacol. Immunotoxicol. 2019, 41, 16–24. [Google Scholar] [CrossRef]
- Zhao, D.; Long, X.; Lu, T.; Wang, T.; Zhang, W.; Liu, Y.; Cui, X.; Dai, H.; Xue, F.; Xia, Q. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer 2015, 136, 2556–2565. [Google Scholar] [CrossRef] [PubMed]
- Limagne, E.; Thibaudin, M.; Euvrard, R.; Berger, H.; Chalons, P.; Végan, F.; Humblin, E.; Boidot, R.; Rébé, C.; Derangère, V. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep. 2017, 19, 746–759. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017, 27, 109–118. [Google Scholar] [CrossRef]
- Kunisada, Y.; Eikawa, S.; Tomonobu, N.; Domae, S.; Uehara, T.; Hori, S.; Furusawa, Y.; Hase, K.; Sasaki, A.; Udono, H. Attenuation of CD4 CD25 regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. eBioMedicine 2017, 25, 154–164. [Google Scholar] [CrossRef]
- Memmott, R.M.; Mercado, J.R.; Maier, C.R.; Kawabata, S.; Fox, S.D.; Dennis, P.A. Metformin Prevents Tobacco Carcinogen–Induced Lung Tumorigenesis Metformin Prevents Lung Tumorigenesis. Cancer Prev. Res. 2010, 3, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Luo, Z.; Li, J.; Li, H.; Liang, Y.; Shen, Y.; Li, T.; Song, J.; Hu, Z. Metformin inhibits proliferation and functions of regulatory T cells in acidic environment. J. South. Med. Univ. 2019, 39, 1427–1435. [Google Scholar]
- Hu, C.; He, X.; Chen, Y.; Yang, X.; Qin, L.; Lei, T.; Zhou, Y.; Gong, T.; Huang, Y.; Gao, H. Metformin mediated PD-L1 downregulation in combination with photodynamic-immunotherapy for treatment of breast cancer. Adv. Funct. Mater. 2021, 31, 2007149. [Google Scholar] [CrossRef]
- Mensurado, S.; Blanco-Domínguez, R.; Silva-Santos, B. The emerging roles of γδ T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 178–191. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, H.; Kim, C.W.; Kim, H.C.; Jung, Y.; Lee, H.; Lee, Y.; Ju, Y.S.; Oh, J.E.; Park, S. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat. Immunol. 2021, 22, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.K.; Gao, Y.; Basse, P.H. NK cells in the tumor microenvironment. Crit. Rev. Oncog. 2014, 19, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Tojo, M.; Miyato, H.; Koinuma, K.; Horie, H.; Tsukui, H.; Kimura, Y.; Kaneko, Y.; Ohzawa, H.; Yamaguchi, H.; Yoshimura, K. Metformin combined with local irradiation provokes abscopal effects in a murine rectal cancer model. Sci. Rep. 2022, 12, 7290. [Google Scholar] [CrossRef] [PubMed]
- Crist, M.; Yaniv, B.; Palackdharry, S.; Lehn, M.A.; Medvedovic, M.; Stone, T.; Gulati, S.; Karivedu, V.; Borchers, M.; Fuhrman, B. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J. Immunother. Cancer 2022, 10, e005632. [Google Scholar] [CrossRef]
- Petrovic, A.R.; Jovanovic, I.P.; Jurisevic, M.M.; Jovanovic, M.Z.; Jovanovic, M.M.; Pavlovic, S.P.; Arsenijevic, N.N.; Supic, G.M.; Vojvodic, D.V.; Jovanovic, M.M. Metformin promotes antitumor activity of NK cells via overexpression of miRNA-150 and miRNA-155. Am. J. Transl. Res. 2023, 15, 2727–2737. [Google Scholar]
- Veglia, F.; Sanseviero, E.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 2021, 21, 485–498. [Google Scholar] [CrossRef]
- Uehara, T.; Eikawa, S.; Nishida, M.; Kunisada, Y.; Yoshida, A.; Fujiwara, T.; Kunisada, T.; Ozaki, T.; Udono, H. Metformin induces CD11b -cell-mediated growth inhibition of an osteosarcoma: Implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int. Immunol. 2019, 31, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, T.; Nagata, Y.; Nishida, M.; Matsuo, M.; Kobayashi, S.; Yoneda, A.; Kanetaka, K.; Udono, H.; Eguchi, S. Metformin prevents peritoneal dissemination via immune-suppressive cells in the tumor microenvironment. Anticancer Res. 2019, 39, 4699–4709. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Suo, H.; Gao, L.; Liu, Y.; Chen, B.; Lu, S.; Jin, F.; Cao, Y. Metformin plays an antitumor role by downregulating inhibitory cells and immune checkpoint molecules while activating protective immune responses in breast cancer. Int. Immunopharmacol. 2023, 118, 110038. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Li, J.; Fan, Z.; Yang, L.; Zhang, Z.; Zhang, C.; Yue, D.; Qin, G.; Zhang, T. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res. 2018, 78, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Lian, J.; Huang, L.; Zhao, Q.; Liu, S.; Zhang, Z.; Chen, X.; Yue, D.; Li, L.; Li, F. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncoimmunology 2018, 7, e1442167. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.; Chao, T.; Su, Y.; Hsu, C.; Chien, C.; Chiu, K.; Shiah, S.; Lee, C.; Liu, S.; Shieh, Y. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget 2017, 8, 20706. [Google Scholar] [CrossRef]
- Fu, C.; Jiang, A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front. Immunol. 2018, 9, 3059. [Google Scholar] [CrossRef]
- Prokhnevska, N.; Cardenas, M.A.; Valanparambil, R.M.; Sobierajska, E.; Barwick, B.G.; Jansen, C.; Moon, A.R.; Gregorova, P.; Greenwald, R.; Bilen, M.A. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 2023, 56, 107–124.e5. [Google Scholar] [CrossRef]
- Chandel, N.S.; Avizonis, D.; Reczek, C.R.; Weinberg, S.E.; Menz, S.; Neuhaus, R.; Christian, S.; Haegebarth, A.; Algire, C.; Pollak, M. Are metformin doses used in murine cancer models clinically relevant? Cell Metab. 2016, 23, 569–570. [Google Scholar] [CrossRef]
- Kordes, S.; Pollak, M.N.; Zwinderman, A.H.; Mathôt, R.A.; Weterman, M.J.; Beeker, A.; Punt, C.J.; Richel, D.J.; Wilmink, J.W. Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 2015, 16, 839–847. [Google Scholar] [CrossRef]
Cancer Model | Single or Combined | Dose | Effect on CD8+ TILs | Reference |
---|---|---|---|---|
Leukemia mouse model Melanoma mouse model | Single | 5 mg/mL in the drinking water | Enhance effector and effector memory CD8+ TILs, accompanied with an increase in the cytokine production, including IL-2, IFNγ, and TNFα | [20,21] |
Colon cancer | Single | 250 mg/kg/ i.p | Increase CD8+ IFNγ+ TILs | [22] |
Melanoma mouse model | Single | 500 mg/kg orally | Increase CD8+CD69+, CD8+ IFNγ+, and CD8+ Granzyme B+ T cells as well as CD3+ effector-memory CD8+T cells (CD44hi CD62Llo) | [23] |
TNBC mouse model | Single | 500 mg/kg orally | Increase CD8+ TILs Reduce exhausted CD8+ PD-1+ TILs | [33] |
Breast cancer mouse model | Single | 200 mg/kg/ i.p | Increase CD8+ TILs Increase granzyme B production from CD8+ TILs | [34] |
Ovarian tumor mouse model | Single | 200 mg/kg/ i.p | Increase CD8+ TILs | [35] |
Melanoma mouse model Fibrosarcoma mouse model | Single and combined with anti-PD-1 | 5 mg/mL in the drinking water | Increase proliferation of CD8+ TILs | [24] |
Triple-negative breast cancer (TNBC) mouse model | Combined with anti-PD-1 | 200 mg/kg/ i.p | Increase CD8+ TILs | [25] |
Melanoma mouse model | Combined with anti-PD-1 | 100 mg/kg/ i.p | Increase CD8+ TILs Increase granzyme B production | [37] |
Human papillomavirus-associated head and neck cancer (mEER/MTEC) mouse model | Combined with anti-PD-1 | 40 mg/kg/ i.p or 5 mg/mL in the drinking water | Increase CD8+ TILs infiltration and proliferation | [38] |
Pancreatic cancer mouse model | Combined with HSV-1 oncolytic virus | 5 mg/mL in the drinking water | Increase CD3+ CD8+ TILs infiltration and CD3+ CD8+ IFNγ+ | [40] |
Breast cancer mouse model | Combined with a tumor membrane vesicles (TMVs) vaccine | 50 mg/kg/ i.p | Increase CD8+ TILs infiltration, accompanied by an increase in central memory CD8+ T cells, CD8+ IFNγ+ TNF-α+, and CD8+ IFNγ+ IL-2+ | [43] |
Cancer Type | Purpose | Clinical Trial Phase | Dose | Single or Combined | Effect on Tumor-Immune Cells | Status | Place | Number of Patients | Clinical Trial Identifier/Reference |
---|---|---|---|---|---|---|---|---|---|
HNSCC | To decrease TOMM20 expression in SCC and decrease MCT4 expression in fibroblasts | Early phase I | 2000 mg/day | Single | Increase CD8+ TILs Decrease FOXP3+ cells Increase Nk cells | Completed | United States | 50 | NCT02083692/ [26,27,58] |
ESCC | Enhance anticancer immunity | Phase II | 250 mg/day | Single | Increase CD8+ TILs Decrease CD163+ macrophages Increases tumor-suppressive CD11c+ macrophages | Completed | China | 128 | ChiCTR-ICR-15005940/ [28] |
CRC | To examine the pathological characteristics of resected CRC | NA | 500–1000 mg/day | Single | Increase CD8+ TILs Decrease M2 macrophages | NA | Japan | 267 | [29] |
Early breast cancer | To evaluate the effects of preoperative metformin in patients with stage I or IIA breast cancer | NA | 500 mg/day (for 3 days) 750 mg/day (for 4 days) then 1000 mg/day (for 7 days) | Single | Increase CD8+ and CD4+TILs | NA | Japan | 17 | [30] |
EOC | To study the impact of metformin on the TME of patients with EOC | Phase II | 750 mg/day | Metformin plus platinum-based standard of care chemotherapy | Decrease CD4+ FOXP3+ cells | Completed | United States | 82 | HUM00047900/ [31] |
NSCLC | To study the anticancer effects of metformin | NA | Not determined | Single | Increase central memory and memory stem CD8+ TILs | NA | China | 58 | [36] |
Refractory/recurrent solid tumors (stage 1), advanced or recurrent NSCLC, advanced or recurrent thymic epithelial tumor, and advanced or recurrent pancreatic cancer (stage 2) | To investigate the safety, efficacy, and pharmacokinetics of a metformin–nivolumab combination treatment | Phase Ib | 500–2250 mg/day | Metformin plus Nivolumab | Tumor-infiltrating immune cells | Ongoing | Japan | 30 | UMIN000028405/ [39] |
Ovarian cancer | To investigate the antitumor efficacy of metformin on ovarian cancer patients | NA | Not determined | Single | Blocks the suppressive function of MDSC | NA | China | 52 | [64] |
ESCC | To investigate the effect of metformin on MDSCs migration | NA | Not determined | Single | Decrease PMN-MDSCs accumulation | NA | China | 75 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmoneim, M.; Aboalela, M.A.; Naoe, Y.; Matsumura, S.; Eissa, I.R.; Bustos-Villalobos, I.; Sibal, P.A.; Takido, Y.; Kodera, Y.; Kasuya, H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int. J. Mol. Sci. 2023, 24, 13353. https://doi.org/10.3390/ijms241713353
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. International Journal of Molecular Sciences. 2023; 24(17):13353. https://doi.org/10.3390/ijms241713353
Chicago/Turabian StyleAbdelmoneim, Mohamed, Mona Alhussein Aboalela, Yoshinori Naoe, Shigeru Matsumura, Ibrahim Ragab Eissa, Itzel Bustos-Villalobos, Patricia Angela Sibal, Yuhei Takido, Yasuhiro Kodera, and Hideki Kasuya. 2023. "The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies" International Journal of Molecular Sciences 24, no. 17: 13353. https://doi.org/10.3390/ijms241713353
APA StyleAbdelmoneim, M., Aboalela, M. A., Naoe, Y., Matsumura, S., Eissa, I. R., Bustos-Villalobos, I., Sibal, P. A., Takido, Y., Kodera, Y., & Kasuya, H. (2023). The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. International Journal of Molecular Sciences, 24(17), 13353. https://doi.org/10.3390/ijms241713353